



## **Physics and Detectors at CLIC**

#### Mark Thomson University of Cambridge









## This talk:

- Introduction to the CLIC Accelerator
- Physics at CLIC
- Experimental Conditions at CLIC
- The CLIC Detector Concepts
- Background Suppression at CLIC
- Physics Benchmark Studies
- Beyond the CDR
- Summary/Conclusions





## A Brief Introduction to CLIC





## **CLIC = Compact Linear Collider**

### Accelerator:

- ★ High luminosity, high energy e<sup>+</sup>e<sup>-</sup> linear collider
- ★ Based on 2-beam acceleration scheme
  - Gradient of 100 MV/m (warm technology)
  - Strong accelerator R&D programme at CERN

#### **★Energy**:

- From a few-hundred GeV
- Upgradable in steps to 3 TeV

### **Detector:**

- ★ Two detector concepts CLIC\_ILD and CLIC\_SiD
  - based on concepts developed for ILC
- Studies have focussed on 3 TeV requirements















### **★**CLIC is a complex machine

- effectively two accelerators
- a number of technical challenges
- nevertheless, very promising progress on R&D at CTF3 (CLIC Test Facility)



Mark Thomson





### **★**Currently foreseen that CLIC construction would be staged

- compatible with two beam scheme compatible
- Iower energy machine running during most of construction of next stage
- details of staging will depends on LHC physics results and/or CLIC goals.







# Currently at Conceptual Design Report (CDR) Stage Moving towards the technical design phase

#### The three volumes of the CLIC CDR:

- **★** Accelerator
  - No show-stoppers identified
  - Accelerating gradient in reach
  - Officially presented to CERN SPC, final text editing ongoing
  - <u>http://clic-study.org/accelerator/CLIC-ConceptDesignRep.php</u>
- ★ Physics and Detectors published
  - <u>http://arxiv.org/abs/1202.5940</u>
- ★ Strategic CDR volume (energy staging, cost, ...)
  - In progress, ready summer 2012

Signatories list of the CLIC CDR <u>https://indico.cern.ch/conferenceDisplay.py?confld=136364</u> Currently 1377 signatories







# **CLIC Physics Potential**





#### **★**Electron-positron colliders provide clean environment for precision physics



★ At an electron-positron collider, the observed final state corresponds to the underlying physics interaction





### **★** CLIC physics potential is **complementary** to that of the LHC / HL LHC

- ★ In particular, electron-positron collisions bring
  - clean experimental conditions
  - precision Higgs physics (SM and BSM)
  - access to weakly coupled BSM states, e.g. sleptons, gauginos
- ★ Physics highlighted in CDR include
  - Higgs (discussed in following slides)
  - Top
  - SUSY (discussed later in context of benchmark studies)
  - Z'
  - Contact interactions
  - Extra dimensions
  - • •

★ Experimental sensitivities are now well understood, many studies based on

- Full simulation/reconstruction (see later)
- Including pile-up of background





#### ★ A number of SM Higgs processes accessible at CLIC



**★** CLIC energy stages, provide a rich program of precision Higgs physics



★ During first stage of CLIC (or at the ILC) study Higgs-strahlung process



- **★** Measure Higgs production cross section independent of Higgs decay
  - Sensitive to invisible Higgs decay modes
  - Absolute measurement of HZ coupling
- ★ e.g. 250 fb<sup>-1</sup> at √s = 350 GeV

$$\frac{\Delta(\sigma)}{\sigma} \sim 4\% \implies \frac{\Delta(g_{\rm HZZ})}{g_{\rm HZZ}} \sim 2\%$$



## **Higgs at High energies**







#### **★** Full detector simulation/reconstruction studies at 3 TeV with pile-up



#### Initial studies of HH production achieve sensitivities to Higgs self-coupling of

 $\Delta\lambda/\lambda < 20\%$  (at 1.4 TeV)

 $\Delta\lambda/\lambda < 25~\%$ 

(at 3.0 TeV)



★ Direct probe of Higgs potential !





#### **★** Current understanding of "SM-like" Higgs precision at CLIC

\*still work in progress, e.g. top coupling extrapolated from ILC study



- **★** Such precise measurements would pin down Higgs sector, e.g.
  - SM vs 2HDM
  - + probe Higgs potential itself



## **BSM Higgs**





Mark Thomson





Precision measurements at CLIC allow one to distinguish between models of new physics, e.g. following first observations at LHC

e.g. CLIC resolving power for SUSY breaking models







# Have just scratched the surface of Higgs physics at CLIC Rely on making precision physics in CLIC environment...





## Experimental Conditions at CLIC



## **CLIC Machine Environment**



### **★** CLIC machine environment much more challenging than, e.g. LEP

|                                       | LEP 2              | CLIC at 3 TeV        |                                     |
|---------------------------------------|--------------------|----------------------|-------------------------------------|
| L (cm <sup>-2</sup> s <sup>-1</sup> ) | 5×10 <sup>31</sup> | 5.9×10 <sup>34</sup> |                                     |
| BX separation                         | 247 ns             | 0.5 ns               | Drives timing                       |
| #BX / train                           | 4                  | 312                  | Requirements                        |
| Train duration                        | 1 μs               | 156 ns 🛛 🖌           | for CLIC detector                   |
| Rep. rate                             | 50 kHz             | 50 Hz                |                                     |
| $\sigma_{x}$ / $\sigma_{y}$           | <b>240/4</b> μm    | ≈ 45 / 1 nm          | e <sup>+</sup> e <sup>-</sup> Pairs |
| σ <sub>z</sub>                        |                    | <b>44</b> μ <b>m</b> | www                                 |
| related backg                         | round:             |                      | - Margani                           |

- Small beam profile at IP leads very high E-field:
  - Beamsstrahlung
  - Pair-background
- Interactions of real and virtual photons:
  - $\gamma\gamma \rightarrow$  hadrons "mini-jets"







- ★ Beamsstrahlung results in a distribution of centre-of-mass energies
  - Large effect at CLIC due to small beam size,  $\sqrt{s'}$  > 99 %  $\sqrt{s}$ 
    - 62 % at 500 GeV
    - 35 % at 3 TeV



**\***Impact on physics – depends on final state

- Reduces effective luminosity at nominal centre-of-mass energy
  - not so important for processes well above threshold
- Well above threshold, boost along beam axis
  - can distort kinematic edges, e.g. in SUSY searches



# Impact of Background



- Large backgrounds from interactions of real (Beamsstrahlung) and virtual photons
  - Coherent e<sup>+</sup>e<sup>-</sup> pairs (real)
    - 7 x 10<sup>8</sup> per bunch crossing (BX) at 3 TeV
    - but mainly collinear with beams impacts design of forward region
  - Incoherent e⁺e⁻ pairs
    - 3 x 10<sup>5</sup> per BX (low p<sub>T</sub>)
    - mostly low angle, impact design of low angle tracking/beam pipe
  - $\gamma\gamma \rightarrow$  hadrons (real and virtual) "pile-up of mini-jet events"
    - 3.2 events per bunch crossing at 3 TeV
    - main background in central tracker/calorimeters









### **20 BXs = 10 ns of** $\gamma\gamma \rightarrow$ hadrons







# **CLIC Detector Concepts**



### ★ A detector at CLIC must

- meet stringent performance requirements to deliver precision physics
- cope with the machine background
  - forward region pair background
  - central region  $\gamma\gamma \rightarrow$  hadrons
- cope with 0.5 ns CLIC bunch structure





 $\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \,\mu\text{m}$ 

★ hermetic: e.g. missing energy signatures in SUSY

**★** granularity: in space and time to mitigate background





- ★ Considered two possible general purpose detector concepts
  - based on ILD and SiD concepts for ILC
  - adapted for CLIC conditions

#### **★** For studies define two detector models: CLIC\_ILD and CLIC\_SiD



|             | CLIC_ILD       | CLIC_SID           |
|-------------|----------------|--------------------|
| Tracker     | TPC, r = 1.8 m | Silicon, r = 1.2 m |
| B-field     | 4 T            | 5 T                |
| ECAL        | SiW            | SiW                |
| HCAL barrel | W-Scint        | W-Scint            |
| HCAL endcap | Steel-Scint    | Steel-Scint        |



#### Detailed GEANT 4 simulation

**★** Studied using full reconstruction with background



## **CLIC Detectors in a Nutshell**







★ ~20×20 µm pixel size
 ★ 0.2% X<sub>0</sub> material par layer - very thin !

 Very thin materials/sensors
 Low-power design, power pulsing, air cooling
 ★ Time stamping 10 ns
 ★ Radiation level <10<sup>11</sup> n<sub>eq</sub> cm<sup>-2</sup> year<sup>-1</sup> - 10<sup>4</sup> lower than LHC



# **Vertex detector**

- **★** Core of incoherent pair background determine:
  - Iocation of vertex detector; forward tracking discs; design of beam pipe...





## **Tracking at CLIC**

# clc

#### The two options considered:









Mark Thomson

CERN, May 15, 2012



## **Calorimetry at CLIC**



 Requirement: separate hadronic decays of W and Z

$$\implies \frac{\sigma_E}{E} \sim \frac{\sigma_m}{\sqrt{2}m} \sim 3.5 - 5\%$$

over wide range of jet energies: 50 GeV – 1 TeV





★ Very hard (may not be possible) to achieve this with a traditional calorimetry; limited by HCAL resolution of > 55%/√E(GeV)

#### Solution:

- **★** High granularity particle flow calorimetry
- **★** Also motivated by background conditions



# **Particle Flow Basics**



- ★ In a typical jet, energy is :
  - 60 % charged hadrons, 30 % in photons, 10 % in neutral hadrons
- ★ Traditional calorimetric approach:
  - Measure all components of jet energy in ECAL/HCAL
  - ~70 % of energy measured in HCAL, limits jet energy resolution



- **★** Particle Flow Calorimetry paradigm:
  - charged particles measured in tracker (essentially perfectly)
  - Photons in ECAL:  $\sigma_E/E < 20\%/\sqrt{E(GeV)}$
  - Neutral hadrons (ONLY) in HCAL
  - Only 10 % of jet energy from HCAL 
     much improved resolution





### Hardware:

**\***Need to be able to resolve energy deposits from different particles

#### Highly granular detectors (as studied in CALICE)



### Software:

★Need to be able to identify energy deposits from individual particles
 → Sophisticated reconstruction software







Calorimeters inside Solenoid (for particle flow)
 require "compact" barrel HCAL

## ECAL:

- SiW sampling calorimeter
- Tungsten:  $X_0 / \lambda_{had} = 1/25$ ,  $R_{Mol.} \sim 9mm$ 
  - → Narrow EM showers
  - → longitudinal sep. of EM/had. Showers
- Longitudinal segmentation: 30 layers
- Transverse segmentation: ~5x5 mm<sup>2</sup> pixels



## HCAL:

- Sampling calorimeter
- Absorber: tungsten (barrel), steel (endcap)
- Longitudinal segmentation: ~70 layers (7.5 interaction lengths)
- Transverse segmentation: 3x3 cm<sup>2</sup> scintillator tiles (analogue) or 1x1 cm<sup>2</sup> RPC pads (digital)

# Underlying Pflow Performance



Mark Thomson

#### CERN, May 15, 2012





## Background Suppression at CLIC



## **Background from** $\gamma\gamma \rightarrow$ hadrons



- **★** Background in calorimeters and central tracker dominated
  - by  $\gamma\gamma {\rightarrow}$  hadrons "mini-jets"
- ★ For an entire bunchtrain at 3 TeV:
  - 5000 tracks giving total track momentum : 7.3 TeV
  - Total calorimetric energy (ECAL + HCAL) : 19 TeV
- ★ Largely low p<sub>T</sub> particles





## **Backgrounds in the Calorimeters**



b) Tungsten Absorber

80

25 GeV K,

- ★ Calorimeter backgrounds per bunch-crossing are manageable, ~ 60 GeV
- **★** Want to integrate over as few as possible BXs
- ★ Tight timing requirements !



0.5 ns

- **★** But can't make calorimeter time window arbitrarily short...
- ★ Time needed to accumulate all calorimetric energy (due to low energy particles, nuclear break-up etc.) significant compared to 0.5 ns Bx
- **★ HCAL resolution** depends on time window





 ★ Tension between maximising calorimeter integration time and minimizing number of BXs of γγ → hadrons background
 ■ e.g. reconstructed di-jet mass in e<sup>+</sup>e<sup>-</sup> → H<sup>0</sup>A<sup>0</sup> → bbbb







- Based on trigger-free readout of detector hits all with time-stamps
   assume multi-hit capability of 5 hits per bunch train
- **★** Assume can identify t0 of physics event in offline trigger/event filter
  - define "reconstruction" window around t0



#### **★** Hits within window passed to track and particle flow reconstruction

| Subdetector       | <b>Reco Window</b> | Hit Resolution |                   |
|-------------------|--------------------|----------------|-------------------|
| ECAL              | 10 ns              | 1 ns           |                   |
| HCAL Endcap       | 10 ns              | 1 ns           | integration windo |
| HCAL Barrel       | 100 ns             | 1 ns           |                   |
| Silicon Detectors | 10 ns              | 10/√12         |                   |
| TPC (CLIC_ILD)    | Entire train       | n/a            | requirement       |

### **★** Still 1.2 TeV reconstructed background per event

## **Reconstruction in Time**



 ★ Using mean cluster time can cut at 1-2 ns level (not applied to high p<sub>T</sub> particles)

 $e^+e^- \rightarrow H^+H^- \rightarrow 8$  jets

In reco. window

**1.2 TeV** 



tCluster





## **Reconstruction in Time**

- ★ Tighter time cuts then applied at reconstructed particle flow object level
- **★** Using mean cluster time can cut at 1-2 ns level (not applied to high  $p_T$  particles)



After cluster time







– tCluster





- **\*** At LEP, preferred jet-finding algorithm: Durham  $k_{T}$ 
  - all particles in event clustered into the jets
  - not appropriate for CLIC



★ Events at CLIC

- significant background from forward-peaked  $\gamma\gamma \rightarrow$  hadrons
- are often boosted along beam axis (beamsstrahlung)
- "hadron collider" type algorithms more appropriate

### ★ Jet finding at CLIC

- studied for benchmark physics analyses (FASTJET package)
- preferred option "k<sub>T</sub>" with distance measure  $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$ 
  - invariant under longitudinal boosts
- particles either combined with existing jet or beam axis
  - reduces sensitivity to  $\gamma\gamma \rightarrow$  hadrons



# **Jet Finding at CLIC**





**★** Two "weapons" against background: timing cuts + jet finding





### **★** Background conditions much more extreme than LEP

### But combination of:

- **★** With high granularity calorimetry,
- ★ good time resolution
- ★ hadron-collider motivated jet algorithms

No major impact on physics, even at 3 TeV

## **Demonstrated with Physics Benchmark channels**

- ★ All full simulation, full reconstruction
- ★ All with background pile-up
- ★ Mostly focussed on worst case of 3 TeV





# **Physics Benchmarks**





## ★ In the CDR, the benchmarks were chosen to demonstrate aspects of detector performance

- e.g. Light Higgs (120 GeV) some results shown previously
- e.g. Two SUGRA SUSY points with non-unified gaugino masses
  - chosen to emphasise detector performance



 $\frac{*SUSY \text{ Model 2}}{m(\tilde{\chi}_1^0) = 340 \text{ GeV}}$  $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \text{ GeV}$  $m(\tilde{e}_R) = m(\tilde{\mu}_R) = 1010 \text{ GeV}$  $m(\tilde{v}_L) = 1097 \text{ GeV}$  $m(\tilde{e}_L) = m(\tilde{\mu}_L) = 1100 \text{ GeV}$ 

\*for details see CDR

#### Mark Thomson

#### CERN, May 15, 2012





### ★ Slepton production at CLIC very clean

### Channels studied include

• 
$$e^+e^- \rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+\mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$$

• 
$$e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$$

•  $e^+e^- \rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^-W^+W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$ 



## Acoplanar leptons and missing energy Masses from analysis of endpoints of energy spectra





#### ★ Test of particle flow reconstruction of boosted low mass (EW scale) state

#### ★ Pair production and decay: Full Simulation with background $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^-$ ∑<sup>160</sup> 95 140 50 $\chi^0_2 \chi^0_2 \rightarrow hh$ $e^+e^- \rightarrow \tilde{\chi}^0_2 \, \tilde{\chi}^0_2 \rightarrow hh \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$ 82 % 40 $e^+e^- \rightarrow \tilde{\chi}^0_2 \, \tilde{\chi}^0_2 \rightarrow Zh \, \tilde{\chi}^0_1 \, \tilde{\chi}^0_1$ 17 % ج 120 <sup>ک</sup> Largest decay BR has same topology 30 for all final states 100 20 80 $\rightarrow$ hZ 10 60 40 **★** Separate using di-jet invariant masses 40 60 80 160 40 100 M<sub>ii 1</sub> [GeV] $m(\tilde{\chi}_1^{\pm}) : \pm 7 \,\mathrm{GeV}$ $m(\tilde{\chi}_{2}^{0}) : \pm 10 \,\text{GeV}$

Mark Thomson





## ★ e.g. CLIC potential\* for "Model 2" of CDR

| Particle                                                                     | Mass                                      | Stat. acc.                                                  | Particle                                           | Mass                             | Stat. acc                                            | Particle                                                                                                                                              | Mass                               |
|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $ar{\chi}^0_1 \ ar{\chi}^0_2 \ ar{\chi}^0_3 \ ar{\chi}^0_4 \ ar{\chi}^\pm_1$ | 340.3<br>643.1<br>905.5<br>916.7<br>643.2 | $\pm 3.3 \\ \pm 9.9 \\ \pm 19.0^* \\ \pm 20.0^* \\ \pm 3.7$ | h<br>A<br>H<br>H <sup>±</sup>                      | 118.5<br>742.0<br>742.0<br>747.6 | $\pm 0.1^{*}$<br>$\pm 1.7$<br>$\pm 1.7$<br>$\pm 2.1$ | $ \begin{array}{c} \widetilde{\tau}_1 \\ \widetilde{\tau}_2 \\ \widetilde{t}_1 \\ \widetilde{t}_2 \\ \widetilde{t}_2 \\ \widetilde{b}_1 \end{array} $ | 670<br>974<br>1393<br>1598<br>1544 |
| $\tilde{\tilde{\chi}}_{2}^{\pm}$<br>$\tilde{\tilde{e}_{R}}^{\pm}$            | 916.7<br>1010.8                           | $_{\pm 2.8}^{\pm 7.0^{*}}$                                  | Quantity $\Gamma(A)$                               | Value                            | Stat. acc. $+3.8$                                    | δ <sub>2</sub><br>ũ <sub>R</sub>                                                                                                                      | 1610<br>1818                       |
| $\widetilde{\widetilde{\nu}_{l}}^{\pm}_{l}$                                  | 1010.8<br>1097.2                          | $\pm 5.6$<br>$\pm 3.9$                                      | $\Gamma(\mathbf{R})$<br>$\Gamma(\mathbf{H}^{\pm})$ | 21.4                             | ±3.8<br>±4.9                                         | ũ <sub>L</sub><br>g                                                                                                                                   | 1870<br>1812                       |

\*note: 3 TeV is not optimal for a number of these measurements





### ★ Wide range of channels studied

- Excellent physics performance achieved in all
- Both CLIC\_ILD and CLIC\_SiD concepts are viable options
- For more details refer to CDR...





# **Beyond the CDR**







- **★** CDR phase detector and physics studies complete
  - now starting work for next phase, aligned with machine

## <u>Main focus</u>

- **\*** Physics studies
  - Follow up on 8 TeV and 14 TeV LHC results
  - Full exploration of SM physics potential (Higgs, top)
  - More detailed understanding of reach for new physics
  - Refinement of strategy for <u>CLIC energy staging</u>
- ★ Detector optimisation
  - Optimisation + simulation studies in close relation with detector R&D

## **\***Detector R&D

- Address main hardware issues for CLIC detector
- Strong overlap with ILC detector R&D programme



## **Detector R&D**



### **Rich programme of detector R&D with many generic aspects**

- **★** Vertex detector
  - Demonstration module that meets the material/power requirements
- ★ Main tracker
  - Demonstration modules, including coping with occupancies
- **★** Calorimeters
  - Demonstration modules, technological prototypes + cost mitigation
- **★** Electronics
  - Demonstrators, in particular in view of power pulsing
- ★ Magnet systems
  - Demonstrate conductor technology, safety systems, etc.
- **★** Engineering and detector integration
  - Engineering design and detector integration harmonized with hardware R&D demonstrators

#### **Considered feasible in a 5-year R&D program**





# Summary/Conclusions





- **★** CLIC is an attractive option for a future energy frontier machine
  - Complementary to the LHC
  - Staged approach  $\implies$  large potential for SM and BSM physics
  - Defined detector requirements which will guide future R&D

**★** Understanding of Detectors at CLIC has made great progress

- Have demonstrated precision physics in CLIC environment
- Defined detector requirements which will guide future R&D
- **★** Strong future programme
  - Physics and detector studies
  - Detector R&D





## Many thanks to all those who worked on the CLIC CDR – too many names to acknowledge individually

## Legend:

|      | CERN existing L | .H(      |
|------|-----------------|----------|
| •••• | CLIC 500 Gev    | d siting |
| •••• | CLIC 3 TeV      | rground  |
| •••• | ILC 500 GeV     | al unde  |
| •••• | LHeC            | otentia  |

**Jura Mountains** 

Lake Geneva

Geneva

P

lark Thomson







# **Backup Slides**





#### **\***A number of possible staging scenarios

#### details, currently being worked out, e.g.

| parameter                | symbol                                                            |          |              |            |
|--------------------------|-------------------------------------------------------------------|----------|--------------|------------|
| centre of mass energy    | $E_{cm}$ [GeV]                                                    | 500      | 1400         | 3000       |
| luminosity               | ${\cal L}~[10^{34}~{ m cm^{-2}s^{-1}}]$                           | 2.3      | 3.2          | 5.9        |
| luminosity in peak       | $\mathcal{L}_{0.01} \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}]$ | 1.4      | 1.3          | 2          |
| gradient                 | G [MV/m]                                                          | 80       | 80/100       | 100        |
| site length              | [km]                                                              | 13       | 28           | 48.3       |
| charge per bunch         | N [10 <sup>9</sup> ]                                              | 6.8      | 3.7          | 3.7        |
| bunch length             | $\sigma_{\sf z} \; [\mu{\sf m}]$                                  | 72       | 44           | 44         |
| IP beam size             | $\sigma_{\sf x}/\sigma_{\sf y}~[{\sf nm}]$                        | 200/2.26 | pprox 60/1.5 | pprox 40/1 |
| norm. emittance          | $\epsilon_{\sf x}/\epsilon_{\sf y} \; [{\sf nm}]$                 | 2400/25  | 660/20       | 660/20     |
| bunches per pulse        | n <sub>b</sub>                                                    | 354      | 312          | 312        |
| distance between bunches | $\Delta_{\sf b}$ [ns]                                             | 0.5      | 0.5          | 0.5        |
| repetition rate          | f <sub>r</sub> [Hz]                                               | 50       | 50           | 50         |
| est. power cons.         | P <sub>wall</sub> [MW]                                            | 271      | 361          | 582        |

Mark Thomson



In some scenarios, a light Higgs is a bound state of new strongly interacting dynamics at the TeV scale
 e.g. Giudice et al., JHEP 06 (2007) 045
 sensitivity from double Higgs production via WW fusion at CLIC



★ Probe Higgs compositeness at the 30 TeV scale for 1 ab<sup>-1</sup> at 3 TeV (60 TeV scale if combined with precise measurements from single Higgs production)

# + Top mass at 500 GeV



- **★** Study top production at  $\sqrt{s} = 500$  GeV under CLIC background conditions
  - fully hadronic  $t\overline{t} \to (bq\overline{q})(\overline{b}q\overline{q})$  and semi-leptonic  $t\overline{t} \to (bq\overline{q})(\overline{b}\ell\nu)$
  - complex analysis, e.g. jet combinatorics

