

Mark Thomson

Cavendish Laboratory University of Cambridge

Part 2

Professor of Experimental Particle Physics at the University of Cambridge

Research Interests/History

- Cosmic-ray/Astroparticle Physics (Soudan 2)
- **★** Electroweak Physics at LEP (OPAL)
 - Z lineshape and leptonic couplings
 - W mass and couplings
- **★** Neutrino physics (MINOS)
 - atmospheric neutrinos
 - v_e appearance

★Calorimetry at future colliders

time

Lecture 1

- Introduction
 Neutrino Bear
- 2 Neutrino Beams
- **B** Predicting the Beam Energy Spectrum
- **4** The MINOS Experiment

Lecture 2

Topics chosen to illustrate the main techniques/issues
 Not intended as a global review – far too little time
 Use MINOS as the main example

Discuss generation of neutrino beams Started discussion of MINOS on-axis experiment

 wide-band beam – need to measure neutrino energy on an event-by-event basis

★ Can measure energy for charged current interactions

hadron shower energy

Towards Physics:

★ First step: identify CC interactions

 v_{μ}

★ Understand beam

★ Then discuss main techniques for precision neutrino physics

CC Event Types

★ Use a multivariate technique: 4 reconstructed quantities

- Number of muon planes
- Mean energy per strip
- Transverse profile
- Signal fluctuation parameter on track

★ For each data event compare it to MC in multivariate space

Near Detector Data

Can now measure beam spectrum

6 Measuring the beam spectrum

- **★** Total of 1.2E20 protons on target:
 - Neutrinos (Low Energy beam)
 - Neutrinos (High Energy beam)
 - Anti-neutrinos (Low Energy beam)
- **★** Gaps due to NuMI shutdowns and target failures

★ Most recent disappearance analysis based on 7.2E20 neutrino data

Measured ND Energy Spectrum

Measured Near Detector (ND) energy spectrum does not agree with MC
 No surprise – large hadron production and cross section uncertainties

But is the discrepancy due to flux or cross section?

Measured Near Detector (ND) energy spectrum does not agree with MC No surprise – large hadron production and cross section uncertainties

- But is the discrepancy due to flux or cross section?
- Power of having data at different beam configurations !
- Discrepancy changes with beam setting
- Suggestive due to flux modeling rather than cross-section model

- Reweight MC at hadron production level to fit BD data using a smooth function of x_F and p_T
- Cross check against recent experimental measurements, e.g. NA49

Effectively force MC to look like data

Effectively force MC to look like data

(There are still residual uncertainties in neutrino flux and neutrino cross section)

But also have MEASURED Reconstructed Spectrum in Near Detector

6 Disappearance Analysis

- ★ Even in the absence of oscillations the NEAR and FAR detector neutrino spectra are different !
- Easy to understand...
- **★** Consider a pion decaying in the decay pipe
- **★** Neutrino can intersect the ND for a relatively wide range of decay angles
- ★ For far detector only decays in a very small range of angles will cross the FD 735 km away

★ At small angles, neutrino energy depends on decay angle relative to pion

$$E_{\nu} = \frac{0.43E_{\pi}}{1 + \gamma^2 \theta^2}$$

***** However, difference is just kinematics, i.e. well understood !

★ Attempt to directly use ND spectrum to predict FD spectrum

Beam Transfer Matrix:

- Encapsulates knowledge of 2-body pion decay and geometry
- Beam matrix determined from MC but does not depend strongly on details - kinematics & geometry dominate
- MC tuning only enters as a second order effect in determining matrix

 almost identical FD predictions for tuned and untuned MC

Details of matrix Near → Far beam extrapolation

ISAPP, Varenna, August 2011

Mark Thomson

Far Detector Energy Spectrum

 Oscillation parameters extracted from likelihood fit to reconstructed energy distribution

$$\chi^2(\Delta m^2, \sin^2 2\theta, \alpha_j, ...) = \sum_{i=1}^{nbins} 2(e_i - o_i) + 2o_i \ln(o_i/e_i) + \sum_{j=1}^{nsyst} \frac{\Delta \alpha_j^2}{\sigma_{\alpha_j^2}}$$

statistical error

systematic errors

Relatively few important systematic uncertainties

Uncertainty	Δm ² (10 ⁻³ eV ²)	sin ² 2θ
Absolute shower energy scale (10%)	0.049	0.001
Muon mom. Scale (2-3%)	0.030	0.001
NC contamination (20%)	0.008	0.008
All other systematics	0.039	<0.005
Total systematic (quad. sum)	0.07	0.01
Statistical uncertainty	0.13	0.06

Only significant uncertainties come from absolute energy scales
 determines position in energy of oscillation dip

★ The absolute energy scale can only be determined from data !

★ In particular hadronic energy scale is problematic

- simulation of underlying event
- simulation of detector response to low energy hadrons
- simulation of low energy neutron transport

• • • • •

The absolute energy scale has to be established from test beam

Test beam Calibration Detector

- ★ 60-plane 'mini-MINOS' exposed in CERN test-beam (2001-2003)
- Energy uncertainties: 3% relative and 1.9% (ND) & 3.5% (FD) absolute

★ Also determine energy resolution

Final Oscillation Fit

$$P(\mathbf{v}_i \to \mathbf{v}_j) = \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \right)$$

$$|\Delta m^2| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$$

★ 4 % measurement

$$\sin^2 2\theta > 0.90 (90 \% \text{ C.L.})$$

Consistent with maximal mixing

★ Excellent fit probability: 41%

- **★** MINOS is the first high statistics long-baseline experiment
- ★ Can study shape of oscillation curve in detail
- ★ In particular, compare standard oscillation hypothesis to other scenarios, e.g

★ More "wrong-sign" background due to: σ(v_µN) ~ 2σ(v_µN)
 ■ + leading particle charge asymmetry (proton beam)

Results

Current results based on only 1.7E20 of data (factor 5 lower than neutrinos) + Reduced flux x cross-section, lower sensitivity, but ...

★ 97 events observed (no oscillation expectation of 155)

★ Updated results (larger data sample) very soon...

Searching for $\nu_{\mu} \rightarrow \nu_{e}$ Oscillations in a wide-band beam

★ Neglecting CP violation and matter effects

$$P(\nu_{\mu} \to \nu_{e}) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2}\sin^{2}\left(\frac{\Delta m_{21}^{2}L}{4E}\right) + 4U_{e3}^{2}U_{\mu 3}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

★ For long baseline experiments, only the "32" mass scale is relevant

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)$$

★ From the CHOOZ reactor experiments, know θ_{13} is small $\sin^2 2\theta_{13} < 0.16$

Looking for a small signal

Looking for v_e appearance in MINOS

★ The signature for $v_e CC$ in MINOS is not very clean

- **★** The main issue is distinguishing the signal from the NC background
- ★ NC events can fake v_e if significant EM fraction in hadronic shower, e.g. from $\pi^0 \rightarrow \gamma \gamma$
- ★ MINOS detector is far from ideal....

EM Showers in MINOS	Detector Parameters
Radiation length in steel: 1.76 cm	Steel thickness: 2.54 cm
Molière radius: 3.7 cm	Strip width: 4.1 cm

★ MINOS wide band beam does not help...

★ Signal below peak of spectrum ★ all NC events with neutrino energy > 2 GeV can form background

Event Identification

★ Need to separate NC background from "similar looking" signal

★ Traditionally would reconstruct set of variables

- Energy, Number of hits, Shower profile, ...
- ★ Use ANN multivariate discriminator
- ★ BUT here the number of hits is not large
 - potentially smaller than number of variables
- ★ Came up with a new approach (Cambridge/CalTech)
- ★ Use hit patterns directly no loss of information !

Library Event Matching

- ★ Build large library of about 50,000,000 MC events
 - 20M ν_e and 30M NC
- ★ For each data compare pattern of hits to entire library
- **★** Form quality of match likelihood for events *i* and *j*

$$-\ln\prod_{\text{hits}}\int_0^{\Lambda} P(n_i,\lambda)P(n_j,\lambda)\mathrm{d}\lambda$$

Where $P(n, \lambda)$ is Poisson probability of seeing n photoelectrons in a strip,

★ Fraction of best matches which are MC v_e provides a powerful discriminant

★ Combine 3 LEM output variables using an ANN

★ Good – but in a wide-band beam the background is high...

- **★** So still looking for a very small signal above a large background
 - need an accurate prediction of FD background
 - use ND data analysis would be impossible without it !

Different Beam Conditions

★ Different beam configurations have different levels of NC/CC and beam components which allows each to be extracted separately

ISAPP, Varenna, August 2011

Mark Thomson

★ Data driven decomposition of the ND selected energy distribution

Reconstructed Energy (GeV)

- ★ Can now extrapolate to FD
 - CC Oscillated
 - NC Unoscillated

★ FD prediction as function of PID

* Background uncertainty ~6 %
 * All down to having (almost) identical near detector which is used to directly determine the background !

★ Blind analysis

★ In background-like region, LEM < 0.5

observe: 377 events

Tests complete analysis chain

expect: 372 events (θ₁₃=0)

★ In signal-like region, LEM > 0.6

- observe: 62 events
- expect: 49.5+- 2.8 (θ₁₃=0)

1.65 σ excess in high PID region

Results

- ★ Fit energy distribution in 3 PID bins observe: 377 events
 0.6<LEM<0.7, 0.7<LEM<0.8, LEM>0.8
- ★ Figure shows signal enhanced region, LEM>0.7

• for best fit
$$\sin^2 2\theta_{13} = 0.04$$

2 - 1

1 .

★ Simple two-flavour formula

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)$$

is only approximate.

★ Including matter effects and CP violation get small dependence on mass hierarchy and CP phase

MINOS Results (Summer 2011)

- **★** Assuming $\delta = 0$, $\theta_{23} = \pi/4$
 - Exclude zero at 89 % C.L.
- **★** For normal (inverted) hierachy

 $\sin^2 2\theta_{13} = 0.04 (0.08)$ best fit $\sin^2 2\theta_{13} < 0.12 (0.19) 90 \%$ C.L.

★ Hints of non-zero value of θ_{13}

Comments:

- ★ Interesting result...
- ★ but, very hard work
 - Detector not optimized for v_e
 granularity too coarse
 - Beam not optimized for ν_e
 - Wide band beam, NC backgrounds are high!

★ MINOS is a <u>very simple experiment</u>

- Made a number of important measurements/limits
 - $|\Delta m_{32}^2|$
 - $|\Delta \overline{m}_{32}^2|$
 - θ_{13}

★ Power comes from two functionally identical detectors

- Most systematics just cancel
- **★** Optimised for disappearance measurement
 - Most systematics just cancel

★ Not optimised for electron appearance

- detector too little granularity
- wide-band beam leads to large NC background

The next generation...

T2K Motivation

- ★ Super-Kamiokande water Cherekov detector is the largest neutrino detector in existence
- Well understood detection of electrons and muons
- ★ Much lower thresholds than MINOS,
- ★ T2K = SK + JPARC neutrino beam: L= 295 km

<u>Neutrino Beam</u>

- **\star** Optimised for subdominant oscillations $\nu_{\mu} \rightarrow \nu_{e}$
- ★ Maximise S/N ratio i.e. minimize backgrounds
 - ⇒ Off-axis narrow-band beam tuned to oscillations at $|\Delta m^2| \sim 2 \times 10^{-3} \, \mathrm{eV}^2$

T2K Beam

★ Aim for maximum flux at oscillation maximum of 600 MeV

recall
$$E_{\nu} \approx \frac{0.03}{\theta}$$

★ For JPARC beam the optimum is $\theta = 2.5^{\circ}$

★ Far lower overall flux x σ

- But higher where it matters
- Much lower HE tail
 - ➡ less NC background

FGDs TPCs ECAL Magnet Tokai to Kamioka voke Magnet coils Super Kamiokande 295km PARC v beam (n) 20"Beam Profiler" **Far detector: Near detector:** at 280 m Super-Kamiokande at 280 m on-axis at 295 km off-axis Fe/Sci Tracker 2.5 degrees off-axis Very different to FD Measure beam Calorimeters + Trackers + TPC Inside UA1 magnet First beam operations ~April 2009 P0D : Scintillator fibre to First physics beam run ~2010 measure NC π^0 content First results summer 2011

★ Dominated by CC Quasi-Elastic interactions

- ★ QE cross section relatively well known +- 7 %
- Narrow-band beam: most
 NC background from peak
 - Single π⁰ NC cross-section is small !

Predicting the FD Spectrum

★ Scale FD MC predictions to ratio of selected QE CC v_{μ} events in Data and MC $R^{\mu,DATA}$

$$N_{FD}^{exp} = N_{FD}^{MC} \times \frac{\kappa_{ND}}{R_{ND}^{\mu,MC}}$$

- Scale FD MC predictions to ratio of selected QE CC events in Data and MC
- ★ Flux predictions based on hadron production data, NA61/SHINE at CERN ~13m

Check predictions in ND

Data is consistent
 with prediction from
 hadron production

 Select CCQE events in ND
 Clean signal – can see both muon and proton

 $\frac{R_{ND}^{\mu,\text{DATA}}}{R_{ND}^{\mu,\text{MC}}} = 1.036 \pm 0.028 \,(\text{stat.})_{-0.037}^{+0.044} \,(\text{det. syst.}) \pm 0.038 \,(\text{phys. syst.})$

- ★ In T2K, the near and far detectors are very different
- Significant uncertainties in predicting FD expectations, requires a careful estimation

$$N_{FD}^{exp} = R_{ND}^{\mu,\text{DATA}} \times$$

Error Source	Sys.	Background	Events
Beam Flux	±8.5 %	2001.9.00110	
Cross sections	±14.0 %	Beam v_e	0.8
Near Detector	±5.4 %	NC	0.6
Far Detector	±14.7 %	v from λm^2 , term	0.1
ND Statistics	±2.7 %		
Total	±23 %	Iotal	1.5

★ Systematic error is relatively large ... but backgrounds are low

$$N_{FD}^{exp} = 1.5 \pm 0.3$$
 for $(\sin^2 2\theta_{13} = 0)$

Far Detector Events

★ Require single ring e-like events

★ Loose cut on visible energy + no decay electrons

★ Reconstruct event using best two ring hypothesis ★ Require invariant mass to be less than $m(\pi^0)$

★ In SK proton is below Cherenkov threshold

★ Neutrino energy obtained assuming QE decay kinematics, $W^2 = m_p^2$ use energy and angle wrt beam

★ Events clustered close to edge of detector **★** But no events selected outside fiducial region ★ Many checks – no indications of problem 2000 2000 beam direction -Vertex Y (cm) 0 1000 1000 Vertex Z (cm) 0 -1000 ф -2000 -20001000 2000 3000 O 1000 2000 -2000 -1000 Vertex R² (cm²) Vertex X (cm) x 10

compi

ati

5

mad

norning

★ Interesting to compare analyses

	MINOS	T2K
Data/PoT	8.2E20	1.4E20
Efficiency	40 %	60 %
Background rej.	98 %	99 %
Background sys.	6 %	23 %
Expected back	49.5 ± 2.8	1.5 ± 0.3
Sig (sin²2θ ₁₃ =0.1)	19	5.5
S/N	0.38	3.7
Expected significance	2.5 σ	2.4 σ

T2K background very much lower : off-axis MINOS systematics are much lower: same ND and FD Similar sensitivity (although T2K has much less data)

★ Simple overlay of MINOS and T2K contours (normal hierarchy)

★ Some tension, but not inconsistent ★ By "eye" combined best fit value ~0.08

Fogli, et al., arXiv:1106.6028

In these lectures discussed:

- ***** Neutrino beams in general
 - on-axis and off-axis
- **★** General principles of Long Baseline experiments
 - examples: MINOS & T2K
- ★ Three example analysis in some detail
 - v_{μ} disappearance
 - $\nu_{\mu} \rightarrow \nu_{e}~$ in a wide band beam
 - $\nu_{\mu} \rightarrow \nu_{e}$ in a narrow band beam
- **★** Possible first observation of $\theta_{13} \neq 0$
- ★ Many topics not covered, CNGS, NOvA, Mini-boone, ...
 - sorry just not sufficient time

★ Hopefully, have given a reasonable overview of main ideas

Very exciting future: T2K, NOnA, LBNE, T2K upgrade, ...

Thank you