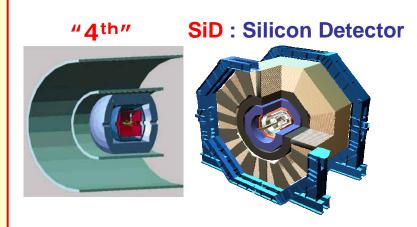
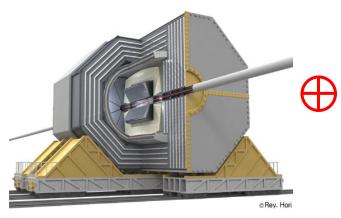

## ILD and the UK

Mark Thomson University of Cambridge

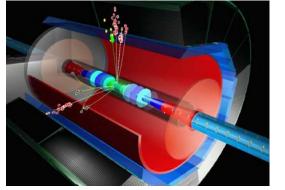



This talk:

- ILD and the UK context
- Relation to CALICE/LCFI
- $\textcircled{O} LDC \rightarrow \mathsf{ILD} \leftarrow \mathsf{GLD}$
- **4 ILD-UK**
- Detector Optimisation
- **6** Summary
- BaaQuack


### Global Context : 4 become 3

#### **ILC Detector Concepts:**


- Until recently ILC Detector Design work centred around 4 detector "concepts"
- ★ 3 of these concepts "optimised" for PFA Calorimetry SiD, LDC, GLD
- ★ Recently GLD and and LDC agreed to work towards joint detector concept



#### **GLD** : Global Large Detector



#### LDC : Large Detector Concept (spawn of TESLA TDR)





# **ILD Organisation**

★ For the LoI phase: lightweight ILD "managerial" structure

- ★ Only in place until Lol is out of the door (will then re-evaluate)
- ★ Geared towards optimising detector on basis of physics (not just average of LDC and GLD)



#### Working Groups:

| Detector Optimisation | : MDI/Integration: | Costing:     |  |
|-----------------------|--------------------|--------------|--|
| Mark Thomson          | Karsten Buesser    | Akihiro Maki |  |
| Tamaki Yoshioka       | Toshiaki Tauchi    | Henri Videau |  |

## UK Context

- **★** Currently main GLD/LDC effort:
  - LDC: Germany, France + UK
    GLD: Japan, Korea
- **★** Conveniently, this is the ideal time for the UK to join ILD effort:
  - ILD is not fixed in stone over the next year there will be major effort to choose/optimise parameters (size, B-field, etc.) based on ILC physics sensitivity

ILD

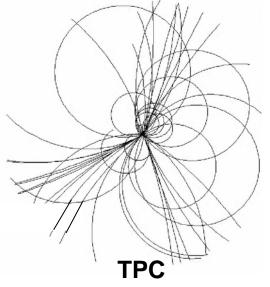
- The simulation/software tools exist UK has already made a major contribution here – build on this expertise + vast experience from LEP (ALEPH, DELPHI, OPAL)
- Need to input realistic engineering details, e.g. power, cooling, DAQ, and cost; all will impact design.
- **★** Real opportunity for UK to play a leading role in these studies

### Relation to CALICE, LCFI, LC-ABD

- Need to consider UK involvement in ILD in light of existing (and extremely successful) UK activities
  - Calice
  - LCFI
  - LC-ABD
  - Phenomenology
- **★** UK ILD involvement needs to build on this strength
  - In immediate future (LoI) "unlikely" to get much new funding
  - Difficult to start genuinely new activities
    - the approach is to focus current efforts towards ILD
  - Take care not to fragment/harm existing LCUK programme

#### ★ ILD ↔Calice/LCFI

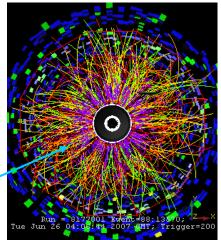
- If handled carefully, ILD involvement should benefit ongoing R&D projects:
  - Place work in the larger context
  - Build closer ties between activities, e.g. vital for studies of physics sensitivities


# **❸ LDC → ILD ← GLD**

- **★** How will GLD/LDC evolve into ILD ?
  - **GLD/LDC** have common features:
    - ★ Both are Large Detector concepts, "Large" tracking volume
      - for particle separation
    - ★ Both have TPC
      - for pattern recognition in dense track environment
    - **★** Both have high granularity ECAL/HCAL
      - for Particle Flow

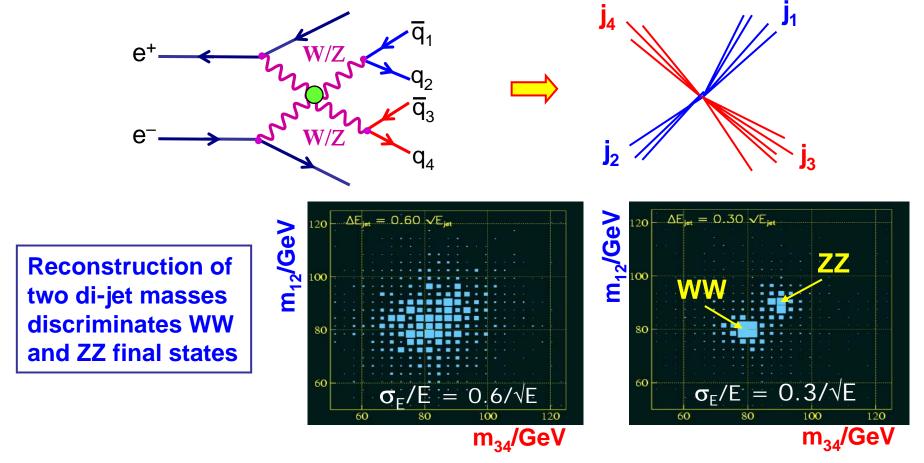
|         | LDC   |              | GLD      | ILD ?           |  |
|---------|-------|--------------|----------|-----------------|--|
| Tracker | TPC   |              | TPC      | TPC             |  |
| R =     | 1.6 m |              | 2.1 m    | 1.5–2.0 m ?     |  |
| B =     | 4 T   |              | 3 T      | 3–4 T           |  |
| ECAL    | SiW   |              | Pb/Scint | SiW or Pb/Scint |  |
| HCAL    | Steel | RPC<br>Scint | Pb/Scint | yes             |  |




## **Design Issues : why a TPC ?**






Silicon Tracker

- **★** Large number of samples vs. "few" very well measured points
- ★ From point of view of momentum reconstruction both can deliver required momentum resolution
- So why a TPC ?
  - Good pattern recognition capability even in a dense track environment
    - This is important for particle flow
      - need high efficiency reconstruction of
      - "loopers" and "kinks"
  - **Tried and test technology** (ALEPH, DELPHI, STAR,...)



## **Design Issues : Calorimetry**

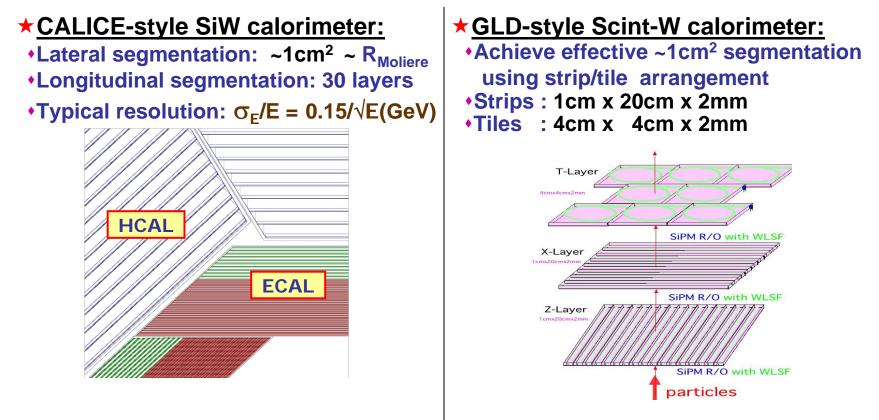
**★** ILC Physics performance - depends strongly on jet energy resolution



★ Particle Flow most promising approach

★ Demonstrated that LDC (i.e. an ILD sized detector, with "CALICE-style" ECAL/HCAL, B = 4 T, and a TPC) can deliver the required performance

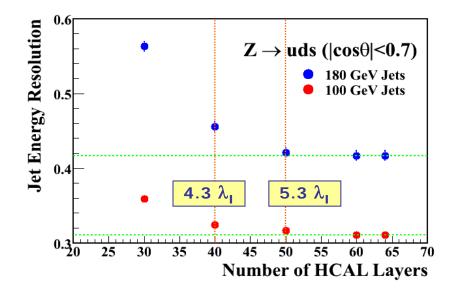
# **ILD Calorimetry**


ILD designed for particle flow:

**★ECAL** and HCAL inside coil

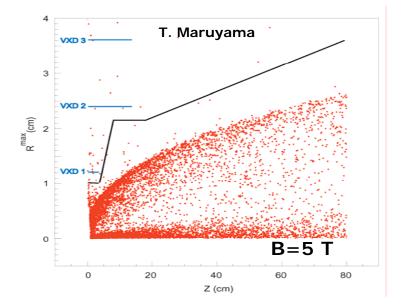
**★**Very high segmentation (transverse and longitudinal)

#### **ILD ECAL**


Two options...

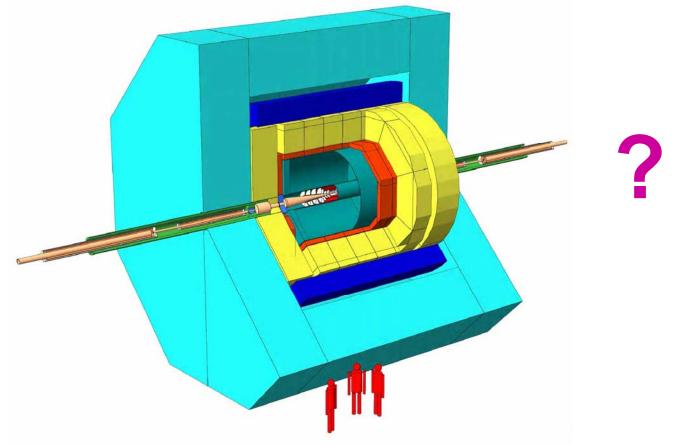


## **ILD Hadron Calorimeter**


| Again Highly Segmented – for Particle<br>• Longitudinal: ~40 samples                                                                                  | Flow                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Two main options:                                                                                                                                     |                                                                                           |
| <ul> <li>Tile HCAL (Analogue readout)</li> <li>Steel/Scintillator sandwich<br/>or Pb/Scintillator sandwich</li> <li>Segmentation ~ 3x3 cm2</li> </ul> | <ul> <li>Digital HCAL</li> <li>Segmentation</li> <li>RPCs, wire chambers, GEMS</li> </ul> |

**\***Optimisation studies needed (many interesting questions)




## +global considerations

- **★** For PFA want : Large B-field + large radius
- **\*** BUT MANY OTHER CONSIDERATIONS...
  - Tracking:
    - momentum measurement argues for large detector
  - Flavour tagging:
    - want inner layer of Vertex detector as close to IP as possible
    - limited by beam background
    - argues for large B



### **ILD Baseline**

- **★** As starting point for ILD optimisation need to define baseline detector
- **★** Not just an average of GLD/LDC parameters
- **★** Not working in the dark build on TESLA/LDC/GLD studies
- ★ Will be defined very soon
- **★** A larger version of LDC with GLD calorimetry an option ??????

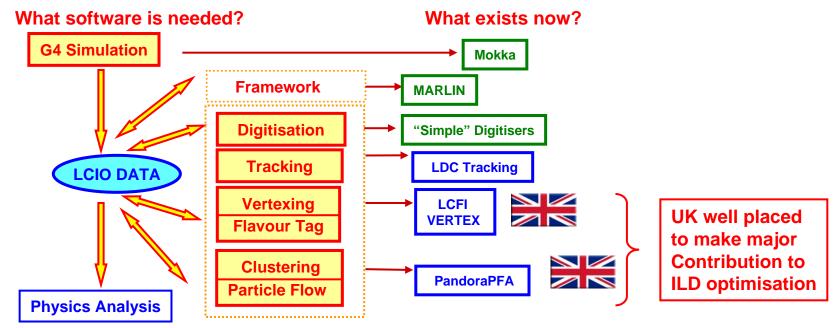


# **O UK Participation in ILD**

- ★ ILD only recently formed
  - **★**UK involvement still evolving...
- **★** Currently 6 UK groups intend to participate in ILD studies
  - Birmingham
  - Cambridge
  - Edinburgh
  - Glasgow
  - Liverpool
  - Manchester
- + 3 groups interested but undecided
- **★** Started to discuss ILD-UK organisation
  - nothing finalised wait until final make-up of ILD-UK known (all groups involved in the discussion)
  - but (for Lol phase) aim to keep this as lightweight as possible
- **★** Have a good feeling of general areas of participation (next slide)
  - again exact plans will evolve
  - Intend to make this a coherent effort

# **ILD-UK plans**

#### **\***Emphasis: build on areas of UK strength

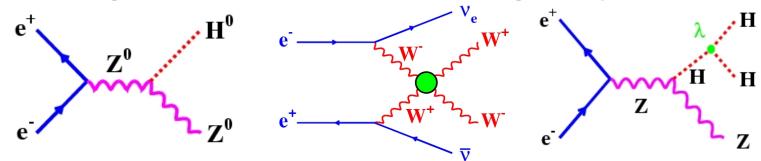

#### **Current ILD-UK interests:**

- **★** Vertex Detector Engineering
  - UK expertise in design/construction of Silicon detectors
- **★** Vertex Detector Reconstruction/Optimisation
  - UK already leading this through LCFI work (ties in physics)
- **\*** Core Software
  - Expertise + close link to physics
  - Interest in GRIDifying European software framework
- **\*** Calorimetry
  - Particle Flow Calorimetry + MAPS in ILD
- **★** Forward Region
  - Real opportunity here, hole in ILD
  - e.g. people starting to think about forward tracking
- **\*** DAQ/Mechanical engineering
  - Build UK contributions in CALICE/EUDET
- **\*** Physics Studies/Detector Optimisation
  - Build on PFA/vertexing expertise, i.e. combine CALICE/LCFI

# **G** ILD Detector Optimisation

#### This will be THE main ILD effort leading up to Lols (~1 year from now).

- ★ Determine optimised "baseline" ILD parameters
- **\*** At this point, must be based on realistic simulation/reconstruction
- **★** Challenging but:
  - Good starting point: well advanced GLD/LDC studies (+TESLA TDR)
  - Have the software tools needed (UK expertise)



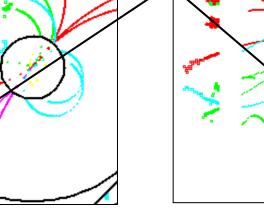

Strongly couple UK work with "global" ILD Detector Optimisation study
 within ILD this effort is about to start in earnest

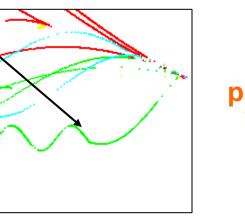
### ILD-UK Physics Strategy

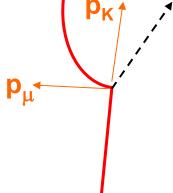
#### TWO main aspects:

- ① physics analysis
  - ★ UK will concentrate on a few key "benchmark" processes which challenge detector, for example (although not yet decided)...




 ILD work for Lol geared towards optimising ILD
 rather than comparing ILD with SiD (unless RD requests a direct comparison)


#### **②** Understanding how to use an ILC detector


- **★** ILC detectors are very different from previous detectors
  - Large improvements in performance c.f. other detectors (jet energy, impact parameter, momentum)
  - Need to learn how to take advantage of this....

### e.g. Kink reconstruction

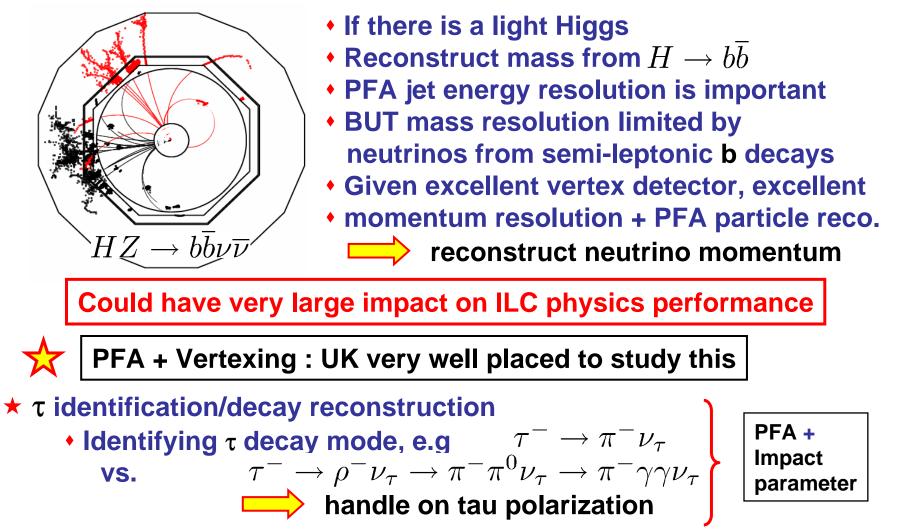
#### **★** e.g. kink reconstruction







- ★ Identify kink in TPC
  - Consider hypothesis, e.g.  $K^{\pm} \rightarrow \mu^{\pm} v$
  - Use Helix fits to start and end of tracks
  - Can then reconstruct primary mass
  - If consistent with K<sup>±</sup> → μ<sup>±</sup>ν or π<sup>±</sup> → μ<sup>±</sup>ν tag decay and effectively measure ν energy




★ By taking advantages of TPC pattern recognition + excellent momentum improve PFA performance

### **Further Ideas**

#### Two important areas with ILD-UK interest:

★ b-jet energy reconstruction



## Summary

- **★**Many areas where UK can take the leading role in ILD
  - Build on expertise from CALICE/LCFI
- **\*** Precise ILD-UK plans/organisation still evolving
  - Should be clearer in a few weeks time
- **★** Over next 6 months detector optimisation is the highest priority
- ★ Full ILD simulation/reconstruction chain is "ready for real physics studies"
- ★ Already demonstrated LDC can meet ILC "detector goals" presumably ILD will be even better...
- **★** The time to start physics-based ILD optimisation
- Already looks like we will have significant number of UK groups working in this area
- **★** Potential to build a very strong ILD-UK physics group
  - a great time to get involved in ILD...

### to end: the important question...

#### **UK-ILD or ILD-UK**

