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Handout 3 : Interaction by
Particle Exchange and QED
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Recap

* Working towards a proper calculation of decay and scattering processes
Initially concentrate on: _+

+ €. e
cete”— utu- © Y H
‘e q ~eq
e_ l"l’ q q

A In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections 5
M|

O oC
flux
A In Handout 2 covered relativistic treatment of spin-half particles

Dirac Equation

A This handout concentrate on the Lorentz Invariant Matrix Element
* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED

X (phase space)
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Interaction by Particle Exchange

 Calculate transition rates from Fermi’s Golden Rule
[y =27|Ty|°p(Ey)
where Tﬂ is perturbation expansion for the Transition Matrix Element

o —(flvh N <f‘V‘]><]‘V’l> 0
=SV + ), 0 ...
iz LTk
*For particle scattering, the first two terms in the perturbation series
can be viewed as:

“scattering in Vi /[ i “scattering via an
a potential” ] ; ;
p intermediate state”
i Vi . Vii
i

» “Classical picture” - particles act as sources for fields which give
rise a potential in which other particles scatter - “action at a distance”
* “Quantum Field Theory picture” - forces arise due to the exchange

of virtual particles. No action at a distance + forces between particles
now due to particles
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(start of non-examinable section)

*Consider the particle interaction @ +b — ¢ + d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

C  Initial statei: a+b
Final state f: c+d
Intermediate state j: c+b +x

space

d *This time-ordered diagram corresponds to
; a “emitting” x and then b absorbing x

time
*The corresponding term in the perturbation expansion is:
SIVIRGIVED
E,—E;
(d|V|x+b){(c+x|V|a)
(Ea+Ep) — (Ec + Ex + Ep)

. ]f‘l-b refers to the time-ordering where 4 emits X before b absorbs it

T =

ab
Ti
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*Need an expression for (¢ +x|V|a) in a c
non-invariant matrix element 77; 8a
 Ultimately aiming to obtain Lorentz Invariant ME

*Recall Ty; is related to the invariant matrix element by
Ty = H(ZEk)_l/zMﬁ

k .
where k runs over ail particles In the matrix element
*Here we have

M(,l—>C X
(c+x|V]a) = ——4—

(2E,2E.2E,)1/2
M(a_m.ﬂ) is the “Lorentz Invariant” matrix element fora - c + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|Via) =
e FfVia) (2E,2E.2E,)!/2
ga is a measure of the strength of the interaction a - ¢ + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI
Note : in this “illustrative” example g is not dimensionless.
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Similarly (d|V]x+b) = 8b X
(2E,2E,2E,)!/2
Giving 7Tab (d|V]x+b)(c+x|V]a) b 8b d
/i (Ea —l_Eb)_(Ec +Ex +Eb)
1 1 8a8b

2E, (2E,2E,2E2E;)'/? (E,—E.—Ey)
* The “Lorentz Invariant” matrix element for the entire process is
M = (2E2E2E.2E;)\?T8

1 8a8b

2E, (E4—E.—Ey)

Note:

¢ M}‘ﬁf refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
+ Momentum is conserved at each interaction vertex but not energy
E; #E;
7] l

* Particle x is “on-mass shell” i.e. £2 = p2 +m?
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* But need to consider also the other time ordering for the process

¥t P C *This time-ordered diagram corresponds to
5| 7= / b “emitting” x and th bsorbing X
o - ) “emitting X an en a absorbing x
: * x is the anti-particle of x e.qg.
: : : e” Ve e- Ve
i j f ]
time Vu T H
*The Lorentz invariant matrix element for this time ordering is:
1 8a8b

Mba

*In QM need to sum over matrix elements corresponding to same final
state: My = ML+ MY
—
_|_

_ gagb.(

1
1

_ 8a8b 1 Energy conservation:
~ 2E, \E,—E.—E, E,—E.+E, (Ea+Ep=E.+Ey)
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o 8a&b 2E,
*Which gives Msqy = .
g /i 2E, (E,—E.)2—E2
8a8b

(Ea _EC)2 _E)%

*From 1st time ordering E% — ]3’)26 —|—m)% = (P — 13’0)2 _|_m)26

a c
- 8a8b 8
giving My = — :
4 (Ea—Ec)? = (Pa— Pc)? —m? \.4 = Pa— P
o 8a8b
- )2 m2
(Pa = pe)? —m; (end of non-examinable section)
8a8b
- My = 5
q~ —ny

* After summing over all possible time orderings, My; is (as anticipated)
Lorentz invariant. This is a remarkable result - the sum over all time
orderings gives a frame independent matrix element.

* Exactly the same result would have been obtained by considering the
annihilation process
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Feynman Diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

v 1 L4
&| a c gl a c a c
& o
x Y —
a — X
b .d : .d : b p
time time
a . c In a Feynman diagram:

% the LHS represents the initial state

% the RHS is the final state
@ everything in between is “how the interaction

b ~d happened”
* |t is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.
* The factor 1/(q2 — m)%) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange
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8a8b
q* —mg
& The fundamental strength of the interaction at the two vertices 84, 8b

* The matrix element: Mfi depends on:

@ The four-momentum, g, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

a_ P . Ps ¢ Here gq=p1—p3=ps—pr=t “t-channel”
. For elastic scattering: p1 = (E,p1); p3=(E,p3)
P2 | pa ¢ =(E—E)*—(p1—p3)
b " d g*<0 termed “space-like”
. s Here g=p1+p2=p3+ps=s “s-channel”
oKX G InCoM: pi1 = (E,p); p»=(E,—pP)
n AN @ = (E+EP— (- p) = 4B
q*>0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
g a C g a c a C
X + bz T * My =
b d d q- — ny
I — 1 : b d
time time
N— - N— 7
—— ——
*Momentum conserved at vertices *Momentum AND energy conserved
*Energy not conserved at vertices at interaction vertices
«Exchanged particle “on mass shell” | *Exchanged particle “off mass shell”
2 (=12 _ 2 2
E§—|ﬁx|2:m§ Ex_|px =4q #mx

VIRTUAL PARTICLE

*Can think of observable “on mass shell” particles as propagating waves

and unobservable virtual particles as normal modes between the source
particles: —_—
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

eInteraction by particle exchange in 2"d order perturbation theory.
a c

8a8b
Myi=—— 2
b d q x

*Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) J M= <1I’f|V(7’)|ll/i>
i \._/ Obtain same expression for My; using
®p e YUKAWA
V() V(r) = 8ags p potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view
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Quantum Electrodynamics (QED)

*Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

(Non-examinable)
*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part Il electrodynamics)

p—P—qA; E—E—q¢
In QM: P=-iV, E=id/ot
Therefore make substitution:  idy, — id, —gAy
where Ay =(9,-A); 9y =(3/31,4V)
*The Dirac equation:
Yoy +imy=0 = Yo, y+igytA,y+imy =0

(here g = charge)

. v -
(xi) = iyoa—lij+iy.Vw—qy“Auw—mw:O
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14/081,/ :fvofhlr — Ml — i/ 6111_1_ AvH A e
Dl at l lL\F llb\ll I/I-V \fl | %I ll“\’l
<P Ay = (Pm—i’TV)y+q" v Auy
“ ~ J H_J
Combined rest Potential
mass + K.E. energy

*We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

Vp = CJYO AL just:  gY°Y"Ag=q¢)

*The final complication is that we have to account for the photon
polarization states.

Au — g‘l(l)“)ei(ﬁ.?—Et)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(1) 8 Could equally have
e(l) — 0 e = 1 chosen circularly
0 0 polarized states
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*Previously with the example of a simple spin-less interaction we had:

%/a
1
M = (y|V|ya) 5 (WalVIws) ‘x

qz—mx \

]| 1|
8a gb b /\\ d o Pl Py
*In QED we could again go through the procedure - ©
of summing the time-orderings using Dirac
spinors and the expression for Vp. If we were
to do this, remembering to sum over all photon p2 P4
polarizations, we would obtain: T % r
81 (S)L)*
A [Ny A (NS BNV rsr N a0V ]
M= U \P3)qet | Ue\P1)| 2, — 5 [U\P4)qcV T Uz P2)]
I\ R 1
~N N ~ J N —~— _/
Interaction of e~ | | Massless photon propagator | | Interaction of 7~
with photon summing over polarizations with photon
* All the physics of QED is in the above expression !
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

1 0 0 0

©_ (0 n_ |1 @ _ [0 3 (9

e =1, ell) = 0 e@ =] £ 0

0 0 0 1
. . AfoAx This is not obvious - for the

d . E S LE = —
andgives ; K ( v ) Suv moment just take it on trust
and the invariant matrix element becomes: (end of non-examinable

—8 section)
M = [u}(p3)geY v ue(p1)] qé’w (1 (p4)aeY" Y uz(p2)]
«Using the definition of the adjoint spinor ¥ = y'

M = [,(p3)ge V" ue(p1)] ‘j;” e (pa)aey uz(p2)]

* This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that %;7"uy transforms as a four vector. Writing
JH=1(p3) 1 uc(pr)  Jr =uc(pa)Y uz(p2)

M = —qeqf% showing that M is Lorentz Invariant
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Feynman Rules for QED

|t should be remembered that the expression

M = [t.(p3)ge " ue(p1)]

1Y (1 (pa) gy e (pa)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary - can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

et T @& Propagator factor for each internal line
Y (i.e. each internal virtual particle)
® Dirac Spinor for each external line
e T (i.e. each real incoming or outgoing particle)
& Vertex factor for each vertex
Prof. M.A. Thomson Michaelmas 2011 117

Basic Rules for QED

@ External Lines

( incoming particle u(p) —>

spin 112 4 outgoing particle u(p) —>
incoming antiparticle v(p) —<—o

_ outgoing antiparticle v(p) —<—

_ incoming photon e (p) ANN

spin 1 outgoing photon et (p)” CaVaAVAY

@ Internal Lines (propagators) ig
uv
spin 1 photon - 7 ﬂr\/\/\,v
spin 1/2  fermion (Y qu +m)

q* —m?

®
@ Vertex Factors
spin1/2  fermion (charge -le|)  ieY"

@ Matrix Element —;Af = product of all factors
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e‘i)\g/,m/e— T (p3)[iey*Jue(p:)

T V. T tiz(pa)liey’|us(p2)
—iM = [ﬁe(p3)iey“ue(p1)]%[ﬁr(m)iwvur(pz)]

*Which is the same expression as we obtained previously
€g9. et P2
N\

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
+ The 8uv of the propagator connects the indices at the vertices
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

8a8b
M . -7z
I q* —m3

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

M — [7(
vivi L \

LV

* We now have all the elements to perform proper calculations in QED !
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