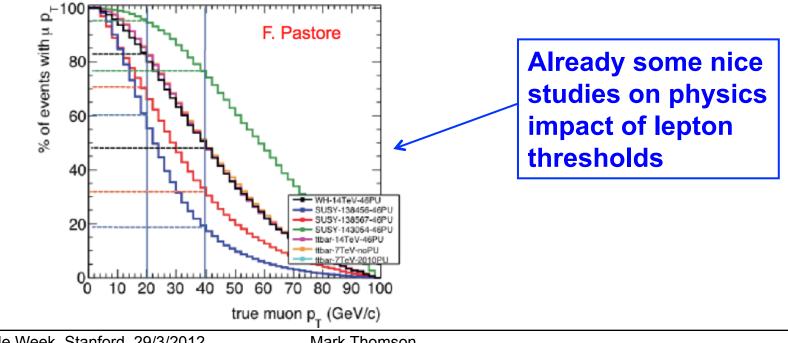
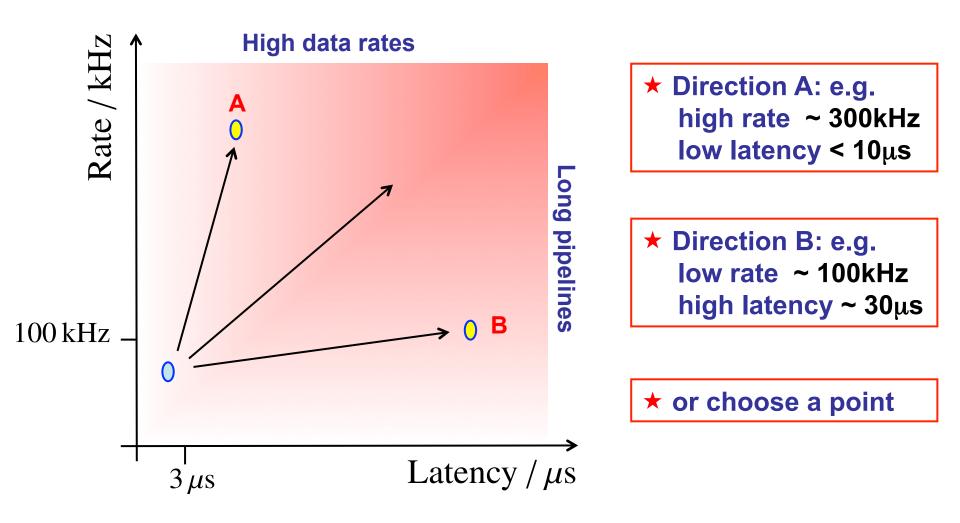
TDAQ Strategy for Phase 2

Mark Thomson University of Cambridge



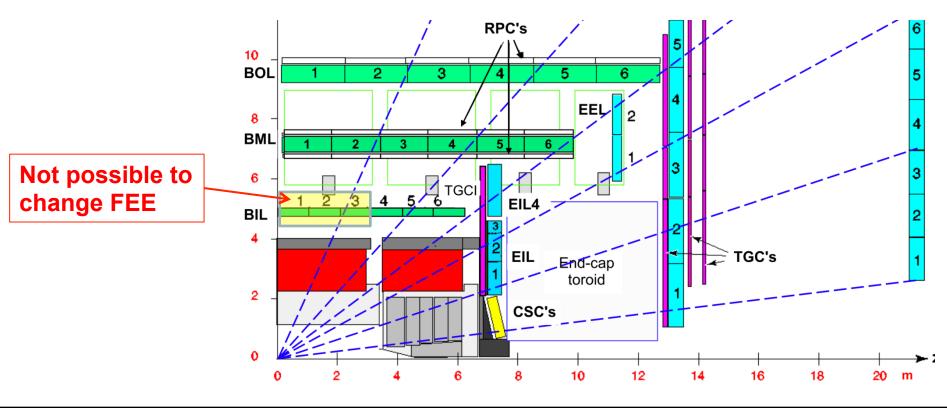
Physics Motivation for TDAQ upgrade:

- **★** Design of Phase-2 upgrade of TDAQ needs to be motivated by physics goals of experiment
- **★** At this stage Phase-2 physics goals not fully worked through
- ★ Needs to be based on the gain going from 300 fb⁻¹ to 3000 fb⁻¹
 - But, Phase-2 will represent 90 % of all ATLAS data
 - Trigger needs to be flexible enough maximize output
 - Strong desire to trigger on leptons at EW scale


Current thinking:

- ★ Aim to maintain "current" thresholds for single isolated leptons
- ★ Maintain trigger efficiency for
 - EM 20: 20 GeV electrons
 - MU 20: 20 GeV muons

★ Sufficient bandwidth for jet, missing ET, ...



- ★ Most detector system can replace electronics
 - can significantly extend pipelines
 - Intercy/rates mostly limited by cost
- ★ One (?) exception MDT
 - Inaccessible no opportunity to replace FEE

MDT imposes major constraint

- ~30 % of electronics in Barrel Inner Layer (BI) of spectrometer are inaccessible
- ★ Impact
 - Progress with understanding cavern background
 - Tube rate ~ 100 kHz at 7E34
 - Barrel Inner layer MDTs FEE limited to:
 - ~200 kHz L1 accept
 - latency ~20 µs

★ Current understanding of limitations across systems

	Max Rate	Max Latency
MDT	~200 kHz	~20 μs
LAr	any	any
Tile	>300 kHz	any
ΙΤΚ	>200 kHz	< 500 μs

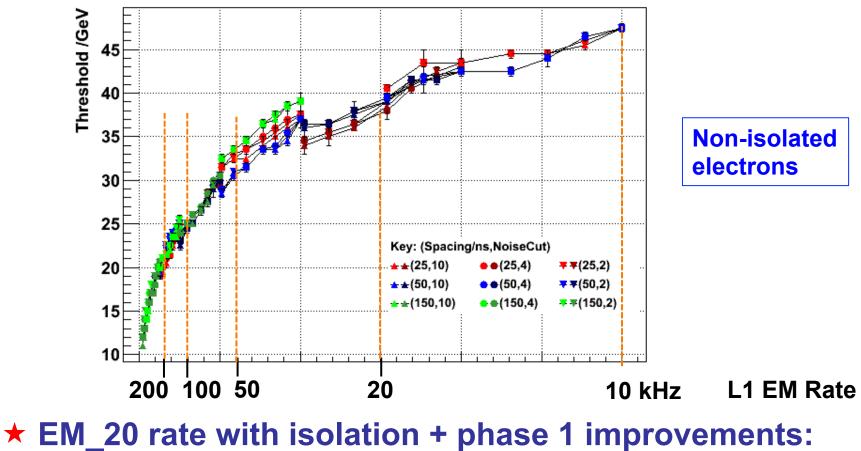
★ Emerging consensus on possible working point
 ■ 200 kHz Level 1
 ■ 20 µs latency

★ Evaluate rates at : 7E34

***** Note significant uncertainties in rates

- Need to fold in Phase 1 upgrades
- Need HL MC simulation studies
- Work needs to be done prior to Lol !

Caveat Emptor:


Following numbers represent my take on rates
 they are estimates...

★ Estimates for 7E34 based on current system including estimated gains from Phase 1

L1_EM20_VH : ~100-150 kHz

<u>Muons:</u>

★ L1_MU_20: estimated rate at 7E34: ~40 kHz includes all planned improvements

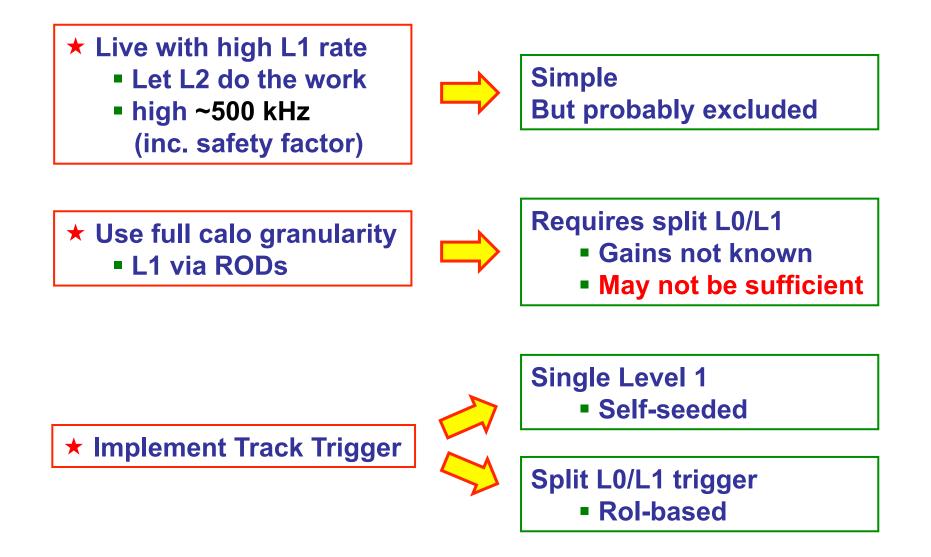
- ★ With MDT tracks in trigger could be ~25 kHz
- <u>Taus:</u>
 - ★ L1_TAU_40: estimated rate at 7E34: ~100 kHz but some overlap with EM triggers

EM triggers (electrons/taus) more problematic than muons

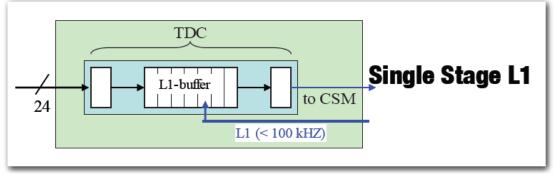
★ Estimate of overall picture

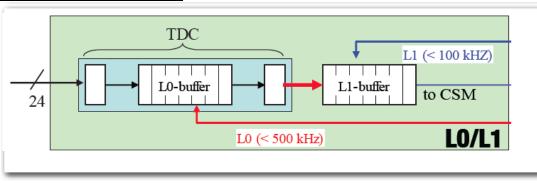
Object	Estimated Rate	
EM 20	125 kHz	
MU 20	20-40 kHz	
TAU	~50 kHz ?	
Others*	~100 kHz	
Total	300-350 kHz	

★ Tentative "conclusions":


- Very hard to keep EM/TAU thresholds within rate budget dictated by detectors (MDT/Tracker)
- No safety factors ! Need to build something in
- Would tend to argue for ~500 kHz of current EM/MU/JET

*crude extrapolation based on current division of rate budget

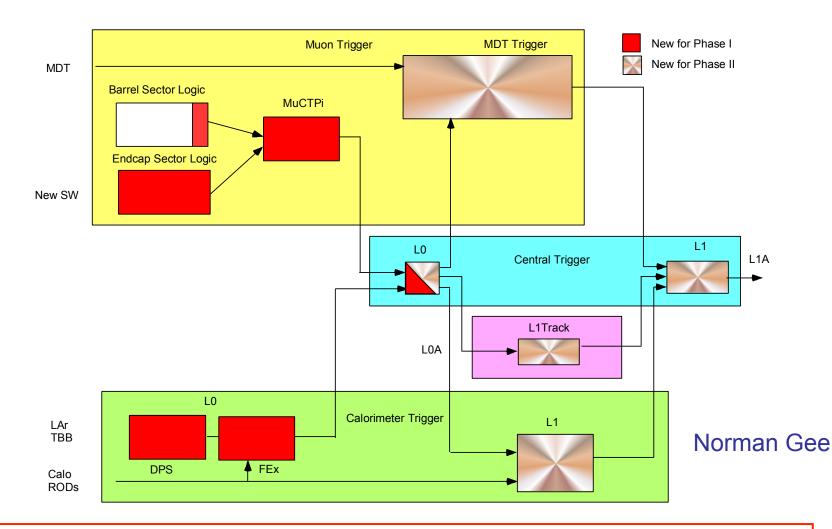




Level 1: single L1 accept

Level 0/Level 1:

"Simple"


"More Complex"

* e.g. Fast L0 accept at <500 kHz * L0 distributed to detectors which could buffer L0A data

L0/L1 might look like...

★ L0/L1 allows time for additional processing without very long pipelines

ATLAS Upgrade Week, Stanford, 29/3/2012

Level 0/Level 1 vs Level 1

PROS:

 Allows for additional processing without very long pipelines – potential reduction in material for tracker

 Potential to use full calorimeter granularity via LAr/Tile RODs (only weapon for photons)

★ Provides option for Rol-based track trigger if needed

CONS:

★ More complicated trigger

1

2

 Track trigger would represent the single major change to ATLAS L1 trigger system

Two options (described in detail in next talks)

★ Self-seeded

generate fast (<5 µs) on detector L1 accept</p>

Pros:

fits in with normal Level 1 architecture <u>Cons:</u>

- technically challenging higher risk
- potentially large impact on Tracker design

★ Rol-based

- "FTK-style" solution seeded by L0A Rols
- Generate L1 accept on timescale of 10-20 μs

Pros:

reduces impact on tracker

```
Cons:
```

• only works in more involved L0/L1 split trigger

- ★ Need to quantify the impact of track trigger
 - In context of possible trigger menu at Phase 2
 - numbers below are my "estimates":

	No TT	With TT	
Object	Estimated Rate	Estimated Rate	
EM 20	125 kHz	25 kHz	
MU 20	20-40 kHz	20 kHz	These estimates need to be firmed up for Lol
TAU	~50 kHz ?	20 kHz	
Others*	~100 kHz	~100 kHz	
Total	300-350 kHz	~175 kHz	

TT (Self-seeded or Rol-based) may provide potential to trigger on 20 GeV isolated lepton triggers

*fairly crude extrapolation based on current division of rate budget

★ Two possible options (compatible with constraints as understood today)

- Single Level 1
 - 200 kHz with ~5 μs latency
 - self-seeded track trigger

Split Level 0/Level 1

- = 300-500 kHz L0 with ~5 μs latency
- 200 kHz L1 with ~20 μs latency
- possible L1Calo at full granularity
- track trigger

- **★** Limited menu of options for Phase 2
 - L0 vs L0/L1
 - Track trigger or no track trigger
 - If there is a track trigger self-seeded vs Rol based
- The decision on the working baseline for Lol
 Strongly driven by track trigger

★ Opinion

• At this stage need to build in flexibility...

For Lol need to firm up rate estimates, e.g.
 Simulation of rates at 7E34 with phase 1 upgrades
 Major shortage of effort in this area