The Tesla Detector

Mark Thomson University of Cambridge

★ Requirements ★ Basic Concept ★ Developments

The TESLA Accelerator

Linear Collider Physics

*Require High Luminosity

*****Detector optimized for precision measurements in difficult environment

1000

Compare with LEP

*****Backgrounds dominate `interesting' physics

*****Kinematic fitting much less useful (Beamstrahlung)

- * Physics performance depends critically on the detector performance (not true at LEP)
- ***** Stringent requirements on a TESLA detector

TESLA Detector Requirements

★ momentum: $O_{1/p} < 7x10^{-5}/\text{GeV}$ (1/10 x LEP) (e.g. mass reconstruction from charged leptons)
★ impact parameter: $\sigma_{d0} < 5\mu m \oplus 5\mu m/p(\text{GeV})$ (1/3 x SLD) (c/b-tagging in background rejection/signal selection)
★ jet energy : $\delta E/E = 0.3/E(\text{GeV})$ (1/2 x LEP) (invariant mass reconstruction from jets)
★ hermetic down to : $\theta = 5 \text{ mrad}$ (for missing energy signatures e.g. SUSY)
★ Radiation hardness not a significant problem 1st layer of vertex detector : $10^9 \text{ n cm}^{-2} \text{ yr}^{-1}$

c.f. 10¹⁴ n cm⁻² yr⁻¹ at LHC

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets, therefore require:

- High granularity
- Good two track resolution

The TESLA Detector Concept

- Large Gaseous central tracking chamber (TPC)
 High granularity SiW
 ECAL
 High granularity HCAL
- *Precision microvertex detector
- 4 T Magnetic Field
 - **★ ECAL/HCAL inside coil**

- * No hardware trigger, deadtime free continuous readout for the complete bunch train (1 ms)
- * Zero suppression, hit recognition and digitisation in frontend electronics

Overview of Tracking System

Requirements:

- **★** Efficient track reconstruction down to small angles
- Independent track finding in TPC and in VTX+SIT (7 points) alignment, calibration
- ***** Excellent momentum resolution $\sigma_{1/p}$ < 7 x 10⁻⁵ /GeV
- **★** Excellent flavour-tagging capability

Quark-Flavour Identification

***** Important for many physics analyses

e.g. couplings of a low mass Higgs Want to test g_{Hff}~m_f O(%) measurements of the branching ratios H→bb,cc,gg

*Also important for event ID and background rejection

Flavour tagging requires a precise measurement of the impact parameter d_o

Aim for significant improvement compared to previous detectors

 $\sigma_{d0} \sim a \oplus b/p_T(GeV)$

Goal: a<5mm, b<5mm

a: point resolution, b : multiple scattering

d

Vertex Detector – conceptual design

5 Layer Silicon pixel detector Pixel size 20x20μm Space point resolution: < 5μm 1 Gpixels !

*Inner radius: 15 mm (1/2 SLD)

 as close to beampipe as possible – charm tagging

 *Layer Thickness: 0.1 %X₀ (1/4 SLD)

 suppression of γ conversions – ID of decay electrons
 minimize multiple scattering

Many current technologies + future developments
 very active area of R&D

Flavour Tagging

Powerful flavour tagging techniques (from SLD and LEP)

Expected resolution in r,ϕ and r,z $\sigma \sim 4.2 \oplus 4.0/p_T(GeV) \mu m$

*****Combine information in ANN

 charm-ID significant improvement compared to SLD

Flavour Tagging : Recent Studies

Future Optimization

- **★** Optimize for physics performance:
 - charm tag
 - vertex charge
 - charge dipole
 - conversion ID
- ★ Minimize inner radius
- ★ Minimize material

Momentum Resolution

Recoil mass to μ+μ-⇒М_н σ_{zн} , g_{zнн}

μ⁺μ⁻ angular distribution ⇒ Spin, CP,...

★ Measurements depend on lepton momentum resolution goal: $\Delta M_{\mu\mu} < 0.1 \times \Gamma_Z$ \Rightarrow $\sigma_{1/p} = 7 \times 10^{-5} \text{ GeV}^{-1}$

Motivation for a TPC

Advantages:

- Large number of 3D space points good pattern recognition in dense track environment
- **★** Good 2 hit resolution
- Minimal material little multiple scattering little impact on ECAL conversions from background γ
- ★ Good timing few ns

separate tracks from different bunches

- ★ dE/dx gives particle identification
- Identification of non-pointing tracks aid energy flow reconstruction of V⁰ signals for new physics

e.g. Reconstruction of kinks

GMSB SUSY: $\tilde{\mu} \rightarrow \mu + \tilde{\mathbf{G}}$

TPC Conceptual Design

*Readout on 2x200 rings of pads
 *Pad size 2x6mm
 *Hit resolution: σ < 140 μm
 ultimate aim σ~100 μm

Drift velocity ~ 5cm µs⁻¹

ArC0₂-CH₄ (93-2-5)%

Total Drift time ~ 50µs = 160 BX Background ⇔ 80000 hits in TPC 8x10⁸ readout cells (1.2 MPads+20MHz) ⇔0.1% occupancy No problem for pattern recognition/track reconstruction

Gas Amplification

Previous TPCs used multiwire chambers not ideal for TESLA.

resolution limited by:

• ExB effects

angle between sense wires and tracks

- Strong ion feedback requires gating
- Thick endplanes wire tension

Gas Electron Multipliers or MicroMEGAS

- 2 dimensional readout
- Small hole separation ⇒
 reduced ExB effects ⇒
 improved point resolution
- Natural supression of ion feedback
- No wire tension ⇒ thin endplates

e.g. GEMs

- **★** High electric field strength in GEM holes ~ 40-80kV/cm
- **★** Amplification occurs between GEM foils (50 µm)
- **★** Ion feedback is suppressed : achieved 0.1-1 %
- **★** Limited amplification (<100) use stack of 2/3 GEMs

GEM Point Resolution

Improve point resolution using chevron/diamond pads

Wire Chamber readout :

- Readout induced charge on pads
- Charge induced on several pads
- Improved point resolution

GEM readout :

- Induced charge too small
- Readout charge on pads
- Limits resolution to pad size

Recent progress

No change in basic concept, but much R&D:

- operation in high magnetic fields
- ion feedback,
- pad shapes,
- gas studies,
- simulation work ultimately allow optimization
- and much more....

Aachen, Carleton, DESY/Hamburg, Karlsruhe, Krakau, LBNL, MIT, Montreal, MPI-München, NIKHEF, Novosibirsk, Orsay, Saclay, Rostock, Victoria

So far so good. A TPC remains a viable option for the TESLA detector

Intermediate Tracking Chambers

• At low angles TPC/VTX momentum resolution is degraded

Tracking Improved by:

SIT: 2 Layers of **SI-Strips** $\sigma_{r_0} = 10 \ \mu m$

FTD: 7 Disks

- 3 layers of Si-pixels 50x300µm²
- 4 layers of Si-strips $\sigma_{rb} = 90 \mu m$

TPC : $\sigma(1/p) = 2.0 \times 10^{-4} \text{ GeV}^{-1}$ +VTX: $\sigma(1/p) = 0.7 \times 10^{-4} \text{ GeV}^{-1}$ +SIT : $\sigma(1/p) = 0.5 \times 10^{-4} \text{ GeV}^{-1}$

Calorimetry at TESLA

 Much TESLA physics depends on reconstructing invariant masses from jets in hadronic final states
 Kinematic fits don't help – Beamstrahlung, ISR
 Jet energy resolution is of vital importance

The energy in a jet is:

60 % charged particles : **20 %** γ : **10 % K**_L, **n** : **10 %** ν

The Energy Flow/Particle Flow Method

• Reconstruct momenta of individual particles avoiding double counting

Charged particles in tracking chambers Photons in the ECAL Neutral hadrons in the HCAL (and possibly ECAL)

*****need to separate energy deposits from different particles

Jet energy resolution:

Best at LEP (ALEPH): $\sigma_{E}/E = 0.6(1+|\cos\theta_{Jet}|)/\sqrt{E(GeV)}$ TESLA GOAL: $\sigma_{E}/E = 0.3/\sqrt{E(GeV)}$

> 12**0** Mjlj2

***** Jet energy resolution directly impacts physics sensitivity

If the Higgs mechanism is not responsible for EWSB then QGC processes important e⁺e⁻→vvWW→vvqqqq, e⁺e⁻→vvZZ→vvqqqq

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states

Calorimeter Requirements

- Excellent energy resolution for jets
- Good energy/angular resolution for photons
- Hermeticity
- Reconstruction of non-pointing photons

Energy flow drives calorimeter design:

- ★Separation of energy deposits from individual particles
 - small X_0 and $R_{Moliere}$: compact showers
 - high lateral granularity : O(R_{Moliere})
- Discrimination between EM and hadronic showers
 - small X_0 / λ_{had}
 - longitudanal segmentation

★Containment of EM showers in ECAL

granularity more important than energy resolution

Calorimeter Concept

ECAL and HCAL inside coil

ECAL: silicon-tungsten (SiW) calorimeter:

- Tungsten : $X_0 / \lambda_{had} = 1/25$, $R_{Moliere} \sim 9mm$ (gaps between Tungsten increase effective $R_{Moliere}$)
- Lateral segmentation: 1cm² matched to R_{Moliere}
- Longitudinal segmentation: 40 layers (24 X_{07} 0.9 λ_{had})
- Resolution: $\sigma_{E}/E = 0.11/\sqrt{E(GeV) \oplus 0.01}$

 $\sigma_{\theta} = 0.063 / \sqrt{E(GeV)} \oplus 0.024 \text{ mrad}$

Hadron Calorimeter

Highly Segmented – for Energy Flow

- Longitudinal: 9-12 samples
- 4.5 6.2 λ (limited by cost coil radius)
- Would like fine (1 cm² ?) lateral segmentation
- For 5000 m² of 1 cm² HCAL = 5x10⁷ channels cost !

Two Options:

 Tile HCAL (Analogue readout) Steel/Scintillator sandwich Lower lateral segmentation 5x5 cm² (motivated by cost)
 Digital HCAL High lateral segmentation 1x1 cm² digital readout (granularity) RPCs, wire chambers, GEMS...

The Digital HCAL Paradigm

• Sampling Calorimeter:

Only sample small fraction of the total energy deposition

• Energy depositions in active region follow highly asymmetric Landau distribution

Calorimeter Reconstruction

 High granularity calorimeter – <u>very different</u> from previous detectors

* `Tracking calorimeter'

- Requires new approach to reconstruction
- Already a lot of excellent work on powerful energy flow algorithms
- Still room for new ideas/ approaches

A number of ongoing studies....

Highly segmented digital HCAL favoured

Calorimeter performance

e.g. measurement of trilinear HHH coupling via e⁺e⁻→ZHH→qqbbbb

- *****Probe of Higgs potential
- *****Small cross-section
- *Large combinatoric background
- ★6 jet final state

Use jet-jet invariant masses to extract signal

Dist=($(M_{H}-M_{12})^{2}+(M_{z}-M_{34})^{2}+(M_{H}-M_{56})^{2})^{1/2}$

★ Good jet energy resolution give ~5σ signal

Forward Calorimeters

Forward region geometry determined by need to suppress beam related background

LAT: Luminosity monitor and hermeticity SiW Sampling Calorimeter aim for $\Delta \mathcal{L}/\mathcal{L} \sim 10^{-4}$ require $\Delta \theta = 1.4$ mrad

LCAL: Beam monitoring and fast luminosity ~10⁴ e⁺e⁻ pairs/BX Need radiation hard technology: SiW or <u>Diamond/W Calorimeter</u>, Scintillator Crystals

Recent Developments

Detector Optimization

Current concept of TESLA detector essentially <u>unchanged</u> from TDR

Time to think again about optimizing detector design, e.g.

TRACKING CHAMBERS:

- ***** Study Effect of reducing TPC length (Ron Settles)
- **★** Optimize Number of **SIT** Layers.

CALORIMETERS:

- **★** Continue evaluation of digital vs analog HCAL
 - beware simulation of hadronic showers
- **★** Calorimeter segmentation
- HCAL active medium
- ***** Alternative designs LCCAL
- + OTHER/NEW IDEAS.....

Need to consider detector as a whole

Detector Performance Goals

* <u>Optimize</u> design of detector performance using key physics processes, e.g.

- *** VERY DIFFICULT !**
- ***** Need unbiased comparison
 - Same/very similar reconstruction algorithms
 - Common reconstruction framework
 - Same Monte Carlo events
- **★** Use state of the art reconstruction
- **★** TIME TO **START** : propose looking at **TPC length**
 - Relatively simple reconstruction unchanged (?)

Conclusion

*** Physics** at a linear collider places strict requirements on the TESLA detector

***** 2 years later - the TDR design still looks good

★ Time to start thinking about optimizing the detector design for the rich physics potential of TESLA

* Remain open to new ideas..... (e.g. see Jim Brau's talk)

Many Thanks to:

Chris Damerell, Thorsten Kuhl, Pascal Gay, <u>Markus</u> <u>Schumacher</u>, Ron Settles, Henri Videau