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§  Introduction to the CLIC Accelerator 
§  Physics at CLIC 
§  Experimental Conditions at CLIC  
§  The CLIC Detector Concepts 
§  Background Suppression at CLIC 
§  Physics Benchmark Studies 
§  Beyond the CDR 
§  Summary/Conclusions 

 
 

This talk: 
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CLIC in a Nutshell 

«  High luminosity, high energy e+e- linear collider 
«  Based on 2-beam acceleration scheme 

§  Gradient of 100 MV/m (warm technology) 
§  Strong accelerator R&D programme at CERN   

« Energy: 
§  From a few-hundred GeV 
§  Upgradable in steps to 3 TeV   

CLIC = Compact Linear Collider 
Accelerator: 

«  Two detector concepts CLIC_ILD and CLIC_SiD 
§  based on concepts developed for ILC 

«  Studies have focussed on 3 TeV requirements 

Detector: 
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CLIC Two-beam Acceleration Scheme 

Accelerating gradient: 100 MV/m 
             “compact” 

 
« Drive Beam supplies RF power 

§   12 GHz bunch structure 
§   low energy (2.4 GeV - 240 MeV) 
§   high current (100A) 

« Main beam for physics 
§   high energy (9 GeV – 1.5 TeV) 
§   lower current 1.2 A 

Two beam scheme: 



CLIC Layout at 3 TeV 
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« CLIC is a complex machine 
§  effectively two accelerators 
§  a number of technical challenges 
§  nevertheless, very promising progress on R&D at CTF3 (CLIC Test Facility) 
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3 TeV Stage 
Linac 1 Linac 2 

Injector  Complex 

I.P. 

 3 km 20.8 km 20.8 km  3 km 
48.2 km 

1-2 TeV Stage   

0.5 TeV Stage Linac 1 Linac 2 

Injector  Complex 

I.P. 

4  km 
 ~14 km  4  km 

Linac 1 Linac 2 

Injector  Complex 

I.P. 

 ~20-34 km   7.0-14 km  7.0-14 km 

CLIC Staging  
« Currently foreseen that CLIC construction would be staged 

§  compatible with two beam scheme compatible 
§  lower energy machine running during most of construction of next stage 
§  details of staging will depends on LHC physics results and/or CLIC goals.   

14 km  
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CLIC Status 

The three volumes of the CLIC CDR: 
«  Accelerator  

•  No show-stoppers identified 
•  Accelerating gradient in reach 
•  Officially presented to CERN SPC, final text editing ongoing 
•  http://clic-study.org/accelerator/CLIC-ConceptDesignRep.php 

«  Physics and Detectors - published 
•  http://arxiv.org/abs/1202.5940 

«  Strategic CDR volume (energy staging, cost, ...) 
•  In progress, ready summer 2012  

«  Currently at Conceptual Design Report (CDR) Stage 
«  Moving towards the technical design phase 

Signatories list of the CLIC CDR      
      https://indico.cern.ch/conferenceDisplay.py?confId=136364 
Currently 1377 signatories  



CLIC Physics Potential 
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« Electron-positron colliders provide clean environment for precision physics  

The LHC Future Linear Collider 

«  At an electron-positron collider, the observed final state corresponds  
      to the underlying physics interaction 

Electron-Positron Physics 
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CLIC Physics Potential 
«  CLIC physics potential is complementary to that of the LHC / HL LHC 

«  Physics highlighted in CDR include 
§  Higgs (discussed in following slides)  
§  Top      
§  SUSY (discussed later in context of benchmark studies) 
§  Z’ 
§  Contact interactions 
§  Extra dimensions   
§  … 

«  In particular, electron-positron collisions bring 
§  clean experimental conditions 
§  precision Higgs physics (SM and BSM) 
§  access to weakly coupled BSM states, e.g. sleptons, gauginos  

«  Experimental sensitivities are now well understood, many studies based on 
§  Full simulation/reconstruction (see later) 
§  Including pile-up of background 
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Standard Model Higgs 
«  A number of SM Higgs processes accessible at CLIC 
«  Below √s = 500 GeV  
     Higgs-strahlung dominates 

«  Above √s = 500 GeV  
     WW fusion dominates 

«  CLIC energy stages, provide a rich program of precision Higgs physics 
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Higgs-strahlung 
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«  Model independent analysis 
§  Select Higgs based on mass recoiling  
   against leptonically decaying Z  
§  Measure Higgs BRs  

CERN, May 15, 2012 

«  Measure Higgs production cross section independent of Higgs decay 
§  Sensitive to invisible Higgs decay modes 
§  Absolute measurement of HZ coupling 

«  During first stage of CLIC (or at the ILC) study Higgs-strahlung process 

∆(gHZZ)

gHZZ

∼ 2 %
∆(σ)
σ
∼ 4 %

«  e.g. 250 fb-1 at √s = 350 GeV  
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Higgs at High energies 
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«  In a higher energy stage of CLIC… 
§  Fusion cross section becomes large 
§  x3 larger peak luminosity at 3 TeV vs 500 GeV 
§  Large numbers of             events  

 
§  Precise BR measurements 
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σ
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b
CERN, May 15, 2012 

«  + Rarer processes give access to 
§  top Yukawa coupling 
§  Higgs self-couplings  
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BRs and Self-Couplings 

«  Initial studies of HH production achieve sensitivities 
      to Higgs self-coupling of   

CERN, May 15, 2012 

σ(H→ bb) ∼ ±0.2 %

«  Full detector simulation/reconstruction studies at 3 TeV with pile-up  

3 TeV 3 TeV 
µ−

µ+

HH

b

b

σ(H→ cc) ∼ ±3 % σ(H→ µ+µ−) ∼ ±15 %

∆λ/λ < 20 %  (at 3.0 TeV)  (at 1.4 TeV) 

«  Direct probe of Higgs potential !  

∆λ/λ < 25 %
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«  Current understanding of “SM-like” Higgs precision at CLIC 
*still work in progress, e.g. top coupling extrapolated from ILC study 

SM-like Higgs Summary 

gHWW < 1 %
< 1 %gHZZ

g
Hbb

gHcc

g
Htt

gHττ

gHµµ

λ

2 %
3 %
3 %
3 %

7 %

CLIC 

0.5 ab−1 at ≤ 500 GeV
2 ab−1 at 3 TeV

mH = 120 GeV

mH < 100 MeV

«  Such precise measurements would pin down Higgs sector, e.g.  
§   SM vs 2HDM 
§   + probe Higgs potential itself  

< 25 %
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BSM Higgs 

σ
/f

b

«  In MSSM have extended Higgs sector 
§  5 Higgs states from 2 Higgs doublets 
§  gives rise to heavy states 
§  in CDR studied models with 750 GeV and  
      900 GeV (near degenerate) heavy Higgs  
§  cross sections significant at √s = 3 TeV 
§  multi-jet final states 
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Power of precision 
Precision measurements at CLIC allow one to distinguish between   
 models of new physics, e.g. following first observations at LHC 

e.g. CLIC resolving power for SUSY breaking models 
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«  Have just scratched the surface of Higgs physics at CLIC 
«  Rely on making precision physics in CLIC environment… 



Experimental Conditions 
at CLIC 
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LEP 2 CLIC at 3 TeV 
L (cm-2s-1) 5×1031 5.9×1034 

BX separation 247 ns 0.5 ns 
#BX / train 4 312 
Train duration  1 µs 156 ns 
Rep. rate 50 kHz 50 Hz 
σx / σy 240/4 µm ≈ 45 / 1 nm 
σz 44 µm  

CLIC Machine Environment 

Mark Thomson 

«  Beam related background: 
§  Small beam profile at IP leads very high E-field: 

s  Beamsstrahlung 
s  Pair-background 

§  Interactions of real and virtual photons: 
s  γγ→ hadrons “mini-jets”  

Drives timing 
Requirements 
for CLIC detector  

CERN, May 15, 2012 21 

«  CLIC machine environment much more challenging than, e.g. LEP 

γ/γ∗ q

qγ/γ∗



Beamsstrahlung 
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«  Beamsstrahlung results in a distribution of centre-of-mass energies 
§  Large effect at CLIC due to small beam size, √s’ > 99 % √s   

s  62 % at 500 GeV 
s  35 % at 3 TeV 

« Impact on physics – depends on final state 
§  Reduces effective luminosity at nominal centre-of-mass energy 

•  not so important for processes well above threshold 
§  Well above threshold, boost along beam axis 

•  can distort kinematic edges, e.g. in SUSY searches 
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√s’ /√s  0.5 TeV 3 TeV 
 > 99 %  62 % 35 % 
 > 90 %  89 % 54 % 
 > 70 %  99 % 76 % 
 > 50 % ~100 % 88 % 



Impact of Background 
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«  Large backgrounds from interactions of real (Beamsstrahlung) and  
      virtual photons 

§  Coherent e+e- pairs (real)   
s  7 x 108 per bunch crossing (BX) at 3 TeV 
s  but mainly collinear with beams – impacts design of forward region 

§  Incoherent e+e- pairs   
s  3 x 105 per BX (low pT) 
s  mostly low angle, impact design of low angle tracking/beam pipe  

§  γγ→ hadrons (real and virtual)  - “pile-up of mini-jet events” 
s  3.2 events per bunch crossing at 3 TeV 
s  main background in central tracker/calorimeters 
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«  Bunch train structure       pile-up of “mini-jets” 
§  CLIC:  BX separation 0.5 ns 

s  Integrate over multiple BXs of γγ→ hadrons 
s  19 TeV visible energy per 156 ns bunch train  

γ/γ∗ q

qγ/γ∗
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20 BXs = 10 ns of γγ→ hadrons   



CLIC Detector Concepts 
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Detector Considerations 
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«  A detector at CLIC must 
§  meet stringent performance requirements to 
     deliver precision physics 
§  cope with the machine background 

•  forward region – pair background 
•  central region –  

§  cope with 0.5 ns CLIC bunch structure   
γγ→ hadrons



Physics Driven Requirements 
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« momentum:  (1/10 x LEP)  
      e.g. Smuon endpoint, Higgs recoil mass  
                            

«  hermetic:  e.g. missing energy signatures in SUSY 

«  impact parameter: (1/3 x SLD) 
      e.g. c/b-tagging, Higgs BR                      

«  jet energy: (1/3 x LEP/ZEUS)  
      e.g. W/Z di-jet mass separation, SUSY 
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«  granularity:  in space and time to mitigate background 
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CLIC Detector Concepts 
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«  Considered two possible general purpose detector concepts 
§  based on ILD and SiD concepts for ILC 
§  adapted for CLIC conditions 

«  For studies define two detector models:  CLIC_ILD and CLIC_SiD 

CLIC_ILD CLIC_SiD 
Tracker TPC,  r = 1.8 m Silicon,  r = 1.2 m 
B-field 4 T 5 T 
ECAL SiW SiW 
HCAL barrel W-Scint W-Scint 
HCAL endcap Steel-Scint Steel-Scint 

«  Detailed GEANT 4 simulation 
«  Studied using full reconstruction with background 
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Ultra low-mass 
vertex detector 
with 20 µm pixels 

Tracking: 
  TPC+silicon (CLIC_ILD) 
  all-silicon (CLIC_SiD) 

Fine grained 
calorimeters for 
PFA: 1 + 7.5 λint 

Strong SC 
solenoid 
4 T or 5 T 

Instrumented 
return yoke 
for muon ID 

Complex forward 
region with final 
beam focusing 

6.5 m 

CLIC Detectors in a Nutshell 
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Challenging  
ongoing 

R&D project 

e.g. Vertex + forward tracking layout of CLIC_ILD 

« ~20×20 µm pixel size 
« 0.2% X0 material par layer - very thin ! 

§ Very thin materials/sensors 
§ Low-power design, power pulsing, air cooling 

« Time stamping 10 ns 
« Radiation level <1011 neq cm-2 year-1 - 104 lower than LHC 

Vertex detector 
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«  Core of incoherent pair background determine: 
§   location of vertex detector; forward tracking discs; design of beam pipe… 
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«  Pair background mostly at low radii 
«  Inner radius of barrel vertex detector 

§   CLIC_ILD:  31 mm 
§   CLIC_SiD:  27 mm 

«  Maximum occupancy 
§   1.9 % per bunch train 
   (assumes safety factor 5) 

Beampipe 

VTX 
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Vertex detector 
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The two options considered: 

s  Large number of samples                

§  CLIC_ILD: Time Projection Chamber 

s  Few very well measured points             

§  CLIC_SiD: Silicon tracker (5 layers) 

Tracking at CLIC 
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TPC + silicon tracker in 4 Tesla field 

 
TPC with MPGD 
readout (GEMs 
or MicroMegas) 

1.2 m
 

Si tracker in 5 Tesla field 

chip on 
sensor 

Tracking at CLIC 
1.
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Calorimetry at CLIC 
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«  Requirement: separate hadronic 
     decays of W and Z 

σE

E
∼ σm√

2m
∼ 3.5 − 5 %

over wide range of jet energies: 
        50 GeV – 1 TeV  

«  Very hard (may not be possible) to achieve  
    this with a traditional calorimetry; limited by  
    HCAL resolution of  > 55%/√E(GeV) 
Solution:  

«  High granularity particle flow calorimetry 
«  Also motivated by background conditions 
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«  In a typical jet, energy is :   
s   60 % charged hadrons,  30 % in photons, 10 % in neutral hadrons  

«  Traditional calorimetric approach: 
s   Measure all components of jet energy in ECAL/HCAL  
s   ~70 % of energy measured in HCAL, limits jet energy resolution 

«  Particle Flow Calorimetry paradigm: 
s   charged particles measured in tracker  (essentially perfectly) 
s   Photons in ECAL:                                     
s   Neutral hadrons (ONLY) in HCAL 
s   Only 10 % of jet energy from HCAL  

EJET = EECAL + EHCAL EJET = ETRACK + Eγ + En  

much improved resolution 

n 
π+ 

γ	


Particle Flow Basics 



Mark Thomson 36 CERN, May 15, 2012 

Hardware: 
« Need to be able to resolve energy deposits from different particles 

Software: 
« Need to be able to identify energy deposits from individual particles  

Highly granular detectors (as studied in CALICE)  

Sophisticated reconstruction software   

Particle Flow Basics 
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HCAL 

ECAL 

ECAL: 
§  SiW sampling calorimeter  
§  Tungsten:  X0/λhad = 1/25, RMol. ~ 9mm 

ª  Narrow EM showers 
ª  longitudinal sep. of EM/had. Showers  

§  Longitudinal segmentation: 30 layers  
§  Transverse segmentation: ~5x5 mm2 pixels 

HCAL: 
§  Sampling calorimeter  
§  Absorber: tungsten (barrel), steel (endcap) 
§  Longitudinal segmentation: ~70 layers  (7.5 interaction lengths) 
§  Transverse segmentation:  3x3 cm2 scintillator tiles (analogue) 
                                           or  1x1 cm2 RPC pads (digital) 

Calorimeters for CLIC 
«  Calorimeters inside Solenoid (for particle flow) 

§  require “compact” barrel HCAL 



Underlying Pflow Performance 
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«  Studied using full GEANT 4 simulation + full particle flow reconstruction 

W/Z Separation 

Jet energy resolution 
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e.g. 500 GeV Z 
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Background Suppression  
at CLIC 
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Background from γγ→ hadrons 
 
«  Background in calorimeters and central tracker dominated  
       by γγ→ hadrons “mini-jets” 
«  For an entire bunchtrain at 3 TeV: 

§  5000 tracks giving total track momentum : 7.3 TeV 
§  Total calorimetric energy (ECAL + HCAL) : 19 TeV 

«  Largely low pT particles 

20 BXs 

«  Irreducible background – it is physics 
CERN, May 15, 2012 40 

pT spectrum 
of particles 
γγ → hadrons 
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Backgrounds in the Calorimeters 
«  Calorimeter backgrounds per bunch-crossing are manageable, ~ 60 GeV    
«  Want to integrate over as few as possible BXs  
«  Tight timing requirements ! 

…. …. 

0.5 ns 
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«  But can’t make calorimeter time window arbitrarily short… 
«  Time needed to accumulate all  
     calorimetric energy (due to low energy  
     particles, nuclear break-up etc.)  
     significant compared to 0.5 ns Bx 
«  HCAL resolution depends on time window 

Steel (Endcap): ~10 ns 
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CLIC Timing cont. 
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«  Tension between maximising calorimeter integration time and  
     minimizing number of BXs of γγ  → hadrons background 

§  e.g. reconstructed di-jet mass in  e+e
− → H

0
A

0 → bbbb

< 5 BX 

But < 2.5 ns not long  
enough for calorimetry  

CERN, May 15, 2012 42 
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A CLIC Detector in Time 
«  Based on trigger-free readout of detector hits all with time-stamps 

§  assume multi-hit capability of 5 hits per bunch train 
«  Assume can identify t0 of physics event in offline trigger/event filter 

§  define “reconstruction” window around t0 

…. …. 

«  Hits within window passed to track and particle flow reconstruction 

Subdetector Reco Window Hit Resolution 
ECAL 10 ns 1 ns 
HCAL Endcap 10 ns 1 ns 
HCAL Barrel 100 ns 1 ns 
Silicon Detectors 10 ns 10/√12 
TPC (CLIC_ILD) Entire train n/a 

Sufficient calorimeter 
  integration window 

«  Still 1.2 TeV reconstructed background per event 

CLIC hardware  
requirements 
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Reconstruction in Time 
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«  Tighter time cuts then applied at reconstructed  
     particle flow object level   

tCluster 

«  Using mean cluster time can cut at 1-2 ns level 
      (not applied to high pT particles)  

1.2 TeV 

CERN, May 15, 2012 44 

e
+
e
− → H

+
H
− → 8 jets

In reco. window 



Reconstruction in Time 
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tCluster 

100 GeV 
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e
+
e
− → H

+
H
− → 8 jets

After cluster time 

«  Tighter time cuts then applied at reconstructed  
     particle flow object level   
«  Using mean cluster time can cut at 1-2 ns level 
      (not applied to high pT particles)  



Jet Finding at CLIC 
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«  At LEP, preferred jet-finding algorithm: Durham kT 

§  all particles in event clustered into the jets 
§  not appropriate for CLIC 

«  Events at CLIC  

§  significant background from forward-peaked  γγ  → hadrons 
§  are often boosted along beam axis (beamsstrahlung) 
§  “hadron collider” type algorithms more appropriate 

«  Jet finding at CLIC  

§  studied for benchmark physics analyses (FASTJET package) 
§  preferred option “kT” with distance measure 

•  invariant under longitudinal boosts                            
§  particles either combined with existing jet or beam axis 

•  reduces sensitivity to γγ  → hadrons 

∆R2 = ∆η2 + ∆φ2

CERN, May 15, 2012 46 



Jet Finding at CLIC 
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«  e.g. 

§  two jets + missing energy 
e+e− → q̃Rq̃R → qq χ̃0

1 χ̃
0
1

 Durham kT 
“hadron collider” kT with ΔR=0.7 

 
timing 

All particles clustered 

«  Two “weapons” against background: timing cuts + jet finding   
CERN, May 15, 2012 47 
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Background Summary 

«  Background conditions much more extreme than LEP 

«  With high granularity calorimetry,  
«  good time resolution  
«  hadron-collider motivated jet algorithms 

But combination of: 

«  All full simulation, full reconstruction 
«  All with background pile-up 
«  Mostly focussed on worst case of 3 TeV 

 No major impact on physics, even at 3 TeV 

Demonstrated with Physics Benchmark channels 



Physics Benchmarks 
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CLIC Benchmarks 
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«  In the CDR, the benchmarks were chosen to demonstrate 
       aspects of detector performance 

§  e.g. Light Higgs (120 GeV) – some results shown previously 
§  e.g. Two SUGRA SUSY points with non-unified gaugino masses 

  – chosen to emphasise detector performance  

CERN, May 15, 2012 50 

m( χ̃0
1) = 340 GeV

m( χ̃0
2),m( χ̃+1 ) ≈ 643 GeV

m(ẽR) = m(µ̃R) = 1010 GeV
m(ν̃L) = 1097 GeV
m(ẽL) = m(µ̃L) = 1100 GeV

*SUSY Model 2 

*for details see CDR 



Slepton Production at 3 TeV 
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«  Slepton production at CLIC very clean 
«  Channels studied include  

§   
§    
§   

e+e− → µ̃+Rµ̃−R → µ+µ− χ̃0
1 χ̃

0
1

e+e− → ẽ+Rẽ−R → e+e− χ̃0
1 χ̃

0
1

e+e− → ν̃eν̃e → e+e−W+W− χ̃0
1 χ̃

0
1

«  Acoplanar leptons and missing energy  
«  Masses from analysis of endpoints of energy spectra 

e.g. smuon 
production 

m(µ̃R) : ± 5.6 GeV
m(ẽR) : ± 2.8 GeV
m(ν̃e) : ± 3.9 GeV
m( χ̃0

1) : ± 3.0 GeV
m( χ̃±1 ) : ± 3.7 GeV

All channels 
 combined 
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Gaugino Pair Production 

Mark Thomson 

 [GeV]jj,1M
40 60 80 100 120 140 160

 [G
eV

]
jj,

2
M

40

60

80

100

120

140

160

0

10

20

30

40

50

-W+ W→ -
1
χ+

1
χ

 hh→ 0
2
χ0

2
χ

 hZ→ 0
2
χ0

2
χ

«  Test of particle flow reconstruction of boosted low mass (EW scale) state 

«  Largest decay BR has same topology 
     for all final states  

Full Simulation with background 

e+e− → χ̃0
2 χ̃

0
2 → hh χ̃0

1 χ̃
0
1

e+e− → χ̃0
2 χ̃

0
2 → Zh χ̃0

1 χ̃
0
1

e+e− → χ̃+1 χ̃−1 → χ̃0
1 χ̃

0
1W+W−

«  Pair production and decay:  

82 % 

17 % 

«  Separate using di-jet invariant masses  
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m( χ̃±1 ) : ± 7 GeV
m( χ̃0

2) : ± 10 GeV



SUSY Summary 
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«  e.g. CLIC potential* for “Model 2” of CDR 

*note: 3 TeV is not optimal for a number of these measurements 



Benchmark Summary 

Mark Thomson 

«  Wide range of channels studied 
§  Excellent physics performance achieved in all 
§  Both CLIC_ILD and CLIC_SiD concepts are viable options 
§  For more details refer to CDR… 
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 Beyond the CDR 
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What next ?  

« Physics studies 
§  Follow up on 8 TeV and 14 TeV LHC results 
§  Full exploration of SM physics potential (Higgs, top)  
§  More detailed understanding of reach for new physics 
§  Refinement of strategy for CLIC energy staging 

« Detector optimisation 
§  Optimisation + simulation studies in close relation with detector R&D 

« Detector R&D 
§  Address main hardware issues for CLIC detector 
§  Strong overlap with ILC detector R&D programme 

«  CDR phase detector and physics studies complete 
§   now starting work for next phase, aligned with machine 

Main focus 
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Detector R&D 

«  Vertex detector 
§ Demonstration module that meets the material/power requirements 

«  Main tracker  
§ Demonstration modules, including coping with occupancies  

«  Calorimeters 
§ Demonstration modules, technological prototypes + cost mitigation  

«  Electronics 
§ Demonstrators, in particular in view of power pulsing 

«  Magnet systems 
§ Demonstrate conductor technology, safety systems, etc. 

«  Engineering and detector integration 
§ Engineering design and detector integration harmonized  
    with hardware R&D demonstrators 

Considered feasible in a 5-year R&D program 

Rich programme of detector R&D with many generic aspects  



Summary/Conclusions 
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Summary/Conclusions 

Mark Thomson 

«  Understanding of Detectors at CLIC has made great progress  
•  Have demonstrated precision physics in CLIC environment 
•  Defined detector requirements which will guide future R&D  
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«  Strong future programme  
•  Physics and detector studies 
•  Detector R&D  

«  CLIC is an attractive option for a future energy frontier machine  
•  Complementary to the LHC 
•  Staged approach        large potential for SM and BSM physics 
•  Defined detector requirements which will guide future R&D  



Many thanks  
to all those who worked on the CLIC CDR – too 

many names to acknowledge individually 
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Backup Slides 
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Possible Staging Scenario 
« A number of possible staging scenarios 

§  details, currently being worked out, e.g.  
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Composite Higgs 

(60 TeV scale if combined with precise measurements from single Higgs production) 

Vector resonance mass 

«  In some scenarios, a light Higgs is a bound state of new strongly  
     interacting dynamics at the TeV scale      e.g. Giudice et al., JHEP 06 (2007) 045 

§  sensitivity from double Higgs production via WW fusion at CLIC 

«  Probe Higgs compositeness at the 30 TeV scale for 1 ab-1 at 3 TeV  

Dimensionless  
Scale parameter 

Region favoured by 
  EW precision tests 



+ Top mass at 500 GeV 

Mark Thomson 

«  Study top production at √s = 500 GeV under CLIC background conditions 
§  fully hadronic                               and semi-leptonic  
§  complex analysis, e.g. jet combinatorics 
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b-tag 
Use: 

•  b-tagging 
•  Invariant masses 
•  Kinematic fits 
 

100 fb-1 

mt : ± 60 MeV
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