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Neutrino Oscillations and
the MINOS experiment

Mark Thomson 
University of Cambridge

This Talk:

• Introduction to ν oscillations

• Experimental status of ν osc.

• MINOS Physics and Status
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Recent History

6 years ago (PDG1998): 

Standard Model : assumed massless ν
Fundamental states : νe , νµ , ντ

mνe < 3 eV, …. 

Neutrino Oscillations - hints
Atmospheric neutrino oscillations 
- Statistically marginal / positive & negative results

Solar neutrino oscillations 
- Required faith in Astrophysics/Astrophysicists….!
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6 Years on…….

Now (PDG2002+): 

Standard Model : massive ν
Fundamental states : ν1 , ν2 , ν3

2∆m12 ~7x10-5 eV , ∆m23 ~2x10-3 eV2 2 2 

Neutrino Oscillations – Convincing evidence
Atmospheric neutrino oscillations
- Compelling evidence : Super-Kamiokande (+K2K)

Solar neutrino oscillations 
- Compelling evidence : SNO (+KamLand) 

Almost all L from neutrino oscillations 
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Neutrino Oscillations

Mass 
Eigenstates
ν1 , ν2 , ν3νe , νµ , ντ

Weak 
Eigenstates =

Pure Quantum Mechanical effect

ν produced/detected as WEAK eigenstates

Time evolution of wave-function - mass eigenstates

Weak states – mixture of mass states, e.g.

W+
e+

νe

W+
e+

ν1

= + W+
e+

ν2

gWcosθ gWsinθgW
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Neutrino Oscillations 
At t=0 produce a νe (momentum p)

Time development of wave-function determined
by time evolution of eigenstates of Hamiltonian

Observable phase differenceIF E1 = E2

>mνIn limit that E > then (E2 – E1) α  (m2-m1)/2E2 2

νe νµ 2θ12

∆m12
2

Then its just algebra……
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Simplest case

At t=0 produce a νe

Consider two generation maximal mixing

i.e.

When  then  

IF the neutrino (originally νe) now interacts (via 
WEAK interaction) it will produce a µ

OSCILLATIONS
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3 Generation ν oscillations

Solar ν Atmospheric ν

U: Maki-Nakagawa-Sakata Matrix (MNS)
the  CKM matrix of the lepton sector 

3
1

Mixing Angles
CP Phase

(+2 additional CP phases for Majorana ν)

CP Phase

θ12 , θ13 , θ23 , δ 
∆m12  , ∆m23

22

Neutrino oscillations described by
6 new SM parameters

Aim to measure them all…..
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Golden ν Oscillation Signal

νµ

ντ

ντ

ντ

ντ ντ

ντ

νµ

νµ

νµ

νµ

νµ

νµ

νµ
νµ

νµ

νµ

νµ

νµ

νµ

νµ
νµ

ντ ντ

νµ disappearance 
+ ντ appearance 

+observe oscillations Pure νµ beam 
e.g νµ ντ νµ

Only SNO observe appearance (indirectly) 

Currently most observations pure disappearance

Oscillatory structure not yet seen !

Entia non sont multiplicanda praeter
necessitatem
Most likely explanation of data is quantum  
mechanical neutrino oscillations
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The trouble with neutrinos

neutrinos interact only weakly 

need intense sources and large detectors

to stop/detect 1 ν need ~ 10 light-years of Pb

neutrino oscillations now seen from:
Atmospheric Neutrinos (SuperK, …..

Solar Neutrinos (SNO, SuperK, …..

Reactor Neutrinos (KamLAND)

Neutrino beams (K2K)

For this talk – ignore LSND ! 
Entia non sont multiplicanda praeter
necessitatem
Entities must not be multiplied beyond 
what is necessary – i.e. sterile ν
Wait for MiniBoone
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Fusion in sun is source of νe
Flux ~ 6x1010 cm-2 s-1

Eν ~ 1 MeV

Mainly concerned with 8B νe

Solar Neutrinos

Atmospheric Neutrinos

Cosmic Rays (mainly p,He) hitting 
upper atmosphere produce νs:          
____ π µνµ and µ eνeνµ decays

Flux ~ 1 cm-2 sr-1 s-1

Eν ~ 1 GeV

N(νµ)/N(νe) ~ 2

Super-Kamiokande dominates atmospheric ν
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Super-Kamiokande
50 ktons H20
11246 PMTs
Accident in 11/2001
Operational again –

reduced number of PMTs

νe , νµ   detected via Cerenkov
radiation from lepton produced in CC
weak interactions
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SK particle ID

Electrons and muons cleanly identified ~ 99 % purity

µ e

`Clean’ ring `Diffuse/fuzzy’ ring
due to scattering/showering 



B’ham January 2004 Mark Thomson, Cambridge 14

θ

Above

Below

ν
Measure νe/νµ fluxes vs zenith angle, θ

In doing so, scan over large range of L:   10km<L<12000km

NOTE:  L(km) , E(GeV) , ∆m2(eV2)
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Super-Kamiokande Results

Observe clear disappearance signal

determines sin2θ

No oscillations fit:
χ2

min = 469/170 d.o.f

no oscillations

best fit : vµ vτ oscillations

Electrons consistent with no 
oscillations

Muons dissappear at low cosθ
i.e. large L
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But don’t see oscillation pattern

Smeared out due to
finite resolution in:

E and L (i.e. cosθ)
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SuperKamiokande Result
νµ - ντ oscillation fit

90 % C.L.

1.6x10-3 < ∆m2 < 3.0x10-3 eV2

sin22θ > 0.92

BEST FIT:

∆m2 = 2.0x10-3 eV2

Sin22θ = 1.0

Preliminary 2003

90% C.L. allowed regions

10
-3

10
-2

0.7 0.8 0.9 1 1.1 1.2
sin22θ

∆m
2  (e

V2 )

Official

Old version

χ2-χ2min=4.6 for 90% C.L.

Prelim
inaryNew result

@2x10-3

Old result
@2.5x10-3

90% CL
regionsWhat’s Changed :

Neutrino Flux : 3D Calculation
ν interaction model tuned to K2K data
Improved detector simulation/reconstruction
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Supported by K2K
K2K Best fit point: (sin22θ,∆m2)=(1.0,2.8x10-3eV2)

c.f. SuperK: (sin22θ,∆m2)=(1.0,2.0x10-3eV2)
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Best FitBest Fit

Spectrum ShapeSpectrum Shape

Number of events

Observation: 56

Best Fit: 54.2

Null-oscillation 80.1
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Solar Neutrinos (SNO)
1000 tonnes D2O, inside a
12m diameter acrylic vessel.
~9500 PMTs + concentrators. 
17m diameter PMT support.
7000 tonnes H2O.

Transparent 
acrylic vessel

D20

H20

Ultra-pure 
H20 and D20 

PMT
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CC

ES

NC

Elastic Scattering (ES)

Neutral Current (NC)

Charged Current (CC)

Detect electron

Sensitive to νe only

Rate α Φ(νe)

Detect γ from n capture on d

Equally Sensitive to νe , νµ , ντ
Rate α Φ(νe) + Φ(νµ) + Φ(ντ)

Detect scattered e-

Sensitive to νe , νµ , ντ

Rate α Φ(νe)+ 0.154[Φ(νµ) +Φ(ντ)]

ν Detection in SNO

Processes have different sesitivities. By measuring all 

rates can determine: Φ(νe) AND Φ(νµ) +Φ(ντ)



B’ham January 2004 Mark Thomson, Cambridge 21

SNO Results (pre NaCl)
Extract number of CC + NC + ES + Background event from 
maximum likelihood fit to:

CC 1967.7 +61.9
- 60.9
+26.4
- 25.6ES 263.6
+49.5
- 48.9NC 576.5

bkgd neutrons 78   12 +_

cosθ wrt sun

Kinetic energy  

Radius from centre of SNO 
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Results (pre-NaCl)
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ES Events ∼  Φ(νe)+ 0.154[Φ(νµ) +Φ(ντ)]

CC Events ∼  Φ(νe)

NC Events ∼  Φ(νe)+ Φ(νµ) +Φ(ντ)

Clear evidence for a 

νµ/ντ flux from sun !

+ Consistency with SSM
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SNO - interpretation
Interpretation of solar neutrino data complicated     

due to matter effects (MSW)

But SNO data strongly favour LMA solution

∆m2 = 5 x10−5eV2

sin22θ = 0.76
tan2θ = 0.34

Before SNO After SNO 
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Reactor Experiments
• Nuclear reactors produce a large flux of νe (Eν ~ 5 MeV)

• Experiments search for νe disappearance

Pre-2002

Suggests that for

sin2(1.27∆m2 L/E) ~ 1 
require L ~ 110 km

Significantly larger distance, 
therefore, require very large flux i.e. 
more  than 1 reactor at the right 
distance

SNO Result : ∆m2 ~ 5x10-5 eV2
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Serendipity 

The ideal site exists – Kamioka !
many reactors at ~ 150 km (including most 
powerful power station in the world ~25GW)
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KamLAND
νe detected via inverse β-decay

νe + p       e+ + n
n + p       d + γ (2.2MeV)

Prompt e+

Delayed γ

Two step process:

Event tagging:

gives measurement of νe energy 

energy  + correlation in space/time

Require ultra-pure Liquid Scintillator
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KamLAND Results

Eν > 2.6 MeV

LMA: 
∆m2 = 5.5x10-5 eV2

sin22Θ = 0.833

Observed 54

Expected 86+5.6

Background 0.96+0.99

Almost all L from rate

Confirmation of solar  
ν deficit  (~3σ)
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KamLAND vs SNO
Consistent results

θ22sin
0 0.2 0.4 0.6 0.8 1

)2
 (

eV
2

m∆
10

-6

10
-5

10
-4

10
-3

Rate excluded
Rate+Shape allowed
LMA
Palo Verde excluded
Chooz excluded

• SNO/Other Solar n Expts.
• KamLAND

SNO/Other

+KamLAND ∆m2 ~ 7.1x10-5 eV2

LMA confirmed

Current Limits:
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Experimental Status : Summary

2 

2 

2   

2  

∆m12 ~7x10-5 eV

∆m23 ~2x10-3 eV

θ13 < 13
o 

(Chooz)

sin22θ12 ~ 0.75
sin22θ23 ~ 1.00

We know a lot more than 
we did 5 years ago !

But still haven’t seen the oscillatory pattern !

Bring on the next generation…….. MINOS (and others)
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Long Baseline Experiments

K2K

MINOS

CNGS
(CERN Neutrinos to Gran Sasso)
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Comparison

K2K MINOS CGNS
Run 1999- 2005- 2006-

Fid. Volume 22 kton 5 kton 2 kton +

<Eν> 1.3 GeV 3 GeV 17 GeV

L 250 km 735 km 732 km

POT/year 5x1019 2.5x1020 7.6x1019

δ(∆m2) ~ 50 % ~ 10 % ~ 15 %

τ appearance No No Yes

Oscillation Dip ? No (?) Yes ?
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MINOS
where science and art meet
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Basic Idea

Measure ratio of neutrino energy 
spectra in far detector (oscillated)
to that observed in the near 
detector (unoscillated)

Partial cancellation of systematics
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Basic Idea 
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MINOS Physics Goals

• observe oscillatory dip/rise
• confirm flavour oscillations describe data

Demonstrate oscillation behaviour

Search for sub-dominant νµ νe oscillations

• discriminate against alternative scenarios

MINOS is  the 1st large deep underground detector 
with a B-field

+

• first direct measurements of ν vs ν oscillations 
from atmospheric neutrino events

• first measurements of θ13 ?

• ~10% measurement of ∆m23

Precise Measurement of ∆m23
2

2
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How to make a ν beam

677 m decay pipe Near
DetectorTarget

To scale……
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Tunable beam
Relative positions of the neutrino horns allow  beam 

energy to be tuned.

Start with LE – but maintain flexibility
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Horn 2 

Inner conductors

Insertion into 
outer conductor

Welded inner conductor

assembled Horn 1 fully  assembled
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Decay tunnel

Pipe is embedded in 
concrete to protect 
groundwater.

Tunnelling complete

Beam due to turn on Dec 2004
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Recent Status

Target Hall

Beam Delivery

Beam Delivery
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MINOS Far Detector

8m octagonal steel & scintillator
tracking calorimeter

• 2 sections, 15m each

• 5.4 kton total mass

• 55%/√E for hadrons

• 23%/√E for electrons 

Magnetized Iron (B~1.5T)

484 planes of scintillator

One Supermodule of the Far Detector…
Two Supermodules total.
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Detector Elements
MINOS detector : SAMPLING CALORIMETER
Steel-Scintillator sandwich
Each plane consists of a 2.54 cm steel +1 cm scintillator
Each scintillator plane divided into 192 x 4cm wide strips  
Alternate planes have orthogonal strip orientations U and V
Octagonal Geometry

MUX box

MUX box

28
-w

ide
28

-w
ide

28
-w

ide

20
-w

ide
20

-w
ide

20
-w

ide
20

-w
ide

28
-w

ide

U V U V U V U V

…etc.

steel

scintillator

orthogonal 
orientations  
of strips

U
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Basic Technology

MAIN FEATURES:

Extruded scintillator strips
Wavelength-shifting fibres
+ clear fibre optical readout
Multi-anode PMT readout

M16 in Far
M64 in Near

8-fold optical multiplexing in 
Far Detector

WLS fibre glued into groove
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Going underground

Photo by Jerry Meier

MINOS
Soudan 2/CDMS II

shaft

Components taken undergrounds…
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Some detector pictures
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Far Detector fully operational since 
July 2003

Coil

Veto Shield
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Event Information
u

plane (z)

v

plane (z)

Two 2D views of event

Software combination  to get `3D’  event

Timing information 

+ charge deposit 

VZ

UZ

event direction
(up/down)

calorimetric
information

DATA

Veto shield hit
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B-Field
~ 1.5 T Magnetic Field

Charge separation
Momentum measurement

B

Stopping muon
Prange = 3.86 GeV/c
Pcurvature = 4.03 GeV/c
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MINOS Near Detector

3.8 x 4.8m “octagonal” steel & 
scintillator tracking 
calorimeter

Same basic construction, 
sampling and response as 
the far detector.

No multiplexing in the main 
part of the detector due to 
small size and high rates.

Hamamatsu M64 PMT

Faster Electronics (QIE)

282 planes of steel

153 planes of scintillator

Similar – but not identical !
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Near Detector Status
Not quite so far advanced as Far Detector

Detector components ready – waiting to be 
installed in experimental hall
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Near Detector Hall

Near Detector support structure

Near Detector Installation commences in February  
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Beam Neutrinos (Simulation)

Energy resolution all important
µ momentum from range (σp/p ~ 5 %) or curvature (σp/p ~ 10 %) 

hadronic energy from pulse height (σE/E ~ 55%/E1/2)

Eν = pµ + Ehad
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MINOS Sensitivity
Measurement of ∆m2 and sin22θ

For ∆m2 = 0.0025 eV2, 
sin2 2θ = 1.0

Factor 10 improvement 
in precision !

Final sensitivity 
depends on protons
delivered to MINOS
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Near Detector Events 

Multiple ν interactions
per spill ! (~10) 

Separate in time 
- still tricky

e.g. relative calibration

Need to understand
ND/FD differences !

Also need absolute
calibration !
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Test Beam 
Response/Calibration being measured in CERN 
test beam using a MINI-MINOS

Muon

Electron Pion

Proton

e.g. response to 2 GeV particles
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Preliminary test beam results

MC expectation

Provides Calibration/Monte Carlo validation  
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νe Appearance
For ∆m2 = 0.0025 eV2, sin2 2θ13= 0.067

Tagged νe CC events

MC

For ∆m2 = 0.0025 eV2

Assumes 25x1020 protons on target.

3 σ discovery potential may significantly eat into current  
allowed region – exact reach depends on protons

MINOS has a reasonable chance of making the first 
measurement of θ13
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First beam in December 2004

BUT Already Have Neutrino Data....
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Atmospheric Neutrinos

ν

ν

µ

Contained Events

ν

µ

Partially Contained: A

µ

Partially Contained: B
ν

µ

Upward-going muons
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Hermeticity

For Atmospheric Neutrinos:

large background from cosmics
reduced using ‘veto shield’
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Contained Events
• Signal/Noise (cosmics) = 1/100,000
• Require rejection factor of ~ 1:10,000,000 !
• Veto Shield helps : efficiency ~ 98 %
• Very sensitive to reconstruction errors
• Have achieved: Efficiency ~ 75 % with 98 % purity

Data
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Partially Contained Events

For upward going PC events rely on timing : 

Data
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Upward-going muons

Upward 

Downward 

ν

µ

PRELIMINARY

Direction from timing 
β = v/c (β=-1 upward) 

37 Candidate Events consistent 
with MC expectation

and a token data `physics’ plot

Data analysis underway !
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Conclusions
Over the last 5 years our knowledge of the 
neutrino sector has increased hugely !

Over next 5 years a number of new experiments 
+`precise’ measurements  

May shed light on fundamental questions, e.g. 
flavour symmetry - why near maximal mixing 
matrix (in contrast to CKM) ?  ……

MINOS is a major part of this experimental effort

Construction is going well – already taking high 
quality data with the MINOS Far Detector

First results on atmospheric neutrinos this Summer 

Eagerly awaiting first beam, due December 2004 –
and who knows, maybe some suprises !
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The word is getting 
around…..
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