

Standard Model Higgs Physics

Results compiled from: ILC RDR, CLIC CDR, ILD LoI, SiD LoI, talks and papers representing the state-of-the-art understanding

Higgs Input to European Strategy

- **★** The Higgs physics case is a compelling argument for a LC
- ★ In the strategy document, not much space for detail need to focus on essential points

Three main aspects:

- **★** Present compelling case for LC Higgs physics
 - High level results
- **★** Clarify arguments for different energy
 - Clear comparison of physics reach
- ★ Make physics case for need for high precision Higgs measurements
 - what does a LC bring over the LHC

Possible Structure

Divide into five main parts:

- **★** Introduction
 - Emphasis on precision, model independence
- ★ Higgs couplings from Higgs-strahlung
 - precision BRs + model independence
- **★** Higgs couplings at higher centre-of-mass energies
 - self-coupling, top Yukawa coupling
- **★** Higgs properties
 - mass, spin, CP properties
- **★** Impact of high precision measurements
 - either in Higgs section or BSM

- ★ Here provide a brief introduction to what can be measured at the proposed LC centre-of-mass
 - main purpose is to prompt discussion/input

1 Introduction

★ Luminosity assumptions

- Instantaneous luminosities from ILC TDR parameters and CLIC CDR
- Integrated luminosities from rough luminosity scaling + values used in main studies
- Quoted precisions scaled to these integrated values

Energy/GeV	250	350	500	1000	1500	3000
Lumi [x10 ³⁴ cm ⁻² s ⁻¹]	0.75	1.0	1.8	3.6	2.3	5.9
Int Lumi [fb]	250	350	500	1000	1500	2000

★ Focus will be on "LHC" Higgs mass

- (for now assume) Higgs mass of ~125 GeV
 - although most studies quoted for 120 GeV

"Low" vs "High Energy"

★ Higgs production

- Below 450 GeV dominated by Higgs-strahlung
- Above 450 GeV dominated by WW fusion
- Provides a natural division of the discussion of the physics

2 Higgs-strahlung

★ Higgs-strahlung

- Dominates at low energies
- In terms of numbers of events being close to threshold is good
- But this is not a strong effect since L increases with √s

Energy/GeV	250	350
Cross section [fb]	250	130
Int Lumi [fb ⁻¹]	250	350
N(ZH) Events	62500	45500

Recoil Mass Method

Recoil mass method

- Measure Higgs production cross section independent of Higgs decay
- Sensitive to invisible Higgs decay modes
- Absolute measurement of HZ coupling

Energy/GeV	250	350
$\Delta(\sigma)/\sigma$	3.0 %	3.7 %
$\rightarrow \Delta(g_{HZZ})/g_{HZZ}$	1.5 %	1.8 %

*Mass measurement described later

BR Measurements

- **★** Inclusive analysis of final states
 - Production rate known through recoil analysis
 - Provided absolute measurements of of Higgs BRs and ultimately couplings

Energy/GeV	250	350
H→bb: Δ(BR)/BR	2.7 %	2.3 %
H→cc: Δ(BR)/BR	9 %	6.5 %
H→gg: Δ(BR)/BR	10 %	7 %
$H \rightarrow \tau \tau$: Δ(BR)/BR	~6 %	6 %
H→WW*: Δ(BR)/BR	~5 %	~4 %

Increased sensitivity at 350 GeV due to improved signal/background separation

3 Higgs at Ecm >= 450 GeV

★ At high energies

- Fusion dominates
- Sensitivity to self-couplings
- ttH channel opens

\star Large numbers of $Hv_e\overline{v}_e$ events

Energy/GeV	500	1000	1500	3000
Int Lumi [fb]	500	1000	1500	2000
Cross section [fb]	80	220	320	510
N(Hvv) Events	4E4	2E5	5E5	1E6

Measurements

★ At 500 GeV and above, can measure top-Yukawa coupling

Full simulation studies ongoing

Energy/GeV	500
$\Delta(g_{Htt})/g_{Htt}$	~10 %?
$\Delta(g_{HWW})/g_{HWW}$	1.2 %

- ***** At 3 TeV large numbers of $H\nu_e\overline{\nu}_e$ events
 - Precise BR measurements
 - Rare decays

Energy/GeV	3000
H→bb: Δ(BR)/BR	2 %
H→cc: Δ(BR)/BR	3 %
H→μμ: Δ(BR)/BR	15 %

Self-Couplings

★ At 500 GeV and above can measure self-couplings from ZHH

Full simulation study in progress

Energy/GeV	500
Δλ/λ	<50 %

★ At higher energies most sensitivity from fusion process

Full simulation study in progress

Energy/GeV	1400	3000
Δλ/λ	<20 %	<25 %

★ Crucial measurement for testing test EWSB mechanism

4 Higgs properties

★ Higgs Mass

Can be obtained from recoil mass or direct reconstruction

Energy/GeV	250	350
Δ(mH) recoil	30 MeV	80 MeV
∆(mH) direct	-	40 MeV

★ Higgs Width

e.g. for low mass Higgs can be obtained from

$$\Gamma_{H} = \frac{\Gamma(H \to WW^{*})}{BR(H \to WW^{*})} \longleftarrow \text{from WW fusion cross section}$$
 from BR measurement

Energy/GeV	350	1 TeV
$\Gamma_{ m H}$ recoil	7 %	3.5 %

Higgs properties

★ Spin

From threshold and/or direct reconstruction of decay angles

e.g.

★ Quantum numbers (J^{PC})

- In principle Higgs can be an admixture of CP odd and even states
- Size of possible mixing can be measured by looking at spin correlations in HZ events

6 Challenging the SM

- ★ Higgs couplings provide an essential test of Higgs sector
 - LC can provide precise model independent measurements of almost all Higgs couplings

	250	350	500	>1.5 TeV
9 _{HWW}	?	?	1.2 %	?
g _{HZZ}	1.5 %	1.8 %		
g _{Hbb}	1.3 %	1.1 %		
g _{Hcc}	4.5 %	3.2 %		1.5 %
$g_{H\tau\tau}$	~3 %	~3 %		?
g _{Htt}	-	-	10 %	?
g _{Hμμ}	-	-		8 %
λ _(HHH)	-	-	<50 %	<20 %

O Discussion

- **★** Possible topics for discussion
 - best illustrations of need for precision
 - SM vs SUSY models
 - General 2HDMs
 - •
 - balance coupling and other measurements
 - how to handle different energies?
 - what other topics need to be included?

• ...