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Course Synopsis

Handout 1: Introduction, Decay Rates and Cross Sections
Handout 2: The Dirac Equation and Spin

Handout 3: Interaction by Particle Exchange

Handout 4: Electron — Positron Annihilation

Handout 5: Electron — Proton Scattering

Handout 6: Deep Inelastic Scattering

Handout 7: Symmetries and the Quark Model

Handout 8: QCD and Colour

Handout 9: V-A and the Weak Interaction

Handout 10: Leptonic Weak Interactions

Handout 11: Neutrinos and Neutrino Oscillations

Handout 12: The CKM Matrix and CP Violation

Handout 13: Electroweak Unification and the W and Z
Bosons

Handout 14: Tests of the Standard Model

Handout 15: The Higgs Boson and Beyond

*  Will concentrate on the modern view of particle physics with the emphasis
on how theoretical concepts relate to recent experimental measurements

* Aim: by the end of the course you should have a good understanding of
both aspects of particle physics

Prof. M.A. Thomson Michaelmas 2011

Preliminaries

Web-page: www.hep.phy.cam.ac.uk/~thomson/partlliparticles/
* All course material, old exam questions, corrections, interesting links etc.
* Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:

* | will derive almost all results from first principles (only a few exceptions).

* In places will include some additional theoretical background in non-
examinable appendices at the end of that particular handout.

* Please let me know of any typos: thomson@hep.phy.cam.ac.uk

Books:
* The handouts are fairly complete, however there a number of decent books:

* “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.

* “Introductory High Energy Physics”, Perkins (Cambridge): slightly below
level of the course but well written.

* “Introduction to Elementary Physics”, Griffiths (Wiley): about right level
but doesn’t cover the more recent material.

* “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level
textbook (slightly above level of this course).

Before we start in earnest, a few words on units/notation and a very brief
“Part Il refresher” ...
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Preliminaries: Natural Units

* S.I. UNITS: kg m s are a natural choice for “everyday” objects
e.g. M(Prescott) ~ 250 kg

* not very natural in particle physics
* instead use Natural Units based on the language of particle physics
* From Quantum Mechanics - the unit of action
* From relativity - the speed of light: C
* From Particle Physics - unit of energy: GeV (1 GeV ~ proton rest mass energy)

* Units become (i.e. with the correct dimensions):

Energy GeV Time (GeV/h)~!
Momentum GeV/c Length (GeV/hc)_;
Mass GeV/c? Area (GeV/hc)~

* Simplify algebra by setting: h = C = 1
*Now all quantities expressed in powers of GeV
Energy GeV Time GeV~!

To convert back to S.I. units,

—1
Momentum GeV Length GeV need to restore missing factors
Mass GGV Area Gev_z of h and ¢
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Preliminaries: Heaviside-Lorentz Units

2
e
* Electron charge defined by Force equation: [ — —
4meyr?
- In Heaviside-Lorentz units set | €y = 1
62

and NOW: electric charge il L 1
F= 47l'r2 has dimensions [FL ]2 o [EL]Z - [hC]Z

* Since C:(SOLLO)_%zl ) (Lo =1

Unless otherwise stated, Natural Units are used throughout these
handouts, E> = p?>+m?, P =K, etc.
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Review of The Standard Model

Particle Physics is the study of:

* MATTER: the fundamental constituents of the universe
- the elementary particles

* FORCE: the fundamental forces of nature, i.e. the interactions
between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and
fundamental manner possible

* Current understanding embodied in the STANDARD MODEL:

* Forces between particles due to exchange of particles
» Consistent with all current experimental data !
* But it is just a “model” with many unpredicted parameters,
e.g. particle masses.
* As such it is not the ultimate theory (if such a thing exists), there
are many mysteries.
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Matter in the Standard Model

* In the Standard Model the fundamental “matter” is described by point-like
spin-1/2 fermions

LEPTONS QUARKS

q | miGeV q | m/GeV The masses quoted for the
First e |-1(0.0005|d|-13] 03 masses”, . the sffective.
Generation [ [0 | =0 |u|+23| 03 | st e cories
Second uw|-1] 0106 [s|-1/3| 05
Generation v, | 0 =0 c|+2/3| 1.5
Third v |-1| 1.77 | b |-13 4.5
Generation vy | 0 =~0 t|+2/3| 175

* In the SM there are three generations — the particles in each generation
are copies of each other differing only in mass. (not understood why three).
* The neutrinos are much lighter than all other particles (e.g. v, has m<3 eV)
— we now know that neutrinos have non-zero mass (don’t understand why
so small)
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Forces in the Standard Model

* Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) | JP | m/GeV g
EM (QED) Photon y | 1- 0
Weak Wt/ Z 1- | 80/91
Strong (QCD) | 8 Gluons g | 1- 0
Gravity (?) | Graviton? | 2* 0 8

- Fundamental interaction strength is given by charge g.
* Related to the dimensionless coupling “constant” X

e.g. QED gem = € = VAmaghc
(both gand O are dimensionless,
* In Natural Units =V 4o but g contains a “hidden” 7ic )
* Convenient to express couplings in terms of & which, being

genuinely dimensionless does not depend on the system of
units (this is not true for the numerical value for ¢)
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Standard Model Vertices

* Interaction of gauge bosons with fermions described by SM vertices
* Properties of the gauge bosons and nature of the interaction between
the bosons and fermions determine the properties of the interaction

STRONG EM WEAK CC | WEAK NC
|
q 8s q [T e [T d W u i q 8z q
|
:
Only quarks All charged All fermions : All fermions
Never changes fermions Always changes | Never changes
flavour Never changes flavour I flavour
flavour
o ~ 1 o~ 1/137 Oty jz ~ 1/40
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Feynman Diagrams

* Particle interactions described in terms of Feynman diagrams
e.g. scattering e.g. annihilation
e_ —
e e+ u"'
Y

q q

* IMPORTANT POINTS TO REMEMBER:

*“time” runs from left - right, only in sense that: ¢
+ LHS of diagram is initial state INITIAL FINAL

¢+ RHS of diagram is final state + +
+ Middle is “how it happened” e H
* anti-particle arrows in -ve “time” direction
* Energy, momentum, angular momentum, etc. _
conserved at all interaction vertices e L
* All intermediate particles are “virtual” “time”

i.e. E2 # |p|*+m? (handout 3)
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Special Relativity and 4-Vector Notation

*Will use 4-vector notation withp0 as the time-like component, e.g.

pH = {Eaﬁ} = {Eapx:pyapz} (contravariant)
Pu = guvp” ={E,—p} ={E,—px, —Dy, —p;} (covariant)
with I 0 0 O
_ouv_{10~-1 0 0
Sw=8"=10 0-1 0
0O 0 0-1

*In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.l. quantities formed from 4-vector

scalar products, e.g.

P“Pu =E?— P2 =m? Invariant mass

xpy =Et—pF Phase
* A few words on NOTATION
Four vectors written as either: p” or p

Four vector scalar product: p“qu or p.q
Three vectors written as: p

Quantities evaluated in the centre of mass frame: p*, p* etc.
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Mandelstam s, t and u

* In particle scattering/annihilation there are three particularly useful
Lorentz Invariant quantities: s, t and u 1 > ¢ 2

Y €

* Consider the scattering process | +2 — 3+ 4 /
4

* (Simple) Feynman diagrams can be categorised according to the four-momentum
of the exchanged particle

e— Dl P3_o € Pi P3 e~

e’ pi p3 MU
Y
i
e/ a _ _ - -
P e Thime € €
s-channel t-channel u-channel

*Can define three kinematic variables: s,t and u from the following four vector
scalar products (squared four-momentum of exchanged particle)

s=(p1+p2)?* t=(p1—p3)* u=(p1—ps)*

Prof. M.A. Thomson Michaelmas 2011 13

Example: Mandelstam s, t and u

§ = (pl +P2)27 = (pl _p3)27 U= (pl _p4)2

Note: S+i4+u= m% + m% + m% + mﬁ (Question 1)
* e.g. Centre-of-mass energy, S:
e*  pi p3 M7
Y
e/ p pa U

2 2 = = \2
s=(p1+p2)” = (E1+E2)" — (D1 +P2)
*This is a scalar product of two four-vectors == |orentz Invariant

* Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

pT — (Eikvﬁ*) P2 = (E;,—ﬁ*)
= | s=(E}+E3)?

*Hence \/E is the total energy of collision in the centre-of-mass frame
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From Feynman diagrams to Physics

Particle Physics = Precision Physics
* Particle physics is about building fundamental theories and testing their
predictions against precise experimental data
*Dealing with fundamental particles and can make very precise theoretical
predictions - not complicated by dealing with many-body systems

*Many beautiful experimental measurements
== precise theoretical predictions challenged by precise measurements

*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20t century physics.

Requires understanding of theory and experimental data

* Part Il : Feynman diagrams mainly used to describe how particles interact

* Part lll: ¢ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes

+ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

e Interaction cross sections;
* Particle decay rates;

Prof. M.A. Thomson Michaelmas 2011 15

Cross Sections and Decay Rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics
* Calculate transition rates from Fermi’s Golden Rule

Ty =2n|Ts|°p (Ey)

I's;  is number of transitions per unit time from initial state
|i) to final state (| - not Lorentz Invariant !

Ty  is Transition Matrix Element

s <f‘ﬁl]><J|H|l> H is the i
L perturbing
Tyi = (f|H]i) +j27éi E,—E; T Hamiltonian
p(Ey) is density of final states

* Rates depend on MATRIX ELEMENT and DENSITY OF STATES
A\ J/ - /

~/" ~

the ME contains the fundamental particle physics just kinematics

Prof. M.A. Thomson Michaelmas 2011 16




The first five lectures

* Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: - -
+a— +y— + + €
e q *e(
(e-g—e—q to probe e- -
proton structure) H q q

A Need relativistic calculations of particle decay rates and cross sections:
M|
o = ——— X (phase space
quy < (Phase space)
A Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function

Prof. M.A. Thomson Michaelmas 2011
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Particle Decay Rates

* Consider the two-body decay ) 1
i— 142 1 /é'
N Want tO calculate the decay rate in first order ........................ . .............................
perturbation theory using plane-wave descriptions /
of the particles (Born approximation): 2
— i(p.7—Et >, o
Y1 = Ne (p ) (k7=p.rF as h=1)
— Ne P~

where N is the normalisation and p.x = ptx

For decay rate calculation need to know:

* Wave-function normalisation
* Transition matrix element from perturbation theory,
* Expression for the density of states

All in a Lorentz
Invariant form

* First consider wave-function normalisation
* Previously (e.g. part ll) have used a non-relativistic formulation
* Non-relativistic: normalised to one particle in a cube of sidea

[wy*dV=N?*a*=1 = N?’=1/a’

Prof. M.A. Thomson Michaelmas 2011
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Non-relativistic Phase Space (revision)

* Apply boundary conditions (p = ik ): =
* Wave-function vanishing at box boundaries

= quantised particle momenta: a/-\/\l
__ 27@ny . __ 2mny __27mn
px— ax’py_ a’pz_ aZ a
* Volume of single state in momentum space: Dis a
(%) = &
a Vv
* Normalising to one particle/unit volume gives
number of states in element: d°p = dp.dp,dp, ot
q d3ﬁ><1 d*p 7 Dy
n— ——m—mr N —
@em)? v (27m)3 »
* Therefore density of states in Golden rule: IZ’Z
p(E}) = dn| | dn d|p] with
! dE Ef d|p| dE Ef p=PE
* Integrating over an elemental shell in 5
momentum-space gives 471'19
32 42 p(Er) = 3 X p
(d°p = 4mp*dp) (27)
Prof. M.A. Thomson Michaelmas 2011 19

Dirac 6 Function

* In the relativistic formulation of decay rates and cross sections we will make
use of the Dirac & function: “infinitely narrow spike of unit area”

§(x—a) o /+w5(x—a)dx:1

—00

Joo
| : | 1@8—a)dr= f(a)

a X —o0
* Any function with the above properties can represent §(x)

. 1 _ (i)
e.g. 5()6) = lim ——e \20° (an infinitesimally narrow Gaussian)
0—0+/270o

* In relativistic quantum mechanics delta functions prove extremely useful
for integrals over phase space, e.g. inthedecay ¢ — |1 4+ 2

f S(Ea —E; —EQ)dE and f 53(ﬁa — D1 —ﬁz)d3ﬁ

express energy and momentum conservation

Prof. M.A. Thomson Michaelmas 2011
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* We will soon need an expression for the delta function of a function 3(f(x))
e Start from the definition of a delta function

/ 50y dy—{ if y1 <0<y

0 otherwise

* Now express in terms of ¥ = f(x) where f(x0)=0
and then change variables

2 df . 1 ifx; <xp<xp .
./xl 5(f(x))adx B { 0 otherwise X0

* From properties of the delta function (i.e. here only 5(f(x))
non-zero at xg)

df‘ ng(f(x“ux: f I ifx <'XO < X2
||, Sy | O otherwise ,

. Rearranglng and expressing the RHS as a delta function
XD 1 XD
S(f(x))dx = 7/ 8 (x — xo)dx
»/xl |df/d)€|x0 X1

- | ()=

f()

v
=

v
=

;)
x|, ) (1)
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The Golden Rule revisited

Ly = 2x|T5:|*p (Ef)
* Rewrite the expression for density of states using a delta-function
[dE |, ~J dE
Note : integrating over all final state energies but energy conservation now
taken into account explicitly by delta function
* Hence the golden rule becomes: ['f; = 27:/ |Tf,-|25(E,- —E)dn

the integral is over all “allowed” final states of any energy

 For dn in a two-body decay, only need to consider . 1
one particle : mom. conservation fixes the other 1 o

r 27r/|T|5E —E E)d3 N T
= n———
fi = fi 1= £2 (27)3 ] (2m)3
* However, can include momentum conservation explicitly by integrating over
the momenta of both particles and using another 5-fn

—O6(E —E;)dE since £y = E;

4 2 3= &*py & ph
I'yi=(27) f|Tfi| O(Ei —E1 —E2)0"(pi — p Pz)( ) (27)]
Energ;(cons. Mom. cons.

DenS|ty of states
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Lorentz Invariant Phase Space

* In non-relativistic QM normalise to one particle/unit volume: f 1}/* ydV =1

* When considering relativistic effects, volume contracts by Y = E/m
—_—

= S
a/\/\’ a/\/\l

a a
a a/y
* Particle density therefore increases by Y = E/m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume| [ y™*y'dV = 2FE

* Previouslyused Y/ normalised to 1 particle per unit volume f 11/* ydV =1
* Hence l//’ = (2E)1/2y/ is normalised to 2 per unit volume

* Define Lorentz Invariant Matrix Element, Mﬁ , in terms of the wave-functions
normalised to 2F particles per unit volume

My = (y]. . |H|..W_ ) = (2E|.2E>.2E5...2E, ) /? Ty,

Prof. M.A. Thomson Michaelmas 2011 23
* For the two body decay Mﬁ — <l/f{ ‘/fé |PAI/ | ‘//{>
P 142 = (2E:2E1.2Ey)' (yyyo | A' | ys)

—  (2E;.2E| 2E))'?Ty,
* Now expressing Tfi in terms of Mf,- gives
(2m)*
2E;

435 d3ps

Ty=
/ (27)32E, (27)32E;

/ \Mi|*8(E; — Ey — E2)8° Py — P1 — P2)

Note:

© My; uses relativistically normalised wave-functions. It is Lorentz Invariant

d3ﬁ is the Lorentz Invariant Phase Space for each final state particle

(275)32}5 the factor of 2F arises from the wave-function normalisation
(prove this in Question 2)
© This form of Ffi is simply a rearrangement of the original equation

but the integral is now frame independent (i.e. L.1.)

° Ffi is inversely proportional to E;, the energy of the decaying particle. This is
exactly what one would expect from time dilation (E; = ym).
© Energy and momentum conservation in the delta functions

Prof. M.A. Thomson Michaelmas 2011
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Decay Rate Calculations

(2%)4/ ) 3. = o, &P d’pa
Ty = MPS(E; — E; — E>)83(Fi — pr —
5i= g, | Ml 0(E:i = Ey = E2)87(5i = pz)(27r)32E1 (27)32E;

* Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.o.M. frame is most convenient

*Inthe CoM.frameE;=m; andp;=0 =

1 2 -
U= g | MAl80m—E1 = )8 (51 + 7
« Integrating over P> using the 3-function:
1 d*p)
= Ffi = e E /[ i]'vff” 5\ml—al _E2)4E1E2 2/
now E2 = (m3+|p1|*) since the 3-function imposes Py = — P
- Writing d*p) = p}dp;sin0d0d¢ = pidp dQ o convenience, here

:|p1]is written as p,

1 ‘ prdpdQ
ot L [ (o o ) Hdmae
f T 3on2E, IMyil70 {m mi+pr = fmy E\E;
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« Which can be written 1 2
in the form Uyi = 32 12E; /|Mfi| g(p1)o(f(p1))dp1dQ ()
where g(p1) = 1/(E1E2) = p%(m% +P%)71/2(m% "‘p%)il/z
*
and  f(p1) =mi— (i +p})' 2 = (m3 + p}) 2 . Al
Note: - 5(f(p1)) imposes energy conservation. 1/4 ........
( ) = (0 determines the C.0.M momenta of /
the two decay products 2 p*
ie. f(p1)=0 for p1 =p*

* Eq. (2) can be integrated using the property of ¢ - function derived earlier (eq. (1))

! ] g(p*
08t = gz [ste03ton—pham = R
where p* is the value for which f(p*) =0
« All that remains is to evaluate df/dp;
df Pi P _pp . E+E
dpr — (mE4pH2 (mdE+p)2 T E B ~ YRR
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y 1 E\E,  pi
giving: Iy, = / M2 dQ
K 3272E; M pi(E1+E) E\Ea |, _
1 2| P
— Mys|* | ——— dQ
32m2E; /‘ & rE, -
* Butfrom f(p;) =0, i.e. energy conservation Ei+Ey,=m;
)= / JRERTS
1 327r2E My
In the particle’s rest frame FE; = mi
1 A >
L / My 2dQ 3
= T 3277:2 Myl “ ©)
VALID FOR ALL TWO-BODY DECAYS!
*p* can be obtained from f(p;) =0
(m? —|—p*2)1/2 + (m3 —|—p*2)1/2 =m; (Question 3)
1
- pf = — [(le — (m _‘_mz)Z} [ml2 —(my — mz)2] (now try Questions 4 & 5)
Prof. M.A. Thomson Michaelmas 2011 27

Cross section definition

. . e o Flux = number of
G = no of interactions per unit time per target incident particles/

incident flux unit area/unit time

* The “cross section”, g, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

o — ‘ here @ is the projective area of nucleus

Differential Cross section

or generally

do _— no of particles per sec/per target into dQQ do
dQQ incident flux d_
€A dQ =d(cosB)d¢
e | [do
PS with |0 = 10 dQ

P E’ integrate over all
other particles
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example

* Consider a single particle of type a with velocity, U, traversing a region of area

A containing n,, particles of type b per unit volume (Va + vb)5t
In time &t a particle of type a traverses °
region containing 71 (v, + vp)Adt A .
particles of type b o
o° * Interaction probability obtained from effective
A O] cross-sectional area occupied by the
®e nb(va + vb)ASt particles of type b
ny(vq +vp)AOtC

* Interaction Probability = = npvoto [v=v4+vp]

A
—) Rate per particle of typea = 1,0 &

« Consider volume V, total reaction rate = (npvo).(n,V) = (n,V) (ngv) o
= Nb(PaG

* As anticipated: | Rate =Flux x Number of targets x cross section

Prof. M.A. Thomson Michaelmas 2011
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Cross Section Calculations

. . 3
e C o
onsider scattering process 7 /
1+2—-3+4 1 yé—— 2
V2
« Start from Fermi’s Golden Rule: 4/
&ps &ps
Ffz - (277: /lel| 6(E1 +E; —E3— E4)6 (pl +p2 —P3 _p4) (271_) (275)3
where Tfl- is the transition matrix for a normalisation of 1/unit volume
* Now Rate/Volume = (flux of 1) X (number density of 2) X &
= ni(vi+wv)Xnxo
* For 1 target particle per unit volume Rate = (v1 + VZ)G
c = —Ff i
(vi+w2)
&p3 d&py

c= /\Tﬁ\ S(E\+Ey—E3 — E4) 8 (P1 + pr— B3 — Pa)
V1+V2

ﬁ—lgv_l

“———— | the parts are not Lorentz Invariant| _——

(27)° (27)°

Prof. M.A. Thomson Michaelmas 2011

30




*To obtain a Lorentz Invariant form use wave-functions normalised to2E particles

per unit volume v = (2E)1/2‘I/
* Again define L.I. Matrix element Mﬁ- = (2E1 2E>2F5 2E4)1/2Tﬂ
-2 3>
T [ 28 (0 + B — By — )81+ 5o By — ) S S

u:lzbz(v] +wv)J 2E3 2E,
* The integral is now written in a Lorentz invariant form
* The quantity F = 2E12F,(v; +Vv]) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)
F=4 [(pi‘pzu) — m%m%} 1/2 (see appendix I)
* Consequently cross section is a Lorentz Invariant quantity
Two special cases of Lorentz Invariant Flux:

* Centre-of-Mass Frame * Target (particle 2) at rest
F = 4EE(v+wn) F = 4E1E(vi+w)
= 41:1E2k|p i/E] —i—i ‘*i/Ez) = 4Eimyrv;
= 4|p"|(E1+E2) = 4Eim(|p1|/Er)
= 4|ﬁ*|\/E = 4m2|ﬁ1|
Prof. M.A. Thomson Michaelmas 2011 31

2—2 Body Scattering in C.0.M. Frame

* We will now apply above Lorentz Invariant formula for the 7

interaction cross section to the most common cases used o~ —p
in the course. First consider 2—2 scattering in C.0.M. frame 1 d*' ) 2
o Start from 4 ﬁf
B (27) 2
- 2E\2E> (v +v2)

«Here p1+ P> =0 and E;+E; =/s

d3ps & p
2
= o= |_,*‘\/—/|Mft| S(Vs—E3—E3)8 (B3 + Pa) —— AT

*The integral is exactly the same integral that appeared in the particle decay
calculation but with 771, replaced by \/E

& ps &py
2E3 2E

/lMﬁl2 (E\+E>—E3— Eq)8 (P + pr — P3 — Pa) =

(271:)_2 |ﬁ7| 2 *
= — M,’ dQ
= 4|p;f|¢54¢5 M
c = ‘/|M 2dQ*
64725 | fi
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* In the case of elastic scattering | 5} | = [P} | 1 e e 3

1 2 *
Oclastic — 647r2s/|Mﬁ| dQ

2 + +
B pt 4
* For calculating the total cross-section (which is Lorentz Invariant) the result on
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:
%
o - 17l
6475 ||
because the angles in dQ* = d(cos 0*)d@* refer to the C.0.M frame
* For the last calculation in this section, we need to find a L.I. expression fodo

* Start by expressing dQQ* in terms of Mandelstam t

|M f;|*dQ*

2 . 2
i.e. the square of the four-momentum transfer l=q = <p1 p3>
_ M U
e P3 e

Product of
four-vectors

_ M u therefore L.1.

q" = py —p3
Prof. M.A. Thomson Michaelmas 2011 33

» Want to express d{Q2* in terms of Lorentz Invariant d¢

where ¢ = (p1—p3)* = pi—+p;—2p1.p3 =mi+m;—2p1.p3

¢+ In C.o0.M. frame: X 4 3
p’fﬂ = (E7,0,0,|p7]) /ﬁg('
py = (E;,|P3lsin6*,0,|p5|cos6%) 1 P oL —D3 . 2

Piow = ETES =I5 coser % 2
t = mi+m—E{Ej+2[pj||p}[cos0* 4
giving dt:2|ﬁf|\ﬁ§\d(c059;)d )
4
therefore  dQ" =d(cos0)d¢" = — d)_,*
- 211|735l
p§ 2 * 2 *
hence do = \Mg|°dQ" = M¢i|~do™dt
64ms ﬁﬂ‘ sl 2-647r2s|ﬁﬂ2| ril*do

* Finally, integrating over d¢* (assuming no¢* dependence of|Mﬁ|2 ) gives:

do 1 M,
it edns|prP

|2
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Lorentz Invariant differential cross section

* All quantities in the expression fordc /dr are Lorentz Invariant and

therefore, it applies to any rest frame. It should be noted that |p, |2
is a constant, fixed by energy/momentum conservation

7P = 55— (m -+ m)Jfs — (m —mo)’)

* As an example of how to use the invariant expressiondo /dr
we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E; > m;

E; ’fz e.g. electron or neutrino scattering
2

. s—mp)

In this limit (2 - 8=ma)”

is limi |77 15
do 1 ’
= M —
&~ 16n(s_mpp ! (1 =0)
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2—2 Body Scattering in Lab. Frame

* The other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m| =m3 =0, my=my =M

ea. 1e- e 3

X X 4
* Wish to express the cross section in terms of scattering angle of the e~

dQ =2nd(cos6)
do do dr 1 dt do Integrating

= = —— d
dQ ~ dr dQ ~ 2md(cosH) dr v o8
* The rest is some rather tedious algebra.... start from four-momenta
P1= (E170707E1)7 P2 = (M707070>7 pP3 = (E37E3 Sin9707E3 COSG)) P4 = (E47ﬁ4)
so here t=(p1—p3)2=—2p1.p3 =—2E1E3(1—COSQ)
But from (E,p) conservation pi+ p2> = p3 + p4
and, therefore, can also express { in terms of particles 2 and 4

therefore
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t = (p —]94)2 = 2M? —2p>r.py = 2M? —2ME4

= 2M?—2M(E|+M — E3) = —2M(E| — E3)
Note E1 is a constant (the energy of the incoming particle) so

dr dE;
= oM—
d(cos ) d(cos )
. . . ExM
» Equating the two expressions for f gives E; =
M+E| —E{cosf
2 2
E
SO di = E\M :E12M ﬂ 3
d(cos ) (M+E, —Ejcos6)? E\M M
do 1 _d& do_ 1, Lido_Lido B 1 __ 0
dQ 2md(cosO) dr 2x° M dt wm d& ml6m(s—M?)>" "
using s = (p1+p2)? =M*+2pi.pr = M?> +2ME; Partici! massloss
: 1= :
gives (S —M2> — ZMEI ......................................
2
— M+ In limit m; — 0
dQ ~ 64n2 (ME1 ) My
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In this equation, E; is a function of 4:
E\M
Ey =
M+ E; —E{cosf
2
. do 1 1 )
giving = M i m =0
dQ ~ 64n? (M+E1—E1cos9) My (m1 =0)

General form for 2—2 Body Scattering in Lab. Frame
*The calculation of the differential cross section for the case where 1, can not be
neglected is longer and contains no more “physics” (see appendix ll). It gives:

o _ 1 1 P
dQ  64n2 p1m |ﬁ3|(E1+m2)—E3|ﬁ1‘COSQ

Again there is only one independent variable, 8, which can be seen from
conservation of energy

Ei+my = \/lﬁ3\2+'71§+\/lﬁll“rIﬁz\2—2\ﬁl\|ﬁ310059+m§

My

-~

i.e. |3 is a function of 0 pPA=pP1—P3
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Summary

* Used a Lorentz invariant formulation of Fermi’s Golden Rule to

derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay'

Where p* is a function of particle masses

= / M2 dQ
e sa ) MR o]

* Scattering cross section in C.o.M. frame:

1 2
= M i|~dQ*
64m2s |ﬁ /‘ il
*Invariant differential cross section (valid in all frames):
do 1 2 %12 2
— — M i |p7 | = [s—(m —l—ma) [s = (my —my)?]
dr 64ns|p;<|2| i 4st b
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Summary cont.

* Differential cross section in the lab. frame (112,=0)

do 1 [ E3\* . do 1 1 2
= > |Mfl‘ - = 5 l fli
dQ 64n- \ ME, dQ 64n- \ M+ E| —E;cos0
* Differential cross section in the lab. frame (ml?é 0)
do B 1 . 1 ' |ﬁ3|2 . in/fﬂ,_Iz
- — — — VL
dQ 64x2 |p1|m1 |p3|<E1—|-m2)—E3|p1|COSQ /

with E;+m; = \/]ﬁ3]2+m§+\/\ﬁ1|2+]ﬁ3\2—2|ﬁ1Hﬁ3|cos(9+mﬁ

Summary of the summary:

*Have now dealt with kinematics of particle decays and cross sections

*The fundamental particle physics is in the matrix element
*The above equations are the basis for all calculations that follow

40
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Appendix | : Lorentz Invariant Flux

NON-EXAMINABLE

=Collinear collision: a ) ) b
Va, Pa Vb, Pb
E, Eb

= 4(|PalEb+ |Pp|Ea)
To show this is Lorentz invariant, first consider

Pa-Pb = Pk Pou = EaEp — Pa-Pb = EqEp + | Bal| Db

Giving  F2/16 — (plipou)® = (|BalEb+|5p|Ea)” — (EaEp+ | BallPb])?

|53 |2/z:27|n 12y L F2(158,.12 — 2
[Fal \*=b [Fol /1 a\l bl ~b)
= 2.2 22

= |Pal" M, = £g1M,

= —mgm,

1/2
F = 4[(pkpon)” —momy]
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Appendix Il : general 2—2 Body Scattering in lab frame

NON-EXAMINABLE

p1=(E1,0,0,|ﬁ1|), pQZ(M,O,O,O), p3=(E3,E3Sin9,0,E3COSQ), p4=(E4,ﬁ4)

. do do dr 1 dt do
again = —

dQ  dr dQ  2md(cosH) dr

But now the invariant quantity £:

[ = (pg—p4) —m2+m4 2p2p4—m2+m4 2moEy
= mi4+m3—2mo(E) +my —E3)
dr dE
- ———— =2m S

d(cos ) ? d(cos )

Prof. M.A. Thomson Michaelmas 2011 42




Which gives  do _m dE; do
dQ 7 d(cosB) dt

dE; L d|ps]
2Ey———— =2|p3| —= _
3d(cos 0) |p3’d(cos 0) (All1)
Then equate t=(p1 —p3)2 = (p4 —p2)2 to give

m%+m%—2(E1E3 — |ﬁ1 ||ﬁg|COSQ) =mﬁ+m%—2m2(E1 +m2—E3)
Differentiate wrt. cos @

(v m) S5 ] coso S 515
dcos© dcos6
Using (1) dE; 1511155 AlL2)
d(cosO) |p3|(E1+my) — E3|p1|cosO '
do _mp dEs do _mp dE; L M o2
dQ 7 d(cos8) dt 7 d(cos®) 64ms|pr|2" "
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It is easy to show |P7|\/s = m2|p1]|
do dE3 my o)
= 2. 2= 2|Mfl|
dQ  d(cos®) 64m2>m3|p|
and using (All.2) obtain
do _ 11 2 Ml
dQ 6477:2 pimi |ﬁ3|(E1+m2)—E3|ﬁ1|COSQ fi
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