Particle Flow Calorimetry and ILC Detector Design

Mark Thomson
University of Cambridge

This Talk:

1. Why the ILC
2. ILC: the Machine
3. ILC Physics \(\leftrightarrow\) ILC Calorimetry
4. The Particle Flow Paradigm
5. Calorimetry in the ILC Detector Concepts
6. PFA and Detector Design
7. “Realistic” Particle Flow Reconstruction
8. Current Performance and Detector Optimisation Studies
9. Conclusions
Why the ILC?

The LHC and ILC provide a complimentary approach to studying the physics of EWSB and beyond.

The LHC

- Will open the door to new physics!
- Pushes the energy frontier with proton-proton collisions at 14 TeV
 - qq, qg and gg collisions in the energy range 0.5-5 TeV

The ILC

- A different approach:
 - very high precision as opposed to very high energy
- Electron-positron collisions in the energy range 0.1-1 TeV
- Very clean final states + high resolution detectors
 - very precise measurements (as at LEP)
 - detailed understanding of new physics + tight constraints on theory (as at LEP)

The case for having both the LHC and ILC very well studied:

Electron-positron colliders provide clean environment for precision physics.

The LHC

\[pp \rightarrow H + X \]

The ILC

\[e^+ e^- \rightarrow HZ \]

At electron-positron the final state corresponds to the underlying physics interaction, e.g. above see

\[H \rightarrow b\bar{b} \quad \text{and} \quad Z \rightarrow \mu^+ \mu^- \]
2 ILC: the machine

Basic Machine Design Parameters

- Centre-of-mass energy adjustable from 200-500 GeV
 - upgradeable to 1 TeV (i.e. make it longer)
- Integrated luminosity of 500 fb\(^{-1}\) in first 4 years operation
 - require high luminosity: 2\times10^{34} \text{ cm}^{-2}\text{s}^{-1}
- Energy stability <0.1 % for precision measurements
- Electron polarization of >80 % at interaction point

Baseline design for the ILC now exists in the form of the

The ILC is much more than the “linear bit”…

Bonn, 30/1/2008
Mark Thomson
4
Physics at the ILC

★ Main “baseline” features of ILC now fixed
 • Luminosity : $\sim 10^{34}$ cm$^{-2}$s$^{-1}$ (1000xLEP)
 • Time Structure : 5 Bunch-trains per second

- Modest physics event rates
 $e^+e^-\rightarrow qq \sim 100$/hr \hspace{1cm} e^+e^-\rightarrow W^+W^- \sim 1000$/hr
 $e^+e^-\rightarrow tt \sim 50$/hr \hspace{1cm} e^+e^-\rightarrow HX \sim 10$/hr

- “Backgrounds” low
 $e^+e^-\rightarrow qq \sim 0.1$ /Bunch Train
 $e^+e^-\rightarrow \gamma\gamma\rightarrow X \sim 200$ /Bunch Train
 ~ 500 hits/BX in Vertex det.
 ~ 5 tracks/BX in TPC

★ Very clean physics environment: Event rates low, backgrounds modest, “large” time between collisions
Machine Impact on Detector Design

★ Radiation hardness *does not* dictate detector design
★ Modest timing requirements (~300 ns)
★ Must be able to cope with modest gamma-gamma background

★ PHYSICS, not the machine, drives ILC Detector design
ILC PHYSICS:
- Precision Studies/Measurements
 - Higgs sector
 - SUSY particle spectrum (if there)
 - SM particles (e.g. W-boson, top)
 - and much more...

Physics characterised by:
- High Multiplicity final states
 - often 6/8 jets
- Small cross-sections
 - e.g. \(\sigma(e^+e^-\rightarrow ZHH) = 0.3 \text{ fb} \)

- Require High Luminosity – i.e. the ILC
- Detector optimized for precision measurements in difficult multi-jet environment
Compare with LEP

- $e^+e^-\rightarrow Z$ and $e^+e^-\rightarrow W^+W^-$ dominate backgrounds not too problematic
- Kinematic fits used for mass reco. good jet energy resolution not vital

At the ILC:
- Backgrounds dominate ‘interesting’ physics
- Kinematic fitting much less useful: Beamsstrahlung + final states with > 1 neutrino

Physics performance depends critically on the detector performance (not true at LEP)
- Places stringent requirements on the ILC detector

Bonn, 30/1/2008 Mark Thomson
ILC Detector Requirements

★ momentum: $\sigma_{1/p} < 7 \times 10^{-5}/\text{GeV}$ (1/10 x LEP)
 (e.g. mass reconstruction from charged leptons)

★ impact parameter: $\sigma_{d_0} < 5\mu\text{m} \oplus 5\mu\text{m}/p(\text{GeV})$ (1/3 x SLD)
 (c/b-tagging in background rejection/signal selection)

★ jet energy: $\sigma_{E/E} = 0.3/\sqrt{E(\text{GeV})}$ (1/2 x LEP)
 (invariant mass reconstruction from jets)

★ hermetic down to: $\theta = 5\text{ mrad}$
 (for missing energy signatures e.g. SUSY)

★ Radiation hardness not a significant problem, e.g. 1st layer of vertex detector: $10^9 \text{ n cm}^{-2} \text{ yr}^{-1}$ c.f. $10^{14} \text{ n cm}^{-2} \text{ yr}^{-1}$ at LHC

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets, therefore require:

★ High granularity
★ Good two track resolution
Of the ILC goals the most challenging is (probably) that of jet energy resolution:

\[\frac{\sigma_E}{E} = 30\% / \sqrt{E(\text{GeV})} \]

So why is this important?
Calorimetry at the ILC

Jet energy resolution:

Best at LEP (ALEPH):
$$\sigma_{E/E} = 0.6(1+|\cos\theta_{\text{Jet}}|)/\sqrt{E(\text{GeV})}$$

ILC GOAL:
$$\sigma_{E/E} = 0.3/\sqrt{E(\text{GeV})}$$

★ Jet energy resolution directly impacts physics sensitivity

Often-quoted Example:
If the Higgs mechanism is not responsible for EWSB then QGC processes important

$$e^+e^-\rightarrow_{W}WW\rightarrow_{W}qqqq, \ e^+e^-\rightarrow_{Z}ZZ\rightarrow_{Z}qqqq$$

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states

★ EQUALLY applicable to any final states where want to separate

W→qq and Z→qq!
Another example.....

e.g. measurement of trilinear HHH coupling via $e^+e^-\rightarrow ZHH\rightarrow qqqbbb$

- ★ Probe of Higgs potential
- ★ Very small cross-section
- ★ Large combinatoric background
- ★ 6 jet final state

- Use jet-jet invariant masses to extract signal

$$\text{Dist} = \left((M_H - M_{12})^2 + (M_z - M_{34})^2 + (M_H - M_{56})^2 \right)^{1/2}$$

- ★ Good jet energy resolution gives much improved signal
PFA Goals

★ Aim for jet energy resolution giving di-jet mass resolution similar to Gauge boson widths
★ For a pair of jets have:
\[
m^2 = m_1^2 + m_2^2 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta_{12})
\]
★ For di-jet mass resolution of order \(\Gamma_{W/Z} \)
\[
\frac{\sigma_m}{m} \approx \frac{2.5}{91.2} \approx \frac{2.1}{80.3} \approx 0.027
\]
\(\sigma_{E_j}/E_j < 3.8\% \\
+ \text{term due to } \theta_{12} \text{ uncertainty}

★ Assuming a single jet energy resolution of normal form
\[
\frac{\sigma_E}{E} = \alpha(E)/\sqrt{E} \text{(GeV)}
\]
\[
\frac{\sigma_m}{m} \approx \alpha(E_j)/\sqrt{E_{jj}} \text{(GeV)}
\]
\(\alpha(E_j) < 0.027 \sqrt{E_{jj}} \text{(GeV)} \)

★ Typical di-jet energies at ILC (100-300 GeV) suggests jet energy resolution goal of
\[
\frac{\sigma_E}{E} < 0.30/\sqrt{E_{jj}} \text{(GeV)}
\]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\text{E}_{jj}/\text{GeV} & \alpha(E_{jj}) \\
\hline
100 & < 27 \% \\
200 & < 38 \% \\
\hline
\end{tabular}
\end{table}
☆ Want \[\frac{\sigma_E}{E} \sim 30\% / \sqrt{E(\text{GeV})} \]

or probably more correctly \[\frac{\sigma_E}{E} \sim 3.8 \% \]

☆ Very hard (may not be possible) to achieve this with a traditional approach to calorimetry

Limited by typical HCAL resolution of \[> 50\% / \sqrt{E(\text{GeV})} \]

a new approach to calorimetry
In a typical jet:
- 60% of jet energy in charged hadrons
- 30% in photons (mainly from $\pi^0 \rightarrow \gamma\gamma$)
- 10% in neutral hadrons (mainly n and K_L)

Traditional calorimetric approach:
- Measure all components of jet energy in ECAL/HCAL!
- ~70% of energy measured in HCAL: $\sigma_E/E \approx 60\%/\sqrt{E(\text{GeV})}$
- Intrinsically “poor” HCAL resolution limits jet energy resolution

Particle Flow Calorimetry paradigm:
- Charged particles measured in tracker (essentially perfectly)
- Photons in ECAL: $\sigma_E/E < 20\%/\sqrt{E(\text{GeV})}$
- Neutral hadrons (ONLY) in HCAL
- Only 10% of jet energy from HCAL → much improved resolution
Particle Flow Calorimetry

Hardware:
- ★ Need to be able to resolve energy deposits from different particles
 - Highly granular detectors (as studied in CALICE)

Software:
- ★ Need to be able to identify energy deposits from each individual particle!
 - Sophisticated reconstruction software

★ Particle Flow Calorimetry = HARDWARE + SOFTWARE
Particle Flow Reconstruction (PFA)

Reconstruction of a Particle Flow Calorimeter:
★ Avoid double counting of energy from same particle
★ Separate energy deposits from different particles

e.g.

If these hits are clustered together with these, lose energy deposit from this neutral hadron (now part of track particle) and ruin energy measurement for this jet.

Level of mistakes, “confusion”, determines jet energy resolution not the intrinsic calorimetric performance of ECAL/HCAL

Sounds easy…

★ PFA performance depends on detailed reconstruction
★ Studies need to be based on a sophisticated detector simulations
★ Fortunately these exist…
The ILC Detector Concepts

ILC Detector Concepts:
★ ILC Detector Design work centred around 4 detector “concepts”
★ Ultimately may form basis for TDRs
★ Partial “technical designs” ~ 2010?
★ 3 main concepts “optimised” for PFA Calorimetry SiD, LDC, GLD
★ Recently GLD + LDC → ILD

ILD : International Large Detector

LDC : Large Detector Concept (child of TESLA TDR)

GLD : Global Large Detector

SiD : Silicon Detector
PFA: “Figure of Merit”

For good jet energy resolution need to separate energy deposits from different particles

- Large detector – spatially separate particles
- High B-field – separate charged/neutrals
- High granularity ECAL/HCAL – resolve particles

\[d = 0.15 B R^2 / p_t \]

Often quoted* “figure-of-merit”:

- Physics argues for: large + high granularity + ↑ B
- Cost considerations: small + lower granularity + ↓ B

Need realistic algorithms to determine what drives PFA performance….

*But almost certainly wrong (see later)
LDC/GLD/SiD

♦ SIZE + B-Field

SiD
LDC
GLD

Tracker

ECAL

B = 5T

B = 4T

B = 3T

Central Tracker and ECAL

<table>
<thead>
<tr>
<th></th>
<th>SiD</th>
<th>LDC</th>
<th>GLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker</td>
<td>Silicon</td>
<td>TPC</td>
<td>TPC</td>
</tr>
<tr>
<td>ECAL</td>
<td>SiW</td>
<td>SiW</td>
<td>Pb/Scint</td>
</tr>
</tbody>
</table>

SiD + LDC + GLD all designed for PFA Calorimetry!

☆ also “4th” concept designed for more “traditional” approach to calorimetry
ECAL: silicon-tungsten (SiW) calorimeter:
• Tungsten: $X_0/\lambda_{\text{had}} = 1/25, R_{\text{Moliere}} \sim 9\text{mm}$
 (gaps between Tungsten increase effective R_{Moliere})
• Lateral segmentation: $\sim 1\text{cm}^2$ matched to R_{Moliere}
• Longitudinal segmentation: 30 layers $\left(24 X_0, 0.9\lambda_{\text{had}}\right)$
• Typical resolution: $\sigma_E/E = 0.15/\sqrt{E}\text{(GeV)}$

Very high longitudinal and transverse segmentation
Hadron Calorimeter

Again Highly Segmented – for Particle Flow

- Longitudinal: ~40 samples
- 4 – 5λ (limited by cost - coil radius)
- Would like fine (1 cm²?) lateral segmentation
- For 10000 m² of 1 cm² HCAL = 10⁸ channels – cost!

Two Main Options:
- Tile HCAL (Analogue readout)
 Steel/Scintillator sandwich
 Lower lateral segmentation
 ~ 3x3 cm² (motivated by cost)
- Digital HCAL
 High lateral segmentation
 ~ 1x1 cm²
digital readout (granularity)
 RPCs, wire chambers, GEMS…

The Digital HCAL Paradigm

- Sampling Calorimeter:
 Only sample small fraction of the total energy deposition

- Energy depositions in active region follow highly asymmetric Landau distribution

OPEN QUESTION
Calorimeter Reconstruction

- High granularity calorimeters – very different to previous detectors (except LEP lumi. calorimeters)
- “Tracking calorimeter” – requires a new approach to ECAL/HCAL reconstruction

+ PARTICLE FLOW

- ILC calorimetric performance = HARDWARE + SOFTWARE
- Performance will depend on the software algorithm

Nightmare from point of view of detector optimisation
6 PFA and ILC detector design?

- PFA plays a special role in design of an ILC Detector
 - VTX: design driven by heavy flavour tagging, machine backgrounds, technology
 - Tracker: design driven by σ_p, track separation
 - ECAL/HCAL: single particle σ_E not the main factor
 - jet energy resolution! Impact on particle flow drives calorimeter design + detector size, B field, ...

- PFA is a (the?) major $$$ driver for the ILC Detectors
 - BUT: Nobody really knows what makes a good detector for PFA (plenty of personal biases – but little hard evidence)

How to optimise/compare ILC detector design(s) ?
 - Need to choose the key “benchmark” processes (EASY)
The rest is VERY DIFFICULT!

For example:

★ Wish to compare performance of say LDC and SiD detector concepts
e.g. tt event in LDC
e.g. tt event in SiD

★ However performance = DETECTOR + SOFTWARE
★ Non-trivial to separate the two effects
★ NEED REALISTIC SIMULATION + REALISTIC RECONSTRUCTION!
 - can’t use fast simulation etc.
For design of ILC Calorimetry:

need **realistic** reconstruction chain

~10 years before start of ILC !!!

(ideally before start of LHC)

even more challenging: the software has to work for multiple detector design parameters

Not far off a first version....
European ILC Software Framework

What software is needed?
- G4 Simulation
- Digitisation
- Tracking
- Vertexing
- Flavour Tag
- Clustering
- Particle Flow

What exists now?
- Mokka
- MARLIN
- “Simple” Digitisers
- TrackCheater
- LEP TPC Tracking
- LDCTracking (TPC+Si)
- ZVTOP
- ANN
- Wolf
- PandoraPFA
- TrackwiseClustering
Need sophisticated Particle Flow reconstruction before it is possible to start full detector design studies

New paradigm – nobody really knows how to approach this

So where are we now?

Significant effort (~6 groups developing PFA reconstruction worldwide)

For this talk concentrate on: PandoraPFA

This is still work-in-Progress – currently it gives the best performance

Will give an overview of the algorithm to highlight the most important issues in Particle Flow calorimetry

Then discuss some first detector optimisation studies
PandoraPFA Overview

★ ECAL/HCAL reconstruction and PFA performed in a single algorithm
★ Keep things fairly generic algorithm
 ▪ applicable to multiple detector concepts
★ Use tracking information to help ECAL/HCAL clustering

★ This is a fairly sophisticated algorithm : 10^4 lines of code

Six Main Stages:

i. Preparation
ii. Loose clustering in ECAL and HCAL
iii. Topological linking of clearly associated clusters
iv. Courser grouping of clusters
v. Iterative reclustering
vi. Photon Identification/Recovery
vii. Fragment removal
viii. Formation of final Particle Flow Objects (reconstructed particles)
ii) ECAL/HCAL Clustering

- Start at inner layers and work outward
- Tracks can be used to “seed” clusters
- Associate hits with existing Clusters
- If no association made form new Cluster
- Simple cone based algorithm

![Diagram](image)

Parameters:
- cone angle
- additional pixels

Simple cone algorithm based on current direction + additional N pixels

Cones based on either:
- initial PC direction
- current PC direction

Initial cluster direction

Unmatched hits seeds new cluster
iii) Topological Cluster Association

- By design, clustering errs on side of caution i.e. clusters tend to be split
- Philosophy: easier to put things together than split them up
- Clusters are then associated together in two stages:
 - 1) Tight cluster association – clear topologies
 - 2) Loose cluster association – fix what’s been missed

Photon ID

- Photon ID plays important role
- Simple “cut-based” photon ID applied to all clusters
- Clusters tagged as photons are immune from association procedure – just left alone

![Diagram](image.png)
Clusters associated using a number of topological rules

Clear Associations:
- Join clusters which are clearly associated making use of high granularity + tracking capability: very few mistakes

Less clear associations:
- e.g. Proximity

Use E/p consistency to veto clear mistakes
Example: MIP segments

- Look at clusters which are consistent with having tracks segments and project backwards/forward (defined using local straight-line fits to hits tagged as MIP-like)

- Apply tight matching criteria on basis of projected track [NB: + track quality i.e. chi2]

- Here, association based on “tracking” in calorimeters
iv) Cluster Association Part II

- Have made very clear cluster associations
- Now try “cruder” association strategies
- BUT first associate tracks to clusters (temporary association)
- Use track/cluster energies to “veto” associations, e.g.

This cluster association would be forbidden if $|E_1 + E_2 - p| > 3 \sigma_E$

Provides some protection against obvious mistakes
Distance between hits: limited to first pseudo-layers of cluster

Associated if fraction of hits in cone > some value

Shower start identified

Apply looser cuts if have low E cluster associated to high E track

Proximity

Shower Cone

+Track-Driven Shower Cone
v) Iterative Reclustering

- Upto this point, in most cases performance is good – but some difficult cases...

- At some point hit the limit of “pure” particle flow
 - just can’t resolve neutral hadron in hadronic shower

The ONLY(?) way to address this is “statistically”

- e.g. if have 30 GeV track pointing to 20 GeV cluster
 - SOMETHING IS WRONG
If track momentum and cluster energy inconsistent: RECLUSTER

e.g.

30 GeV 18 GeV

12 GeV

10 GeV Track

Change clustering parameters until cluster splits and get sensible track-cluster match

NOTE: NOT FULL PFA as clustering driven by track momentum

This is very important for higher energy jets
Iterative Reclustering Strategies

1. **Cluster splitting**
 - Reapply entire clustering algorithm to hits in “dubious” cluster. Iteratively reduce cone angle until cluster splits to give acceptable energy match to track.

 ★ + plug in alternative clustering algorithms

2. **Cluster merging with splitting**
 - Look for clusters to add to a track to get sensible energy association. If necessary iteratively split up clusters to get good match.

3. **Track association ambiguities**
 - In dense environment may have multiple tracks matched to same cluster. Apply above techniques to get ok energy match.

4. **“Nuclear Option”**
 - ★ If none of above works – kill track and rely on clusters alone
For each cluster associated with a track:

- project ECAL hits onto plane perpendicular to radial vector to point where track intersects ECAL
- search for peaks…

- Also look for photons where only a single peak is found
- Implemented by looking at longitudinal profile of “shower”
viii) Fragment removal: basic idea

- Look for "evidence" that a cluster is associated with another

- Convert to a numerical evidence score E
- Compare to another score "required evidence" for matching, R, based on change in E/p chi-squared, location in ECAL/HCAL etc.
- If $E > R$ then clusters are merged
- Rather ad hoc but works well – but works well
Putting it all together…

100 GeV Jet
8 Current Performance

Figures of Merit:

rück \(\sigma_{75} \)

★ Find smallest region containing 90% of events
★ Determine rms in this region

★ Fit sum of two Gaussians with same mean. The narrower one is constrained to contain 75% of events
★ Quote \(\sigma \) of narrow Gaussian

It is found that \(\text{rms}_{90} \approx \sigma_{75} \)

\[\sqrt{s} = 91 \text{ GeV} \]

\[\begin{array}{|c|c|c|}
\hline
\text{Entries} & 8600 & \hline
\text{Mean} & 88.96 & \hline
\text{RMS} & 3.877 & \hline
\end{array} \]

\[\text{Reconstructed Energy/GeV} \]

\[\text{Events} \]

\[a) \quad Z \rightarrow uds \quad |\cos 0| < 0.8 \]
Performance

\[
\sigma_{E/E} = \alpha/\sqrt{E_{jj}} \quad \text{if } |\cos \theta| < 0.7
\]

<table>
<thead>
<tr>
<th>(E_{JET})</th>
<th>(\sigma_{E/E})</th>
<th>(\sigma_{E/E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 GeV</td>
<td>0.235</td>
<td>3.5 %</td>
</tr>
<tr>
<td>100 GeV</td>
<td>0.306</td>
<td>3.1 %</td>
</tr>
<tr>
<td>180 GeV</td>
<td>0.427</td>
<td>3.2 %</td>
</tr>
<tr>
<td>250 GeV</td>
<td>0.565</td>
<td>3.6 %</td>
</tr>
</tbody>
</table>

- Tesla TDR detector model
- Full simulation
- Full reconstruction

In simulation

★ Particle flow can achieve ILC goal of \(\sigma_{E/E} < 3.8 \% \)
★ For lower energy jets Particle Flow gives unprecedented levels of performance, e.g. @ 45 GeV : 3.5% c.f. ~10% (ALEPH)
★ “Calorimetric” performance (\(\alpha \)) degrades for higher energy jets
★ + current code is not perfect - can do better

PARTICLE FLOW CALORIMETRY WORKS!
Detector Optimisation Studies

★ From point of view of detector design – what do we want to know?

Optimise performance vs. cost

★ Main questions (the major cost drivers):

• Size: performance vs. radius
• Granularity (longitudinal/transverse): ECAL and HCAL
• B-field: performance vs. B

★ To answer them use MC simulation + PFA algorithm

• Need a good simulation of hadronic showers !!!
• Need realistic PFA algorithm
 (want/need results from multiple algorithms)

★ This is important – significant impact on overall design of xxx M$ detector!

★ Interpretation of results needs care – observing effects of detector + imperfect software
e.g. HCAL Depth and Transverse segmentation

- Investigated HCAL Depth (interaction lengths)
 - Generated $Z \rightarrow uds$ events with a large HCAL (63 layers)
 - approx 7 λ_I
 - In PandoraPFA introduced a configuration variable to truncate the HCAL to arbitrary depth
 - Takes account of hexadecagonal geometry

\[Z \rightarrow uds (|\cos\theta|<0.7) \]

- HCAL leakage is significant for high energy
- Argues for $\sim 5 \lambda_I$ HCAL

NOTE: no attempt to account for leakage – i.e. using muon hits - this is a worse case
e.g. change HCAL tile size $1\times1 \rightarrow 10\times10 \text{ mm}^2$

“Preliminary Conclusions”

- $3\times3 \text{ cm}^2$ cell size
- No advantage $\rightarrow 1\times1 \text{ cm}^2$
 - physics ?
 - algorithm artefact ?
- $5\times5 \text{ cm}^2$ degrades PFA
 - Does not exclude coarser granularity deep in HCAL
Radius vs Field

Starting to obtain necessary input to optimise detector design from point of view of Particle Flow Calorimetry

Currently working on first attempt to match this with detector cost model

In very near future should have a much better idea of the parameters of a cost-performance optimized ILC detector

Radius more important than B-field
Caveat Emptor I

★ Studies rely on MC simulation
 • Simulation of hadronic showers notoriously difficult
 • All models in GEANT 4 likely to be quite “wrong”

★ What aspects of hadronic showers are most important?
 • PFA relies on separating calorimeter deposits from different particles in a dense jet environment

★ NOT CLEAR what is most important!
 • NOT just energy resolution
 • Transverse development is important – how much do showers overlap
 • Longitudinal development matters – how well can showers be separated
 • Subtle details like rate and p_T distribution of “neutral fragments” may be important

★ What is important for PFA may well be very different from that for traditional HEP calorimetry
Caveat Emptor II

★ Ultimately want to optimise for “physics performance” i.e. di-jet mass resolution in a multi-jet event
★ Performance will be degraded by Jet-finding + jet-jet combinatorics
★ Need to compare detector performance for analysis chain

\[e^+e^- \rightarrow \nu\nu WW \rightarrow \nu\nuqqqq, \ e^+e^- \rightarrow \nu\nu ZZ \rightarrow \nu\nuqqqq \]

e.g.

ILD just starting an ambitious programme of physics-based ILC detector optimisation – first results by end of 2008
Conclusions

★ Great deal of effort (worldwide) in the design of the ILC detectors
★ Centred around 3 “detector concept” groups: ILD (GLD+LDC), SiD + 4th
★ Widely believed that calorimetry and, in particular, jet energy resolution drives detector design
★ Also believed that it is likely that PFA is the key to achieving ILC goal

THIS IS HARD – BUT VERY IMPORTANT!
★ Calorimetry at the ILC = HARDWARE + SOFTWARE (new paradigm)
★ It is difficult to disentangle detector/algorithm....
★ Can only address question with “realistic algorithms”
 ★ i.e. serious reconstruction 10+ years before ILC turn-on
★ With PandoraPFA have reached the ILC “goal” (for Z →uds events)
★ More importantly, getting close to being able to address real issues:
 ○ What is optimal detector size/B-field, etc.

FINAL COMMENT:
★ GLD, LDC, SiD calorimetry “designed” for PFA
 ★ Needed to demonstrate this actually makes sense
 ▪ until recently not completely proven!
 ★ Now starting to study in the context of physics sensitivity
The End
RESERVE
SLIDES
GLD Calorimetry

- ECAL and HCAL inside coil
- W-Scintillator ECAL sampling calo.
- Pb-Scintillator HCAL sampling calo.

Initial GLD ECAL concept:
- Achieve effective ~1cm x 1cm segmentation using strip/tile arrangement
- Strips: 1cm x 20cm x 2mm
- Tiles: 4cm x 4cm x 2mm

Big question of pattern recognition in dense environment

SiD/LDC/GLD: Basic design = sampling calorimeter
Recently added PerfectPFA option in Pandora (not yet in CVS)

- `<parameter name="PerfectPFA" type="int"> 1 </parameter>`

Uses MC information to create the ProtoClusters

The rest of the algorithm is the same

Although very fresh, can already learn something…

Process same events/same analysis and compare PFA to perfect PFA

- Note in these studies the tracks are the same “TrackCheater”

i) How close to being “Perfect” is PandoraPFA?

<table>
<thead>
<tr>
<th>E_{JET}</th>
<th>$\sigma_E / E = \alpha \sqrt{(E/\text{GeV}) \mid \cos \theta \mid < 0.7}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerfectPandora</td>
<td>PandorapFQA</td>
</tr>
<tr>
<td>100 GeV</td>
<td>0.220</td>
</tr>
<tr>
<td>180 GeV</td>
<td>0.305</td>
</tr>
</tbody>
</table>

Still someway to go even for low energy jets – needs study
ii) PFA impact in a real physics process

\[e^+e^- \rightarrow \nu\bar{\nu}W^+W^- \rightarrow \nu\bar{\nu}qqqq \quad \sqrt{s} = 800 \text{ GeV} \]

First compare visible energy from PFA with expected (i.e. after removing neutrinos/forward tracks+clusters)

- PerfectPFA gives better energy resolution than PandoraPFA (as expected)

Does this difference make it through to a physics analysis (i.e. after jet finding/jet pairing)?
★ Force event into 4 jets (Durham)
★ Plot masses of the 2 Ws formed from the 3 possible jet-pairings

HERE: PandoraPFA ~ PerfectPFA

★ Choose pairing with smallest mass difference
★ Plot average mass of the 2 Ws

HERE: PandoraPFA ~ PerfectPFA

“Physics Ready PFA”
Not The End

★ What jet energy resolution is really needed at the ILC?
★ NOT 30%/√E
★ Ideally reach point where dominated by Z/W width
★ NOT the same as
\[\frac{\sigma_m}{m} \sim \frac{\Gamma_Z}{m_Z} \]
★ Suggests
\[\frac{\sigma_m}{m} < \frac{\Gamma_Z}{m_Z} \]
★ Significant advantages in further improvements?
★ Ultimate criterion – “physics performance”