Level-0 / Level-1 Trigger Architecture

Mark Thomson University of Cambridge

<u>This talk</u>

- Physics motivation
- Baseline for Phase-II
- Constraints from Detectors
- Rates from Phase-I System
- Phase-II Architecture
- Rate Estimates
- Comments/Conclusions

- Design of Phase 2 upgrade of TDAQ needs to be motivated by physics goals of experiment
 Needs to be based on the gain going from 300 fb⁻¹ to 3000 fb⁻¹
 - Phase-2 will represent 90 % of all ATLAS data
 - We hope for new physics...
 - At this stage trigger needs flexibility
 - Strong desire to trigger on leptons at EW scale

Goals:

- ★ Maintain trigger efficiency for
 - EM 20: ~20 GeV electrons
 - MU 20: ~20 GeV muons
- ★ + Sufficient bandwidth for taus, photons, jets, missing ET, ...
- **★** + Build in flexibility (or don't build it out)

★ Split Level-0/Level-1 hardware trigger

- Total rate: 200 kHz
- Total latency: 20 μs
- Synchronous

★ Level-0

- Same functionality as Phase-I Level-1
- Total rate: at least 500 kHz
- Total latency: 6 μs

★ Level-1

- Additional latency of 14 μs
- Rol-based track trigger
- L1Calo using full calorimeter granularity
- MDT based muon trigger

★ Level-2: 5-10 kHz, more offline-like algs

★ Will try and motivate this choice in following slides

★ Most detector system can replace electronics

- can significantly extend pipelines...
- Intercy/rates mostly limited by cost
- ★ One (?) exception MDT
 - Inaccessible no opportunity to replace FEE

- **MDT** imposes major constraint
 - ~30 % of electronics in Barrel Inner Layer (BI) of spectrometer are inaccessible
- ★ Impact
 - Progress with understanding cavern background
 - Tube rate ~ 100 kHz at 7E34
 - Barrel Inner layer MDTs FEE limited to:
 - ~200 kHz L1 accept
 - latency ~20 µs

★ Current understanding of limitations across systems

	Max Rate	Max Latency	
MDT	~200 kHz	~20 μs	
LAr	any	any	
Tile	>300 kHz	any	
ΙΤΚ	>200 kHz	< 500 μs	

★ Suggests Level 1 opera	ting point:
■ 200 kHz	
■ 20 μs	

Trigger Rates at Phase-II

- **★** Evaluate rates at : $(5 7) \times 34 \text{ cm}^2\text{s}^{-1}$
- ***** Note: still significant uncertainties in rates
 - Phase 1 upgrades only partially simulated/cavern background
 - Rates dominated by L1Calo (EM, jets,...)
 - Recent studies with eFEX folded in

EM and Tau rates

Muons:

L1_MU_20: estimated rate at 7E34: > 40 kHz includes NSW

EM triggers (electrons/taus) are more problematic than muons

<u>Jets/MET:</u>

* not studied in depth, but thresholds will be high...

★ *Estimate* of overall picture (based on phase 1 system)

Object	Estimated Rate		
EM 20 – EM 25	200 - 100 kHz		
MU 20	>40 kHz		
Di-Lepton 10 GeV	~100 kHz		
TAU 40	100 kHz		
JETs + MET*	~100 kHz		
Total	~500 kHz		

★ Tentative "conclusions":

- To keep single lepton triggers at ~20 GeV and di-lepton triggers at ~10 GeV : L0 rate ~500 kHz
- No safety factors !
- Not compatible with likely 200 kHz detector limit

*somewhat arbitrary number – essentially whatever the headroom

★ Points to split Level-0/Level-1 system

★ Baseline is FTK-style Rol-based track-trigger

★ ITK readout into L1 only from EM and MUON Rols

Possibility of full calorimeter granularity at L1Calo via RODs for (at least) Rols

Potential to use additional latency to generate MDT trigger – sharpen up turn-on curve, need to quantify gain

★ Topological processing at L0 and L1

division between Topo and CTP ?

 Track trigger would represent the single major change to ATLAS L1 trigger system - for details see tomorrow

Two options

- ★ Self-seeded
 - generate fast (<5 μs) on detector L1 accept</p>

Pros:

fits in with normal Level 1 architecture Cons:

- technically challenging higher risk
- potentially large impact on Tracker design

★ Rol-based

- "FTK-style" solution seeded by L0A Rols
- Generate L1 accept on timescale of 20 μs

<u>Pros:</u>

reduces impact on tracker

```
Cons:
```

• only works in more involved L0/L1 split trigger

*these are educated estimates – not full simulation

		No L1Track	With L1TT		
Object	Trigger	Rate	Rate/kHz		
e	EM25	125 kHz	25 kHz		
γ	EM40	20 kHz	10 kHz	 Assumes factor 2 from L1Calo 	
μ	MU20	>40 kHz	10 kHz		
τ	TAU50	50 kHz	20 kHz		
ee, yy	2EM10	30 kHz	5 kHz	K	
eτ, μτ	TAU20+	25 kHz	2 kHz		
μμ , εμ , ττ	Various	~30 kHz	~5 kHz		
Others	JET+MET	~100 kHz	~100 kHz		
Total		>400 kHz	~175 kHz		
Tentative conclusion: 200 kHz L1Calo looks viable with track trigger					

★ Question asked early "Track trigger drives split L0/L1 +..., is there an alternative ?"

- EM25 (with isolation) alone will eat current rate limit of < 100 kHz
- ➡ Have to increase rate,
 Status Quo not an option
- Status Quo not an option
 To control rates at level of ~200 kHz, need to use additional information

e.g. L1Calo with full ECAL granularity

- Will require additional latency (~ extra few μs)
- Forced to higher rate/longer latency, regardless of L1Track [unless accept 500 kHz L1A]
- L1Track only dictates total latency

+ L1Track brings additional flexibility

★ Studies/estimates are still preliminary

- Best we have but...
- Now need to firm up numbers, simulation, simulation, simulation, ...

e.g. what does L1Calo bring

Possible benefits of L1Calo (again needs quantitative studies) i) fine-grained EM shower identification

ii) what can be done to improve MET, MET significance reconstruction ?

★ Current baseline for Phase-II trigger architecture

- Split L0/L1 trigger
- Level 0 Accept at: 500 kHz
- Level 1 Accept at: 200 kHz
- Total L0/L1 latency: 20 μs
- Rol-based L1Track track trigger
- Level 2: 5 10 kHz

Believe this to be a viable option for Phase-II Needs to be studied with full simulation