Review of the ILC Large Detector Concept

Mark Thomson University of Cambridge

This Talk:

- Machine
- **2** ILC Physics/Detector Requirements
- The Large Detector Concept
 Cost and Optimisation
- **6** Conclusions

2 ILC Physics / Detector Requirements

Precision Studies/Measurements

- ★ Higgs sector
- ★ SUSY particle spectrum
- *** SM particles** (e.g. W-boson, top)
- ★ and much more...

Difficult Environment:

- *** High Multiplicity final states** often 6/8 jets
- ★Small cross-sections e.g. σ(e⁺e⁻→ZHH) = 0.3 fb

*****Many final states have"missing" energy

 \sqrt{s} (GeV)

neutrinos + neutrilinos(?)/gravitinos(?) + ????

- * Detector optimized for precision measurements in difficult environment
- * Only 2 detectors (1?) make sure we choose the right options

Compare with LEP

★LEP Physics was "relatively" EASY

At ILC:

*Backgrounds dominate 'interesting' physics *Kinematic fitting less useful (missing particles+Beamstrahlung) *Much more exposed to flaws of detector !

- * Physics performance depends critically on the detector performance
- * Stringent requirements on an ILC detector

ILC Detector Requirements

- ★ Momentum: σ_{1/p} < 7x10⁻⁵/GeV (1/10 x LEP) (e.g. Z mass reconstruction from charged leptons)
 ★ Impact parameter: σ_{d0} < 5µm⊕5µm/p(GeV) (1/3 x SLD) (c/b-tagging in background rejection/signal selection)
 ★ Jet energy : δE/E = 0.3/E(GeV) (1/2 x LEP) (W/Z invariant mass reconstruction from jets)
- **Hermetic down to :** $\theta = 5 \text{ mrad}$ (for missing energy signatures e.g. SUSY)
- Sufficient timing resolution to separating events from different bunch-crossings

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets, therefore require:

- High granularity
- Good pattern recognition
- Good two track resolution

The "LARGE DETECTOR" concept is a possible design which meets these goals. Is it optimal ? Is it cost effective ?

BThe Large Detector Concept

- What is the Large Detector concept ?
- * the descendant of the TESLA TDR/US LD concepts
- ★ SIZE : "not small and not huge"

Compare:

- *Small Detector : SD
- *****Large Detector: e.g. **TESLA**
- *Huge/Truly Large Detector: GLD

General Features of Large Detector Concept

7450

- ***** Large gaseous central time projection chamber (TPC)
- ★ High granularity ECAL (SiW generally favoured)
- ***** High granularity HCAL (inside coil favoured)
- ***** Precision microvertex detector (first layer close to IP)
- ***** SC Solenoid with B ~ 4 T

Won't have time to cover forward CALORIMETERS

Vertex Detector

🛧 Requirements driven by heavy flavour tagging

★ Important for many physics analyses

e.g. couplings of a low mass Higgs Want to test g_{Hff}~m_f O(%) measurements of the branching ratios H→bb,cc,gg

*Also important for event ID and background rejection

Flavour tagging requires a precise measurement of the impact parameter d_o

Aim for significant improvement compared to previous detectors

 $\sigma_{d0} \sim a \oplus b/p_T(GeV)$ Goal: a<5mm, b<5mm

a: point resolution, b : multiple scattering

d

Vertex Detector – conceptual design

"Generic" VTX Detector

- 5 Layer Silicon pixel detector
- Pixel size ~20x20μm
- Space point resolution: < 5μm
- 1 Gpixels !

Main design considerations:

- ***Inner radius: as close to beampipe as possible, ~15 mm (1/2 SLD)** for impact parameter resolution
- ★Layer Thickness: 0.1 %X₀ (1/4 SLD) suppression of γ conversions, minimize multiple scattering,...
 Constraints:
 - ★ Inner radius limited by e⁺e⁻ pair bgd. depends on the machine + B field
 - Layer thickness depends on Si technology

Design driven by machine + technology !

 * although higher B helps as pairs constrained to smaller radii

Central Tracking Required momentum resolution driven by reconstruction of Z mass in $Z \rightarrow \mu^+ \mu^-$ decays

Classic Key process e^{\dagger} • H⁰ $\mathbf{Z}^{\mathbf{0}}$ $e^+e^- \rightarrow Z^* \rightarrow ZH \rightarrow \mu^+\mu^- X$

 $\mu^+\mu^-$ angular distribution ⇒ Spin, CP,...

Recoil mass to µ+µ-**⇒М**_н *σ*_{ZH} , **9**_{ZHH}

goal: $\Delta M_{uu} < 0.1 \times \Gamma_Z$

 $\sigma_{1/p} = 7 \times 10^{-5} \text{ GeV}^{-1}$

ILCD Paris 13/1/2005

TPC or Si Tracker ?

★ Two favoured central tracker technologies: TPC and Si Detector

Large number of samples vs. smaller number of high precision points granularity

- PATTERN RECOGNITION in Si Det looks non-trivial
 + plenty of additional tracks from two-photon bgnd.
- **★** LD Concept adopts a TPC
 - used successfully in ALEPH/DELPHI

Motivation for a TPC

Advantages of a TPC:

- Large number of 3D space points good pattern recognition in dense track environment
- **★** Good 2 hit resolution
- Minimal material little multiple scattering little impact on ECAL conversions from background γ
- ***** dE/dx gives particle identification
- Identification of non-pointing tracks aid energy flow reconstruction of V⁰ signals for new physics

e.g. Reconstruction of kinks GMSB SUSY: $\tilde{\mu} \rightarrow \mu + \tilde{G}$

+ Large WORLDWIDE R&D effort suggests that a TPC for an ILC detector is viable

e.g. TESLA TPC Conceptual Design

*Readout on 2x200 rings of pads
*Pad size 2x6mm
*Hit resolution: σ < 140 μm ultimate aim σ < 100 μm
+ May be able to do even better ?

- smaller R/lower B-field ?

- **Drift velocity** ~**5cm** μ**s**⁻¹ (for ArCO₂-CH₄ (93-2-5)%)
- Total Drift time \sim 50 μs
 - i.e. integrate over 160 BX

★Background ⇒ 80000 hits in TPC (less with other gas mixtures)
★~10⁹ 3D readout voxels (1.2 MPads+20MHz sampling)

- ⇒0.1% occupancy
- *No problem for pattern recognition/track reconstruction even when taking into account background !
 - verified using full simulation in Brahms and LEP-derived tracking !
 - very interesting to see if Si Det can do as well

Tracking = VTX + TPC +.....

*****To achieve good momentum resolution need to augment VTX/TPC particularly in the ENDCAP/far forward region

- + Favoured solution(?) Si strips behind TPC end-planes
 - care not to introduce "too much" material in front of ECAL endcaps

- needs carefully revaluation in LD studies !

Calorimetry at the ILC

- Much ILC physics depends on reconstructing invariant masses from jets in hadronic final states
- ***** Kinematic fits won't necessarily help Unobserved particles (e.g. v),
 - + (less important ?) Beamstrahlung, ISR
- **★** Aim for jet energy resolution ~ $\Gamma_{\rm Z}$ for "typical" jets
 - the point of diminishing return
- \star Jet energy resolution is the key to calorimetry
- The visible energy in a jet (excluding v) is:

60 % charged particles : 30 % γ : 10 % K_L,n

The Energy Flow/Particle Flow Method

• Reconstruct momenta of individual particles avoiding double counting

Charged particles in tracking chambers Photons in the ECAL Neutral hadrons in the HCAL (and possibly ECAL)

***** Need to separate energy deposits from different particles

ILCD Paris 13/1/2005

Mark Thomson

Jet energy resolution:

Best at LEP (ALEPH): $\sigma_{E}/E = 0.6(1+|\cos\theta_{Jet}|)/\sqrt{E(GeV)}$

★ Jet energy resolution directly impacts physics sensitivity

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states

Often-quoted Example:

If the Higgs mechanism is not responsible for EWSB then QGC processes important e⁺e⁻→vvWW→vvqqqq, e⁺e⁻→vvZZ→vvqqqq

ILC GOAL:

 $\sigma_{\rm F}/E = 0.3/\sqrt{E(GeV)}$

THIS ISN'T EASY !

 ★ EQUALLY applicable to any final states where want to separate W→qq and Z→qq !

Mark Thomson

*****Best resolution achieved for TESLA TDR : $0.30\sqrt{E_{iet}}$

Component	Detector	Frac. of jet energy	Particle Resolution	Jet Energy Resolution
Charged Particles(X [±])	Tracker	0.6	10 ⁻⁴ E _X	neg.
Photons(γ)	ECAL	0.3	0.11√E _γ	0.06√E _{jet}
Neutral Hadrons(h ⁰)	HCAL	0.1	0.4√E _h	0.13√E _{jet}

morgunov

* In addition, have contributions to jet energy resolution due to "confusion" = assigning energy deposits to wrong reconstructed particles (double-counting etc.)

$$\sigma_{jet}^{2} = \sigma_{x^{\pm}}^{2} + \sigma_{\gamma}^{2} + \sigma_{h^{0}}^{2} + \sigma_{confusion}^{2} + \sigma_{threashold}^{2}$$

* Single particle resolutions not the dominant contribution to jet energy resolution !

granularity more important than energy resolution

Calorimeter Requirements

- Excellent energy resolution for jets i.e. high granularity
- Good energy/angular resolution for photons how good ?
- Hermeticity
- Reconstruction of non-pointing photons

Energy flow drives calorimeter design:

- Separation of energy deposits from individual particles
 - small X_0 and $R_{Moliere}$: compact showers
 - high lateral granularity : O(R_{Moliere})
- Discrimination between EM and hadronic showers
 - small X_0 / λ_{had}
 - longitudanal segmentation
- *****Containment of EM showers in ECAL

- SiW sampling calorimeter is a natural (if costly) choice (successfully used in ALEPH/OPAL luminosity detectors)
- Tungsten is great ! X₀ /λ_{had} = 1/25, R_{Moliere} ~ 9mm EM showers are short/Had showers long + narrow EM showers

Calorimeter Concept

* ECAL and HCAL inside coil can we get away with some/all of HCAL beyond coil ? * SiW ECAL can meet design requirments BUT it is far from cheap shouldn't exclude other ideas (yet)

Tesla TDR SiW ECAL:

- Lateral segmentation: 1cm² matched to R_{Moliere}
- Longitudinal segmentation: 40 layers (24 X_{07} 0.9 λ_{had})
- Achieves Good Energy Resolution:

 $\sigma_{\rm E}/{\rm E} = 0.11/\sqrt{{\rm E}({\rm GeV}) \oplus 0.01}$

Some COMMENTS/QUESTIONS:

- R_{Moliere} ~ 9mm for solid tungsten
 - gaps between layers increase effective R_{Moliere}
 - an engineering/electronics issue
- R_{Moliere} is only relevant scale once shower has developed
 - in first few radiation lengths higher/much higher lateral segmentation should help
- + Many optimisation issues !

Hadron Calorimeter

Highly Segmented – for Energy Flow

- Longitudinal: ~10 samples
- ~5 λ_{had} (limited by cost coil radius)
- Would like fine (1 cm² ?) lateral segmentation (how fine ?)
- For 5000 m² of 1 cm² HCAL = 5x10⁷ channels cost !

Two(+) Options:

***** Tile HCAL (Analogue readout) **Steel/Scintillator sandwich** Lower lateral segmentation 5x5 cm² (motivated by cost) ★ Digital HCAL High lateral segmentation 1x1 cm² digital readout (granularity) **RPCs**, wire chambers, GEMS... ★ Semi-Digital option ? **OPEN QUESTION**

The Digital HCAL Paradigm

• Sampling Calorimeter:

Only sample small fraction of the total energy deposition

• Energy depositions in active region follow highly asymmetric Landau distribution

Cost and Optimisation

<u>\$\$\$€€€¥¥¥£££:</u>

In Large Detector Concept two main cost drivers:

- *** SiW ECAL**
 - driven by the total area of Silicon
 - i.e. ECAL radius, length and number of layers
- ***** Solenoid
 - cost scales roughly as total stored energy U
 - pdg quotes 50 M\$ (U/GJ)^{0.66} (take with generous pinch of salt, based on pre-1992 data, but ~OKish for CMS)
 - $\mathbf{U} \propto \mathbf{B}^2 \mathbf{R}^2 \mathbf{L}$ ($\mathbf{R} = \mathbf{R}_{\text{coil}} \mathbf{L} = \mathbf{L}_{\text{coil}}$)
 - playoff between solenoid volume and field

OPTIMISATION:

***** Physics argues for:

large + high granularity + higher field

***** Cost considerations:

small + lower granularity + lower field

★ What is the optimal choice and how to find it ? (hopefully easier than finding Amphitheatre Carnot)

Sub-detector Optimisation

Different requirements for different sub-detectors:

- *** VTX : design driven by heavy flavour tagging**, machine backgrounds, technology
 - : higher B-field helps get closer to IP
- **\star** Tracker : design driven by σ_{p} , PATREC, track separation, + R&D

: probably OK for all reasonable Radii, B-field (TRACKER does influence on size and therefore cost) ***** ECAL/HCAL : single particle $\sigma_{\rm F}$ not the main factor
jet energy resolution ! Impact on particle flow drives calorimeter design

For VTX and TRACKER can learn a lot independent of rest of detector design. NOT TRUE for ECAL/HCAL need to consider entire detector

For LD concept "optimisation" of SIZE and CALORIMETRY (i.e. PARTICLE FLOW) appear to be the main issues

Aside : Size versus Particle Flow

For Particle Flow want:

- *****Larger radius ECAL
 - larger transverse separation of energy deposits
- ***** Higher Field
 - sweep tracks away from clusters
- ***** High granularity
 - resolve nearby energy deposits

<u>Comment : on useful (?) Figure of Merit:</u>

- * Often quoted F.O.M. for jet energy resolution: BR²/σ (R=R_{ECAL}; σ = resolution)
 - i.e. transverse displacement of tracks/"granularity"
- ★ Does this work ?
 - compare OPAL/ALEPH (W→qq no kinematic fit)

	BR ²	BR²/σ	σ _ε /√E	R ²/σ
OPAL	2.6 Tm ²	26 Tm	0.9	60 m
ALEPH	5.1 Tm ²	160 Tm	0.6	110 m

- ★ No ! Things aren't that simple....
 - my guess is that R^2/σ is more appropriate (even this doesn't account for neutral hadrons)

Mark Thomson

 $d=0.15BR^{2}/p_{+}$

R

G Conclusions

- * The LD concept still looks like an attractive option for an ILC detector !
- ***** However, current designs <u>not really optimised</u>
- ***** Size, COIL and ECAL (Si area) most important cost issues
- Particle flow is probably the major design issue beyond vital detector R&D
- * + COIL is imporant need to get the real experts involved when trying to optimise cost/perfomance

Personal optimisation hit-list (cf. TESLA TDR design):

- Investigate reducing TPC length (guess too long in TESLA TDR)
 - reduce Si area, but more "forward" tracks
- ***** TPC outer radius (i.e. optimal size tracking/pflow/cost)
- ***** Vary (i.e. reduce) number of ECAL layers
- ★ Investigate smaller pad sizes in first ECAL layers ?
- * Can some/all of HCAL be places outside coil ?
- ***** Digital vs. Analog HCAL
- ★ Don't forget impact of non-zero crossing angle

Final words:

Full simulation studies preferable – this is a tricky business ! Vital to include backgrounds in optimisation of LD and comparison with other concepts

There is a lot of extremely interesting work to be done over the next few years..... it should be fun !

ILCD Paris 13/1/2005

Mark Thomson