Status of Particle Flow Calorimetry

Mark Thomson University of Cambridge

LC Jet Energy Requirements

- ★ What are the real jet energy requirements at the LC ?
 not 30 %/√E
- ★ Primarily interested in di-jet mass resolution—
 - For a narrow resonance, want best possible di-jet mass resolution

signif.
$$\propto \frac{S}{\sqrt{B}} \propto (\text{resolution})^{-}$$

At very least, need to separate W/Z hadronic decays

 m_{1}^{2}

 m_{2}^{2}

 θ_{12}

 $\frac{1}{2}$

- 3 4 % jet energy resolution give decent W/Z separation 2.6 2.3 σ
- sets a reasonable choice for ILC jet energy goal ~3.5 %
- Imited by Gauge boson widths at 2 % (but W/Z already well separated)

Context : LC jet energies

- ★ What jet energies are we interested in ?
- ★ Little need to reconstruct two fermion di-jet mass...
- **★** At 500 GeV primarily interested in 4-fermion/6-fermion final states
 - e.g. $e^+e^- \rightarrow ZH \rightarrow q\overline{q}b\overline{b}$ and $e^+e^- \rightarrow t\overline{t} \rightarrow bq\overline{q}\overline{b}q\overline{q}$
- ★ For higher centre-of-mass energies, fermion multiplicities will tend to
 - be higher, e.g. SUSY cascade decays

★ Sets scale of typical jet energies:

\sqrt{s}	#fermions	Jet energy	
250 GeV	4	~60 GeV	
500 GeV	4 – 6	80 – 125 GeV	ILC - like
1 TeV	4 – 6	170 – 250 GeV	J
3 TeV	6 – 8	375 – 500 GeV	} CLIC - like

ILC Goals: ~3.5 % jet energy resolution for 50 – 250 GeV jets

CLIC Goals: ~3.5 % jet energy resolution for 100 – 500 GeV jets

Can particle flow calorimetry achieve this ?

Particle Flow Calorimetry

- ★ In a typical jet :
 - 60 % of jet energy in charged hadrons
 - + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
 - + 10 % in neutral hadrons (mainly $\,n\,$ and $\,K_L\,$)
- **★** Traditional calorimetric approach:
 - Measure all components of jet energy in ECAL/HCAL !
 - + ~70 % of energy measured in HCAL: $\sigma_E/E \approx 60 \, \%/\sqrt{E(GeV)}$
 - Intrinsically "poor" HCAL resolution limits jet energy resolution

- **★** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL: $\sigma_E/E < 20\%/\sqrt{E(GeV)}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL ⇒ much improved resolution

Particle Flow Algorithms (PFA)

Reconstruction of a Particle Flow Calorimeter:

- **★** Avoid double counting of energy from same particle
- ***** Separate energy deposits from different particles

<u>If these hits</u> are clustered together with <u>these</u>, lose energy deposit from this neutral hadron (now part of track particle) and ruin energy measurement for this jet.

Level of mistakes, "confusion", determines jet energy resolution <u>not</u> the intrinsic calorimetric performance of ECAL/HCAL

Three types of confusion:

ALCPG Meeting, Albuquerque, 29/9/2009

Mark Thomson

Particle Flow Algorithms in practice

★ Highly non-trivial !

e.g. PandoraPFA consists of a number complex steps (not all shown)

Status of PFA for the ILC

- **★** Since last ALCPG meeting, there has been a lot of progress
 - I believe principle of Particle Flow now proven beyond all reasonable doubt; it will deliver at ILC energies
- **★** Both ILD and now SiD have dedicated PFA algorithms used for Lols:
 - PandoraPFA (ILD):
 - most mature, gives best performance
 - now well understood
 - now even "documented"... paper accepted by NIMA
 - IowaPFA (SiD):
 - looks promising (real progress in last year)
 - further improvements possible

★ Lol performance:

-	σ _E /Ε (rms ₉₀)		
L JET	ILD	SiD	
45 GeV	3.7 %	5.5 %	
100 GeV	2.9 %	4.1 %	
180 GeV	3.0 %	4.1 %	
250 GeV	3.1 %	4.8 %	

- ILD/PandoraPFA meets ILC goal for all relevant jet energies
- SiD/IowaPFA getting close (encouraging)
- The difference? Probably:
 - in part detector (size)
 - in part algorithm

B Understanding PFA Performance

What drives Particle Flow performance ?

- ★ Try to use various "Perfect PFA" algorithms to pin down main performance drivers (resolution, confusion, …)
- **★** Use MC to "cheat" various aspects of Particle Flow

PandoraPFA options:

- PerfectPhotonClustering hits from photons clustered using MC info and removed from main algorithm
- PerfectNeutralHadronClustering hits from neutral hadrons clustered using MC info...
- PerfectFragmentRemoval after PandoraPFA clustering "fragments" from charged tracks identified from MC and added to charged track cluster

PerfectPFA perfect clustering and matching to tracks

★ Also consider leakage (non-containment) of hadronic showers

Leakage

- ★ For high energy jets non-containment of showers is significant
 - major issue at CLIC energies
- **★** Partially recovered using MUON chambers as a "Tail catcher"
 - Effectiveness limited by thick (2 λ_{I}) solenoid
 - PandoraPFA uses MUON chamber information to estimate leakage and energy deposited in coil
 - Reasonably sophisticated although room for improvement

Estimate effect by comparing standard PFA with those obtained using a very deep HCAL

Contributions to resolution

(fragments of charged had. reconstucted as neutral hadron)

★ At high energies ii) is the largest contribution, e.g. for 250 GeV jets

Other

---- Resolution Leakage

Total

Confusion

150

200

250

E_{JET}/GeV

PFA vs Conventional Calorimetry

★ ILD/SiD intended for PFA, but also good conventional calorimeters ◆ ECAL ~15%/√E; HCAL ~55%/√E

★ Interesting to compare PFA and pure energy sum with ILD and SiD

- i) PandoraPFA: PFA ALWAYS wins over purely calorimetric
 - adding information should not make things worse !
- ii) SiDPFA: not true so clear room for improvement (under study)
- iii) PandoraPFA: effect of leakage clear at high energies
- iv) PandoraPFA/ILD: Resolution better than 4 % for E_{JET} < 500 GeV

Dependence on hadron shower simulation

★ Modelling of hadronic showers far from perfect, so:

- Can we believe PFA results ?
- Need a dedicated PFA test beam demonstration? [is this even possible?]
- ★ Have tried to address this by comparing PandoraPFA/ILD performance for 5 very different Geant4 physics lists...

Physics List	Jet Energy Resolution				
Flysics List	45 GeV	100 GeV	180 GeV	250 GeV	
LCPhys	3.74 %	2.92 %	3.00 %	3.11 %	 Default
QGSP_BERT	3.52 %	2.95 %	2.98 %	3.25 %	
QGS_BIC	3.51 %	2.89 %	3.12 %	3.20 %	
FTFP_BERT	3.68 %	3.10 %	3.24 %	3.26 %	
LHEP	3.87 %	3.15 %	3.16 %	3.08 %	 ~GHEISHA
χ²	23.3 / 4	17.8 / 4	16.0 / 4	6.3 / 4	
rms	4.2 %	3.9 %	3.5 %	2.5 %	

Only a weak dependence < 5 % (but need to connect to CALICE studies)
 NOTE: 5 % is on the total, not just the hadronic confusion term

e.g.	Total Resolution	3.11 %	×1.05	Total Resolution	3.27 %
	Conf: neutral hads	1.80 %	×1.14	Conf: neutral hads	2.05 %
	Other contributions	2.54 %	×1.00	Other contributions	2.54 %

Study suggests PandoraPFA is rather robust to hadronic modelling

 If true, argues against need for dedicated PFA test beam demonstration

G PFA Detector Design Issues

- **★** (Still) often argued that figure of merit for PFA is BR²: this is not valid;
 - only valid for pairs of collinear neutral/charged particles
 - does not account for distribution of particles in jets

PFA Optimisation: Calorimeter Segmentation

★ ECAL Conclusions:

- Ability to resolve photons in current PandoraPFA algorithm strongly dependent on transverse cell size
- Require at least as fine as 10x10 mm² to achieve 4.0 % jet E resolution
- Significant advantages in going to 5x5 mm²
- For 45 GeV jets resolution dominates (confusion relatively small)
- ★ HCAL Conclusions:
 - For current PandoraPFA algorithm and for Scintillator HCAL,
 - a tile size of 3×3 cm² looks optimal
 - May be different for a digital/semi-digital RPC based HCAL

6 PFA at a multi-TeV collider

★ At a Multi-TeV collider, leakage of hadronic showers is a major issue **★** HCAL in ILD (6 λ_{l}) and SiD (4 λ_{l}) concepts too thin to contain 1 TeV showers

• e.g. IowaPFA/SiD with HCAL (4 λ_1 and 6 λ_1)

\star Clear dependence on $\cos\theta$ due to leakage

- **★** Probably need ~8 λ_{I} HCAL for CLIC energies
 - but needs to be inside Solenoid for PFA cost/feasibility
 - LCD group at CERN, investigating more compact structures e.g. W/Steel

In principle, if done correctly, PFA should REDUCE impact of leakage
 But, can PFA deliver at CLIC energies ?

PandoraPFA/ILD Jet Energy Resolution

- ★ Is an ILD-sized detector suitable for CLIC ?
- ★ Defined modified ILD⁺ model:
 - B = 4.0 T (ILD = 3.5 T)
 - HCAL = 8 λ_{I} (ILD = 6 λ_{I})
- ★ Effect on jet energy resolution

E _{JET}	σ _E /E = α/√E _{jj} cosθ <0.7	σ _ε /Ε _j		E _{JET}	σ _E /E = α/√E _{jj} cosθ <0.7	σ _Ε /Ε _j
45 GeV	25.2 %	3.7 %		45 GeV	25.2 %	3.7 %
100 GeV	29.2 %	2.9 %		100 GeV	28.7 %	2.9 %
180 GeV	40.3 %	3.0 %	 /	180 GeV	37.5 %	2.8 %
250 GeV	49.3 %	3.1 %		250 GeV	44.7 %	2.8 %
375 GeV	81.4 %	3.6 %		375 GeV	71.7 %	3.2 %
500 GeV	91.6 %	4.1 %		500 GeV	78.0 %	3.5 %

NOTE:

★ Meet "LC jet energy resolution goal [3.5%]" for 500 GeV ! jets

★ Importantly, PFA is still working for 500 GeV jets

- ★ Raw calo. energy : 5.2 %
- ★ PandoraPFA

: 3.5 %

Looks promising...

Jet Energy Resolution Goals Revisited

- **★** But what are the jet energy requirements for CLIC ?
 - Assuming two stage operation e.g. 500 GeV followed by 3 TeV
 - Need to meet ILC goals here PFA rules.
 - But what about at high energies ?
- ★ Multi-TeV jet energy goals:
 - BSM physics likely to yield 6-8 fermion final states
 - relevant jet energies ~375-500 GeV
 - So far have concentrated on jet energy resolution for decays at rest
 - If BSM physics close to threshold, not unreasonable
 - PFA can achieve <4 % jet energy resolution for new particle decays
 - Gives few % mass resolution for new particle decays
 - Sufficient to separate W/Z for gauge bosons produced in association with BSM physics
 - But, what if W/Z highly boosted
 - e.g. if produced in BSM particle decays
 - Now interested in PFA performance for highly boosted jets...

1 TeV Z

W/Z Separation at high Energies

★On-shell W/Z decay topology depends on energy:

Current PandoraPFA/ILD⁺ gives good W/Z separation for 0.5 TeV bosons
Less clear for 1 TeV bosons

Conclude:

- Performance almost certainly good enough for 500 GeV W/Zs
- Would like better performance for 1 TeV W/Z
- Remember, PandoraPFA not tuned for very high energy jets...

8 The Future

PandoraPFA

- **★** ILD Lol version frozen, no further development
- **★** New improved version being written from scratch (Cambridge/CERN)
 - Properly designed code
 - Increased flexibility needed to implement some new ideas...
 - Improved memory footprint/speed
 - Algorithm now independent from framework

- Constant benchmarking against existing code ensure performance
- Aim to have re-implementation of existing code by 1/1/2010

<u>IowaPFA</u>

★ Continue development

- aim to improve high energy performance already some good ideas
- Important to have a second powerful Particle Flow Algorithm

9 Conclusions

Solid Conclusions:

- **★** Clear demonstration that PFA can deliver ILC performance goals
 - excellent performance for both \sqrt{s} = 500 GeV and \sqrt{s} = 1 TeV
 - modelling uncertainties do not appear to be large
 - have not yet reached ultimate PFA performance for ILC energies
- ***** Have developed a reasonably good understanding of Particle Flow
- ★ Initial studies demonstrate the Particle Flow Calorimetry will work (to some extent) at $\sqrt{s} = 3$ TeV:
 - For 375-500 GeV jets can achieve 3.2-3.5 % jet energy resolution
 - For 0.5-1.0 TeV achieve reasonable (2.1-1.5σ) separation of W/Z bosons
 - Full reach of PFA at \sqrt{s} = 3 TeV needs significant algorithm devel.

Particle Flow can deliver unprecedented performance for the next LC

fin

Backup: rms₉₀

- ★PFA resolution presented in terms of rms₉₀
 - defined as "rms in smallest region containing 90 % of events"
 - introduced to reduce sensitivity to tails in a well defined manner
 - in addition, PFA resolution is inherently non-Gaussian
- ★ How to interpret rms₉₀ ? With care...
 - how to compare 4 GeV PFA rms90 with 5 GeV Gaussian resolution
- ★ For a true Gaussian distribution

Backup: requirements

Gauge boson width sets "natural" goal for jet energy resolution

Quantify by purity of W/Z samples

Jet E res.	Effic.	Back.	Eff*pur	W/Z sep
perfect	94 %	6 %	0.88	3.1 σ
2%	93 %	8 %	0.86	2.9 σ
3%	91 %	10 %	0.82	2.6 σ
4%	88 %	14 %	0.76	2.4 σ
5%	84 %	19 %	0.68	2.0 σ
10%	71 %	41 %	0.41	1.1 σ

Backup: Current Performance (ILD)

★ For ILD concept (B=3.5 T, r_{ECAL} = 1.8 m, 6 λ_{I} HCAL)

★Quote performance in terms of Z decays to uu, dd, ss (at rest)

E _{JET}	$\sigma_{\rm E}/{\rm E} = \frac{\alpha}{\sqrt{E_{\rm jj}}}$ cosθ <0.7	σ _Ε /Ε _j
45 GeV	25.2 %	3.7 %
100 GeV	29.2 %	2.9 %
180 GeV	40.3 %	3.0 %
250 GeV	49.3 %	3.1 %
375 GeV	81.4 %	3.6 %
500 GeV	91.6 %	4.1 %

★ Is this good enough ? Depends on what you mean...

To resolve W and Z bosons need approximately σ_E/E_i < 3.8 %</p>

★ What can be achieved with a "traditional" approach to calorimetry?

- Best at LEP was equivalent to 65 %/ $\sqrt{E_{ii}}$ (at 91.2 GeV)
- Often quoted, but slightly mis-leading:
 - size constant term ?
 - evolution with energy leakage

Backup: HCAL Depth Results

- Open circles = no use of muon chambers as a "tail-catcher"
- Solid circles = including "tail-catcher"

HCAL	$\lambda_{\mathbf{I}}$		
Layers	HCAL	+ECAL	
32	4.0	4.8	
38	4.7	5.5	
43	5.4	6.2	
48	6.0	6.8	
63	7.9	8.7	

ECAL : $\lambda_r = 0.8$ HCAL : λ_r includes scintillator

- **★** Little motivation for going beyond a 48 layer (6 λ_{T}) HCAL
- ★ Depends on Hadron Shower simulation
- ★ "Tail-catcher": corrects ~50% effect of leakage, limited by thick solenoid

For 1 TeV machine "reasonable range" ~ 40 – 48 layers (5 λ_1 - 6 λ_1)