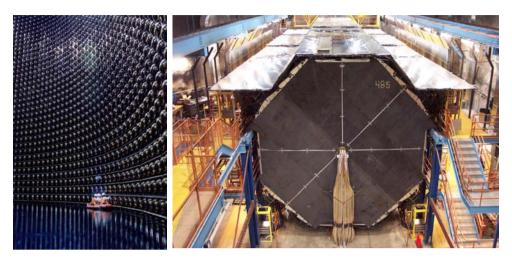


Michaelmas Term 2011 Prof Mark Thomson



Handout 11 : Neutrino Oscillations

Prof. M.A. Thomson

Michaelmas 2011

349

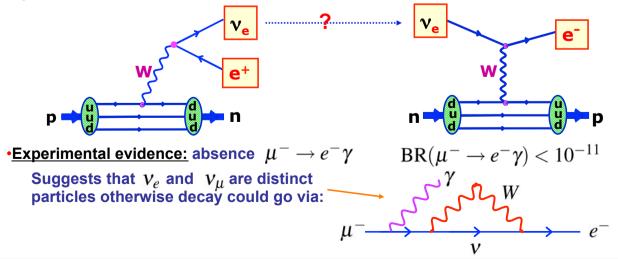
Neutrino Flavours Revisited

★ Never directly observe neutrinos – can only detect them by their weak interactions. Hence by definition V_e is the neutrino state produced along with an electron. Similarly, charged current weak interactions of the state V_e produce an electron

 v_e, v_μ, v_τ = weak eigenstates

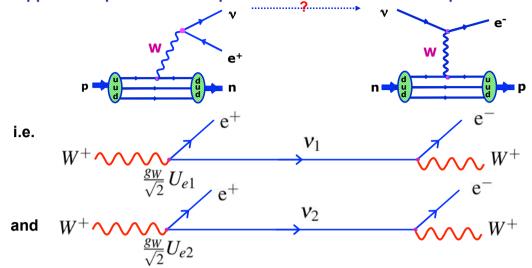
★For many years, assumed that V_e , V_{μ} , V_{τ} were massless fundamental particles •<u>Experimental evidence</u>: neutrinos produced along with an electron always

produced an electron in CC Weak interactions, etc.



Mass Eigenstates and Weak Eigenstates

- ★ The essential feature in understanding the physics of neutrino oscillations is to understand what is meant by weak eigenstates and mass eigenstates V_1, V_2
- *Suppose the process below proceeds via two fundamental particle states



- **\star** Can't know which mass eigenstate (fundamental particle V_1 , V_2) was involved
- **★** In Quantum mechanics treat as a coherent state $\Psi = V_e = U_{e1}V_1 + U_{e2}V_2$
- * V_e represents the wave-function of the coherent state produced along with an electron in the weak interaction, i.e. the weak eigenstate

Prof. M.A. Thomson

Michaelmas 2011

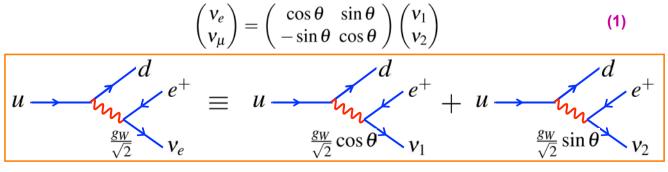
351

Neutrino Oscillations for Two Flavours

- **★** Neutrinos are produced and interact as weak eigenstates, V_e, V_{μ}
- **★** The weak eigenstates as coherent linear combinations of the fundamental "mass eigenstates" v_1, v_2
- ★ The mass eigenstates are the free particle solutions to the wave-equation and will be taken to propagate as plane waves

$$|\mathbf{v}_1(t)\rangle = |\mathbf{v}_1\rangle e^{i\vec{p}_1\cdot\vec{x}-iE_1t} \qquad |\mathbf{v}_2(t)\rangle = |\mathbf{v}_2\rangle e^{i\vec{p}_2\cdot\vec{x}-iE_2t}$$

★ The weak and mass eigenstates are related by the unitary 2x2 matrix



★Equation (1) can be inverted to give

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix}$$
(2)

•Suppose at time t = 0 a neutrino is produced in a pure V_e state, e.g. in a decay $u \rightarrow de^+ v_e$

$$|\psi(0)\rangle = |v_e\rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$$

•Take the z-axis to be along the neutrino direction

•The wave-function evolves according to the time-evolution of the mass eigenstates (free particle solutions to the wave equation)

$$|\Psi(t)\rangle = \cos\theta |v_1\rangle e^{-ip_1 \cdot x} + \sin\theta |v_2\rangle e^{-ip_2 \cdot x}$$

where $p_i.x = E_i t - \vec{p}_i.\vec{x} = E_i t - |\vec{p}_i|z$

• Suppose the neutrino interacts in a detector at a distance L and at a time T

$$\phi_i = p_i \cdot x = E_i T - |\vec{p}_i|L$$

gives
$$|\Psi(L,T)\rangle = \cos\theta |v_1\rangle e^{-i\phi_1} + \sin\theta |v_2\rangle e^{-i\phi_2}$$

★ Expressing the mass eigenstates, $|V_1\rangle$, $|V_2\rangle$, in terms of weak eigenstates (eq 2) $|\psi(L,T)\rangle = \cos\theta(\cos\theta|v_e\rangle - \sin\theta|v_\mu\rangle)e^{-i\phi_1} + \sin\theta(\sin\theta|v_e\rangle + \cos\theta|v_\mu\rangle)e^{-i\phi_2}$

$$|\psi(L,T)\rangle = |v_e\rangle(\cos^2\theta e^{-i\phi_1} + \sin^2\theta e^{-i\phi_2}) + |v_{\mu}\rangle\sin\theta\cos\theta(-e^{-i\phi_1} + e^{-i\phi_2})$$

Prof. M.A. Thomson

Michaelmas 2011

353

- ★ If the masses of $|V_1\rangle$, $|V_2\rangle$ are the same, the mass eigenstates remain in phase, $\phi_1 = \phi_2$, and the state remains the linear combination corresponding to $|V_e\rangle$ and in a weak interaction will produce an electron
- \star If <u>the masses are different</u>, the wave-function no longer remains a pure $|v_e
 angle$

$$P(\mathbf{v}_e \rightarrow \mathbf{v}_\mu) = |\langle \mathbf{v}_\mu | \boldsymbol{\psi}(L,T) \rangle|^2$$

= $\cos^2 \theta \sin^2 \theta (-e^{-i\phi_1} + e^{-i\phi_2})(-e^{+i\phi_1} + e^{+i\phi_2})$
= $\frac{1}{4} \sin^2 2\theta (2 - 2\cos(\phi_1 - \phi_2))$
= $\sin^2 2\theta \sin^2 \left(\frac{\phi_1 - \phi_2}{2}\right)$

★ The treatment of the phase difference

$$\Delta \phi_{12} = \phi_1 - \phi_2 = (E_1 - E_2)T - (|p_1| - |p_2|)L$$

in most text books is dubious. Here we will be more careful...

★ One could assume $|p_1| = |p_2| = p$ in which case

$$\Delta \phi_{12} = (E_1 - E_2)T = \left[(\mathbf{p}^2 + m_1^2)^{1/2} - (\mathbf{p}^2 + m_2^2)^{1/2} \right] L \qquad L \approx (c)T$$

$$\Delta\phi_{12} = p \left[\left(1 + \frac{m_1^2}{p^2} \right)^{1/2} - \left(1 + \frac{m_2^2}{p^2} \right)^{1/2} \right] L \approx \frac{m_1^2 - m_2^2}{2p} L$$

- ★ However we have neglected that fact that for the same momentum, different mass eigenstates will propagate at different velocities and be observed at different times
- **★** The full derivation requires a wave-packet treatment and gives the same result
- ***** Nevertheless it is worth noting that the phase difference can be written

$$\Delta\phi_{12} = (E_1 - E_2)T - \left(\frac{|p_1|^2 - |p_2|^2}{|p_1| + |p_2|}\right)L$$
$$\Delta\phi_{12} = (E_1 - E_2)\left[T - \left(\frac{E_1 + E_2}{|p_1| + |p_2|}\right)L\right] + \left(\frac{m_1^2 - m_2^2}{|p_1| + |p_2|}\right)L$$

 \star The first term on the RHS vanishes if we assume $E_1=E_2$ or $eta_1=eta_2$

in all cases

$$\Delta \phi_{12} = \frac{m_1^2 - m_2^2}{2p} L = \frac{\Delta m^2}{2E} L$$

Prof. M.A. Thomson

Michaelmas 2011

355

★ Hence the two-flavour oscillation probability is:

$$P(\mathbf{v}_e \to \mathbf{v}_\mu) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) \qquad \text{with} \quad \Delta m_{21}^2 = m_2^2 - m_1^2$$

★ The corresponding two-flavour survival probability is:

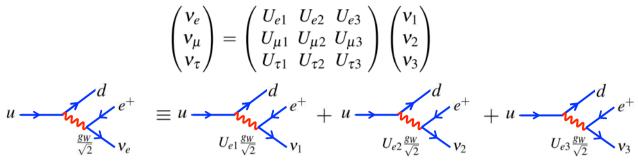
$$P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

•e.g. $\Delta m^2 = 0.003 \text{ eV}^2$, $\sin^2 2\theta = 0.8$, $E_v = 1 \text{ GeV}$
•wavelength
 $\rho(v_e \rightarrow v_e)$
 $\rho(v_e \rightarrow v_e)$

Prof. M.A. Thomson

Neutrino Oscillations for Three Flavours

- ★ It is simple to extend this treatment to three generations of neutrinos.
- ★ In this case we have:



- **★** The 3x3 Unitary matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata matrix, usually abbreviated PMNS
- ★ Note : has to be unitary to conserve probability

•Using
$$U^{\dagger}U = I \Rightarrow U^{-1} = U^{\dagger} = (U^{*})^{T}$$

gives $\begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} U_{e1}^{*} & U_{\mu 1}^{*} & U_{\tau 1}^{*} \\ U_{e2}^{*} & U_{\mu 2}^{*} & U_{\tau 2}^{*} \\ U_{e3}^{*} & U_{\mu 3}^{*} & U_{\tau 3}^{*} \end{pmatrix} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}$

Prof. M.A. Thomson

Michaelmas 2011

357

Unitarity Relations

★The Unitarity of the PMNS matrix gives several useful relations: $UU^{\dagger} = I \Rightarrow$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} U_{e1}^* & U_{\mu 1}^* & U_{\tau 1}^* \\ U_{e2}^* & U_{\mu 2}^* & U_{\tau 2}^* \\ U_{e3}^* & U_{\mu 3}^* & U_{\tau 3}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

gives:

$$U_{e1}U_{e1}^* + U_{e2}U_{e2}^* + U_{e3}U_{e3}^* = 1$$

$$U_{\mu1}U_{\mu1}^* + U_{\mu2}U_{\mu2}^* + U_{\mu3}U_{\mu3}^* = 1$$
(U1)
(U2)

$$U_{\tau 1}U_{\tau 1}^* + U_{\tau 2}U_{\tau 2}^* + U_{\tau 3}U_{\tau 3}^* = 1$$
(U3)

$$U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0$$
 (U4)

$$U_{e1}U_{\tau 1}^* + U_{e2}U_{\tau 2}^* + U_{e3}U_{\tau 3}^* = 0$$
 (U5)

$$U_{\mu 1}U_{\tau 1}^* + U_{\mu 2}U_{\tau 2}^* + U_{\mu 3}U_{\tau 3}^* = 0$$
 (U6)

★To calculate the oscillation probability proceed as before...

•Consider a state which is produced at t = 0 as a $|V_e\rangle$ (i.e. with an electron) $|\Psi(t=0)\rangle = |v_e\rangle = U_{e1}|v_1\rangle + U_{e2}|v_2\rangle + U_{e3}|v_3\rangle$ •The wave-function evolves as:

$$|\Psi(t)\rangle = U_{e1}|v_1\rangle e^{-ip_1.x} + U_{e2}|v_2\rangle e^{-ip_2.x} + U_{e3}|v_3\rangle e^{-ip_3.x}$$

where $p_i.x = E_it - \vec{p}_i.\vec{x} = E_it - |\vec{p}|z$

z axis in direction of propagation

•After a travelling a distance L

$$\begin{split} |\Psi(L)\rangle &= U_{e1}|\nu_1\rangle e^{-i\phi_1} + U_{e2}|\nu_2\rangle e^{-i\phi_2} + U_{e3}|\nu_3\rangle e^{-i\phi_3}\\ \text{where} \quad \phi_i &= p_i.x = E_it - |\vec{p}|L = (E_i - |\vec{p}_i|)L \end{split}$$

•As before we can approximate

$$\phi_i \approx \frac{m_i^2}{2E_i}L$$

•Expressing the mass eigenstates in terms of the weak eigenstates

$$\begin{aligned} |\Psi(L)\rangle &= U_{e1}(U_{e1}^{*}|v_{e}\rangle + U_{\mu1}^{*}|v_{\mu}\rangle + U_{\tau1}^{*}|v_{\tau}\rangle)e^{-i\phi_{1}} \\ &+ U_{e2}(U_{e2}^{*}|v_{e}\rangle + U_{\mu2}^{*}|v_{\mu}\rangle + U_{\tau2}^{*}|v_{\tau}\rangle)e^{-i\phi_{2}} \\ &+ U_{e3}(U_{e3}^{*}|v_{e}\rangle + U_{\mu3}^{*}|v_{\mu}\rangle + U_{\tau3}^{*}|v_{\tau}\rangle)e^{-i\phi_{3}} \end{aligned}$$

•Which can be rearranged to give

$$\begin{aligned} |\Psi(L)\rangle &= (U_{e1}U_{e1}^{*}e^{-i\phi_{1}} + U_{e2}U_{e2}^{*}e^{-i\phi_{2}} + U_{e3}U_{e3}^{*}e^{-i\phi_{3}})|\nu_{e}\rangle \\ &+ (U_{e1}U_{\mu1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\mu2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\mu3}^{*}e^{-i\phi_{3}})|\nu_{\mu}\rangle \\ &+ (U_{e1}U_{\tau1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\tau2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\tau3}^{*}e^{-i\phi_{3}})|\nu_{\tau}\rangle \end{aligned}$$
(3)

Prof. M.A. Thomson

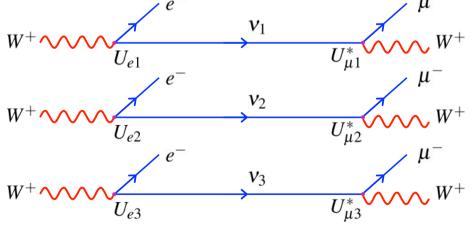
Michaelmas 2011

•From which

$$P(\mathbf{v}_{e} \to \mathbf{v}_{\mu}) = |\langle \mathbf{v}_{\mu} | \boldsymbol{\psi}(L) \rangle|^{2}$$

= $|U_{e1}U_{\mu1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\mu2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\mu3}^{*}e^{-i\phi_{3}}|^{2}$

•The terms in this expression can be represented as:



•Because of the unitarity of the PMNS matrix we have (U4):

$$U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$$

and, consequently, unless the phases of the different components are different, the sum of these three diagrams is zero, i.e., require different neutrino masses for osc.

•Evaluate

$$P(\mathbf{v}_{e} \to \mathbf{v}_{\mu}) = |U_{e1}U_{\mu1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\mu2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\mu3}^{*}e^{-i\phi_{3}}|^{2}$$

using $|z_{1} + z_{2} + z_{3}|^{2} \equiv |z_{1}|^{2} + |z_{2}|^{2} + |z_{3}|^{2} + 2\Re(z_{1}z_{2}^{*} + z_{1}z_{3}^{*} + z_{2}z_{3}^{*})$ (4)

which gives:

$$P(\mathbf{v}_{e} \to \mathbf{v}_{\mu}) = |U_{e1}U_{\mu1}^{*}|^{2} + |U_{e2}U_{\mu2}^{*}|^{2} + |U_{e3}U_{\mu3}^{*}|^{2} +$$

$$2\Re(U_{e1}U_{\mu1}^{*}U_{e2}^{*}U_{\mu2}e^{-i(\phi_{1}-\phi_{2})} + U_{e1}U_{\mu1}^{*}U_{e3}^{*}U_{\mu3}e^{-i(\phi_{1}-\phi_{3})} + U_{e2}U_{\mu2}^{*}U_{e3}^{*}U_{\mu3}e^{-i(\phi_{2}-\phi_{3})})$$
(5)

•This can be simplified by applying identity (4) to |(U4)|²

$$|U_{e1}U_{\mu1}^{*} + U_{e2}U_{\mu2}^{*} + U_{e3}U_{\mu3}^{*}|^{2} = 0$$

$$|U_{e1}U_{\mu1}^{*}|^{2} + |U_{e2}U_{\mu2}^{*}|^{2} + |U_{e3}U_{\mu3}^{*}|^{2} = -2\Re(U_{e1}U_{\mu1}^{*}U_{e2}^{*}U_{\mu2} + U_{e1}U_{\mu1}^{*}U_{e3}^{*}U_{\mu3} + U_{e2}U_{\mu2}^{*}U_{e3}^{*}U_{\mu3})$$

•Substituting into equation (5) gives

$$P(\mathbf{v}_{e} \to \mathbf{v}_{\mu}) = 2\Re\{U_{e1}U_{\mu1}^{*}U_{e2}^{*}U_{\mu2}[e^{-i(\phi_{1}-\phi_{2})}-1]\} + 2\Re\{U_{e1}U_{\mu1}^{*}U_{e3}^{*}U_{\mu3}[e^{-i(\phi_{1}-\phi_{3})}-1]\} + 2\Re\{U_{e2}U_{\mu2}^{*}U_{e3}^{*}U_{\mu3}[e^{-i(\phi_{2}-\phi_{3})}-1]\}$$

$$(6)$$

Prof. M.A. Thomson

Michaelmas 2011

★ This expression for the electron survival probability is obtained from the coefficient for $|v_e\rangle$ in eqn. (3):

$$P(\mathbf{v}_{e} \to \mathbf{v}_{e}) = |\langle \mathbf{v}_{e} | \boldsymbol{\psi}(L) \rangle|^{2}$$

= $|U_{e1}U_{e1}^{*}e^{-i\phi_{1}} + U_{e2}U_{e2}^{*}e^{-i\phi_{2}} + U_{e3}U_{e3}^{*}e^{-i\phi_{3}}|^{2}$

which using the unitarity relation (U1)

$$|U_{e1}U_{e1}^* + U_{e2}U_{e2}^* + U_{e3}U_{e3}^*|^2 = 1$$

can be written

$$P(\mathbf{v}_{e} \to \mathbf{v}_{e}) = 1 + 2|U_{e1}|^{2}|U_{e2}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{2})}-1]\} + 2|U_{e1}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{3})}-1]\} + 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})}-1]\}$$
(7)

$$\begin{aligned} \Re\{e^{-i(\phi_1 - \phi_2)} - 1\} &= \cos(\phi_2 - \phi_1) - 1 \\ &= -2\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) & \text{with } \phi_i \approx \frac{m_i^2}{2E}L \\ &= -2\sin^2\left(\frac{(m_2^2 - m_1^2)L}{4E}\right) & \text{Phase of mass} \\ \text{eigenstate } i \text{ at } z = L \end{aligned}$$

•Define:

$$\Delta_{21} = \frac{(m_2^2 - m_1^2)L}{4E} = \frac{\Delta m_{21}^2 L}{4E} \qquad \text{with} \quad \Delta m_{21}^2 = m_2^2 - m_1^2$$

NOTE: $\Delta_{21} = (\phi_2 - \phi_1)/2$ is a phase difference (i.e. dimensionless)

•Which gives the electron neutrino survival probability

 $P(\mathbf{v}_e \to \mathbf{v}_e) = 1 - 4|U_{e1}|^2 |U_{e2}|^2 \sin^2 \Delta_{21} - 4|U_{e1}|^2 |U_{e3}|^2 \sin^2 \Delta_{31} - 4|U_{e2}|^2 |U_{e3}|^2 \sin^2 \Delta_{32}$

•Similar expressions can be obtained for the muon and tau neutrino survival probabilities for muon and tau neutrinos.

★ Note that since we only have three neutrino generations there are only two independent mass-squared differences, i.e.

$$m_3^2 - m_1^2 = (m_3^2 - m_2^2) + (m_2^2 - m_1^2)$$

and in the above equation only two of the Δ_{ij} are independent

★All expressions are in Natural Units, conversion to more useful units here gives:

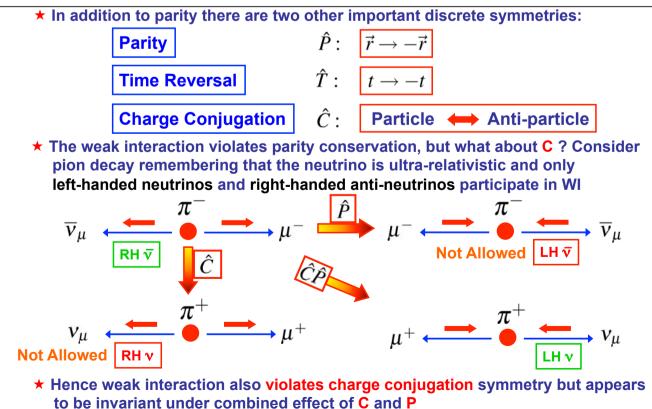
$$\Delta_{21} = 1.27 \frac{\Delta m_{21}^2 (\mathrm{eV}^2) L(\mathrm{km})}{E(\mathrm{GeV})} \quad \text{and} \quad \lambda_{\mathrm{osc}}(\mathrm{km}) = 2.47 \frac{E(\mathrm{GeV})}{\Delta m^2 (\mathrm{eV}^2)}$$

Prof. M.A. Thomson

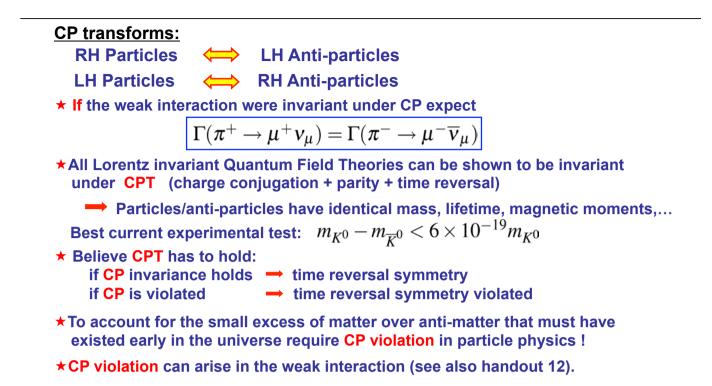
Michaelmas 2011

363

CP and CPT in the Weak Interaction



Prof. M.A. Thomson



Prof. M.A. Thomson

Michaelmas 2011

365

CP and T Violation in Neutrino Oscillations

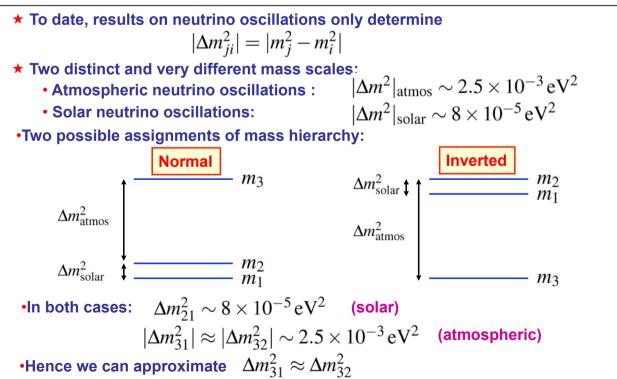
Previously derived the optimized the optized the optimized the optimized the optimized the optimized the opti	osci	llation probability for $ u_e ightarrow u_\mu $	
$P(oldsymbol{v}_e ightarrow oldsymbol{ u}_\mu)$	=	$2\Re\{U_{e1}U_{\mu1}^*U_{e2}^*U_{\mu2}[e^{-\iota(\phi_1-\phi_2)}-1]\}$	
	+	$2\Re\{U_{e1}U_{\mu1}^*U_{e3}^*U_{\mu3}[e^{-i(\phi_1-\phi_3)}-1]\}$	
	+	$2\Re\{U_{e2}U_{\mu2}^*U_{e3}^*U_{\mu3}[e^{-i(\phi_2-\phi_3)}-1]\}$	
 The oscillation probability by simply exchanging f 		or $oldsymbol{ u}_{\mu} o oldsymbol{ u}_{e}$ can be obtained in the same man labels $(e) \leftrightarrow (\mu)$	ner or
$P(u_{\mu} ightarrow u_{e})$	=	$2\Re\{U_{\mu 1}U_{e1}^{*}U_{\mu 2}^{*}U_{e2}[e^{-i(\phi_{1}-\phi_{2})}-1]\}$	
	+	$2\Re\{U_{\mu 1}U_{e 1}^{*}U_{\mu 3}^{*}U_{e 3}[e^{-i(\phi_{1}-\phi_{3})}-1]\}$	(8)
	+	$2\Re\{U_{\mu2}U_{e2}^*U_{\mu3}^*U_{e3}[e^{-i(\phi_2-\phi_3)}-1]\}$	
		e PMNS matrix are real (see note below)	
P((v_e)	$ ightarrow oldsymbol{ u}_{\mu}) eq P(oldsymbol{v}_{\mu} ightarrow oldsymbol{v}_{e})$	(9)
•If any of the elements	of	the PMNS matrix are complex, neutrino oscillati	ons

•If any of the elements of the PMNS matrix are complex, neutrino oscillations are not invariant under time reversal $t \rightarrow -t$

<u>NOTE:</u> can multiply entire PMNS matrix by a complex phase without changing the oscillation prob. T is violated if one of the elements has a different complex phase than the others

 Consider the effects 	of T, CP and CPT on neut	rino oscillations
CP $v_e ightarrow v_\mu$	$\begin{array}{ccc} \hat{T} & \mathbf{V}_{\mu} \to \mathbf{V}_{e} \\ \frac{\hat{C}\hat{P}}{\longrightarrow} & \overline{\mathbf{V}}_{e} \to \overline{\mathbf{V}}_{\mu} & \longleftarrow \\ \frac{\hat{C}\hat{P}\hat{T}}{\longrightarrow} & \overline{\mathbf{V}}_{\mu} \to \overline{\mathbf{V}}_{e} \end{array}$	Note C alone is not sufficient as it transforms LH neutrinos into LH anti-neutrinos (not involved in Weak Interaction)
•If the weak interacti	ons is invariant under CP	т
	$P(\mathbf{v}_e \to \mathbf{v}_\mu) = P(\overline{\mathbf{v}}_\mu)$	$_{ m L} ightarrow \overline{ u}_{e})$
and similarly	$P(\nu_{\mu} \to \nu_{e}) = P(\overline{\nu}_{e}$	$ ightarrow \overline{v}_{\mu}$) (10)
•If the PMNS matrix i	s not purely real, then (9)	
	$P(v_e \rightarrow v_\mu) \neq P(v_\mu)$	$_{\iota} ightarrow \mathcal{V}_{e})$
and from (10)	$P(\mathbf{v}_e \rightarrow \mathbf{v}_\mu) \neq P(\overline{\mathbf{v}}_e)$	$ ightarrow \overline{oldsymbol{ u}}_{\mu})$
★Hence unless the	PMNS matrix is real, CP is	s violated in neutrino oscillations!
investigate CP viol	ation in neutrino oscillation ent experimental sensitiv	are being considered as a way to ons. However, CP violating effects are ity. In the following discussion we will (question 22)
Prof. M.A. Thomson	Michaelmas 201	367

Neutrino Mass Hierarchy



Three Flavour Oscillations Neglecting CP Violation

•Neglecting CP violation considerably simplifies the algebra of three flavour neutrino oscillations. Taking the PMNS matrix to be real, equation (6) becomes:

$$P(\mathbf{v}_{e} \to \mathbf{v}_{\mu}) = -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2}\sin^{2}\Delta_{21} - 4U_{e1}U_{\mu 1}U_{e3}U_{\mu 3}\sin^{2}\Delta_{31} - 4U_{e2}U_{\mu 2}U_{e3}U_{\mu 3}\sin^{2}\Delta_{32}$$

with $\Delta_{ji} = \frac{(m_{j}^{2} - m_{i}^{2})L}{4E} = \frac{\Delta m_{ji}^{2}L}{4E}$

•Using: $\Delta_{31}pprox\Delta_{32}$ (see p. 365)

$$P(\mathbf{v}_e \to \mathbf{v}_\mu) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2}\sin^2\Delta_{21} - 4(U_{e1}U_{\mu 1} + U_{e2}U_{\mu 2})U_{e3}U_{\mu 3}\sin^2\Delta_{32}$$

•Which can be simplified using (U4) $U_{e1}U_{\mu1}^* + U_{e2}U_{\mu2}^* + U_{e3}U_{\mu3}^* = 0$ $P(v_e \rightarrow v_\mu) \approx -4U_{e1}U_{\mu1}U_{e2}U_{\mu2}\sin^2\Delta_{21} + 4U_{e3}^2U_{\mu3}^2\sin^2\Delta_{32}$

Can apply
$$\Delta_{31} \approx \Delta_{32}$$
 to the expression for electron neutrino survival probability
 $P(v_e \rightarrow v_e) = 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4U_{e1}^2 U_{e3}^2 \sin^2 \Delta_{31} - 4U_{e2}^2 U_{e3}^2 \sin^2 \Delta_{32}$
 $\approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(U_{e1}^2 + U_{e2}^2) U_{e3}^2 \sin^2 \Delta_{32}$

•Which can be simplified using (U1) $U_{e1}^2 + U_{e2}^2 + U_{e3}^2 = 1$

$$\Rightarrow P(\mathbf{v}_e \to \mathbf{v}_e) \approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(1 - U_{e3}^2) U_{e3}^2 \sin^2 \Delta_{32}$$

Prof. M.A. Thomson

369

★ Neglecting CP violation (i.e. taking the PMNS matrix to be real) and making the approximation that $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ obtain the following expressions for neutrino oscillation probabilities:

$$P(\mathbf{v}_e \to \mathbf{v}_e) \approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(1 - U_{e3}^2) U_{e3}^2 \sin^2 \Delta_{32}$$
(11)

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - 4U_{\mu 1}^{2}U_{\mu 2}^{2}\sin^{2}\Delta_{21} - 4(1 - U_{\mu 3}^{2})U_{\mu 3}^{2}\sin^{2}\Delta_{32}$$
(12)

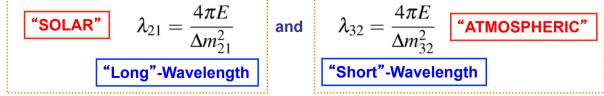
$$P(\mathbf{v}_{\tau} \to \mathbf{v}_{\tau}) \approx 1 - 4U_{\tau 1}^2 U_{\tau 2}^2 \sin^2 \Delta_{21} - 4(1 - U_{\tau 3}^2) U_{\tau 3}^2 \sin^2 \Delta_{32}$$
(13)

$$P(\mathbf{v}_e \to \mathbf{v}_\mu) = P(\mathbf{v}_\mu \to \mathbf{v}_e) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2}\sin^2\Delta_{21} + 4U_{e3}^2U_{\mu 3}^2\sin^2\Delta_{32}$$
(14)

$$\frac{P(v_e \to v_{\tau}) = P(v_{\tau} \to v_e) \approx -4U_{e1}U_{\tau 1}U_{e2}U_{\tau 2}\sin^2\Delta_{21} + 4U_{e3}^2U_{\tau 3}^2\sin^2\Delta_{32}}{P(v_e \to v_e) \approx -4U_{e1}U_{e1}U_{e2}U_{\tau 2}\sin^2\Delta_{21} + 4U_{e3}^2U_{\tau 3}^2\sin^2\Delta_{32}}$$
(15)

$$P(\nu_{\mu} \to \nu_{\tau}) = P(\nu_{\tau} \to \nu_{\mu}) \approx -4U_{\mu 1}U_{\tau 1}U_{\mu 2}U_{\tau 2}\sin^{2}\Delta_{21} + 4U_{\mu 3}^{2}U_{\tau 3}^{2}\sin^{2}\Delta_{32}$$
(16)

★ The wavelengths associated with $\sin^2 \Delta_{21}$ and $\sin^2 \Delta_{32}$ are:



PMNS Matrix

★ The PMNS matrix is usually expressed in terms of 3 rotation angles θ_{12} , θ_{23} , θ_{13} and a complex phase δ , using the notation $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$
$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Dominates: "Atmospheric" "Solar"
• Writing this out in full:
$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$
★ There are six <u>SM parameters</u> that can be measured in v oscillation experiments
$ \Delta m_{21} ^2 = m_2^2 - m_1^2 $ $ m{ heta}_{12}$ Solar and reactor neutrino experiments
$ \Delta m_{32} ^2 = m_3^2 - m_2^2 $ $ heta_{23}$ Atmospheric and beam neutrino experiments
θ_{13} Reactor neutrino experiments + future beam
δ Future beam experiments
Prof. M.A. Thomson Michaelmas 2011 37

Neutrino Experiments

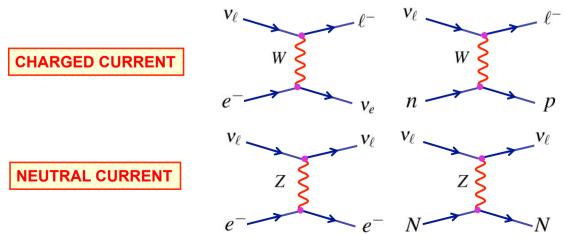
•Before discussing current experimental data, need to consider how neutrinos interact in matter (i.e. our detectors)

Two processes:

- Charged current (CC) interactions (via a W-boson) ⇒ charged lepton
- Neutral current (NC) interactions (via a Z-boson)

Two possible "targets": can have neutrino interactions with

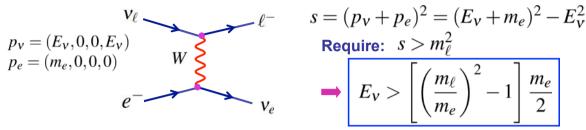
- atomic electrons
- nucleons within the nucleus



Neutrino Interaction Thresholds

- ★ Neutrino detection method depends on the neutrino energy and (weak) flavour •Neutrinos from the sun and nuclear reactions have $E_V \sim 1 \,\text{MeV}$ •Atmospheric neutrinos have $E_V \sim 1 \,\text{GeV}$
- *These energies are relatively low and not all interactions are kinematically allowed, i.e. there is a threshold energy before an interaction can occur. Require sufficient energy in the centre-of-mass frame to produce the final state particles

• Charged current interactions on atomic electrons (in laboratory frame)



•Putting in the numbers, for CC interactions with atomic electrons require $E_{\nu_e} > 0$ $E_{\nu_{\mu}} > 11 \,\text{GeV}$ $E_{\nu_{\tau}} > 3090 \,\text{GeV}$

High energy thresholds compared to typical energies considered here

Prof. M.A. Thomson

Michaelmas 2011

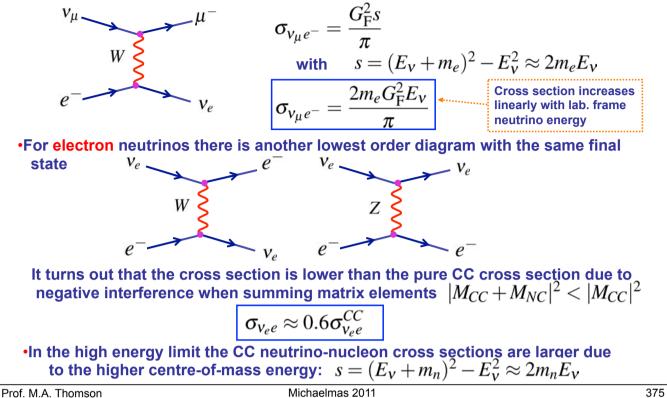
373

Charged current interactions on nucleons (in lab. frame) $v_{\ell} \qquad \ell^{-} \qquad s = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ Require: $s > (m_{\ell} + m_{p})^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} = (E_{\nu} + m_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} - E_{\nu}^{2}$ $k = (p_{\nu} + p_{n})^{2} - E_{\nu}^{2}$

•For CC interactions from neutrons require $E_{\nu_e} > 0$ $E_{\nu_{\mu}} > 110 \,\mathrm{MeV}$ $E_{\nu_{\tau}} > 3.5 \,\mathrm{GeV}$

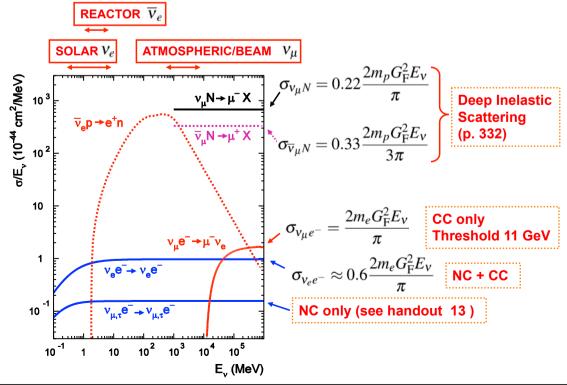
- ★ Electron neutrinos from the sun and nuclear reactors $E_{\nu} \sim 1 \,\text{MeV}$ which oscillate into muon or tau neutrinos cannot interact via charged current interactions "they effectively disappear"
- ★ Atmospheric muon neutrinos $E_{\nu} \sim 1 \,\text{GeV}$ which oscillate into tau neutrinos cannot interact via charged current interactions "disappear"

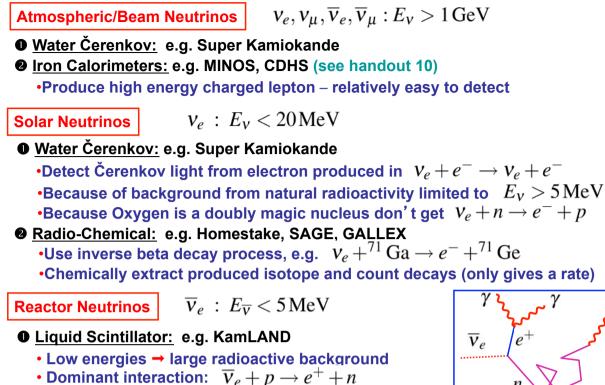
•To date, most experimental signatures for neutrino oscillation are a deficit of neutrino interactions (with the exception of SNO) because below threshold for produce lepton of different flavour from original neutrino



Neutrino Detection

★ The detector technology/interaction process depends on type of neutrino and energy





• Prompt positron annihilation signal + delayed signal from *n* (space/time correlation reduces background)

• electrons produced by photons excite scintillator which produces light

Prof. M.A. Thomson

Michaelmas 2011

377

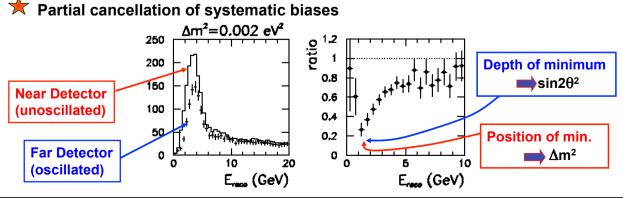
~100us

1) Long Baseline Neutrino Experiments

- Initial studies of neutrino oscillations from atmospheric and solar neutrinos
 atmospheric neutrinos discussed in examinable appendix
- Emphasis of neutrino research now on neutrino beam experiments
- Allows the physicist to take control design experiment with specific goals
- In the last few years, long baseline neutrino oscillation experiments have started taking data: K2K, MINOS, CNGS, T2K

Basic Idea:

- ★ Intense neutrino beam
- ★ Two detectors: one close to beam the other hundreds of km away
- Measure ratio of the neutrino energy spectrum in far detector (oscillated) to that in the near detector (unoscillated)



MINOS

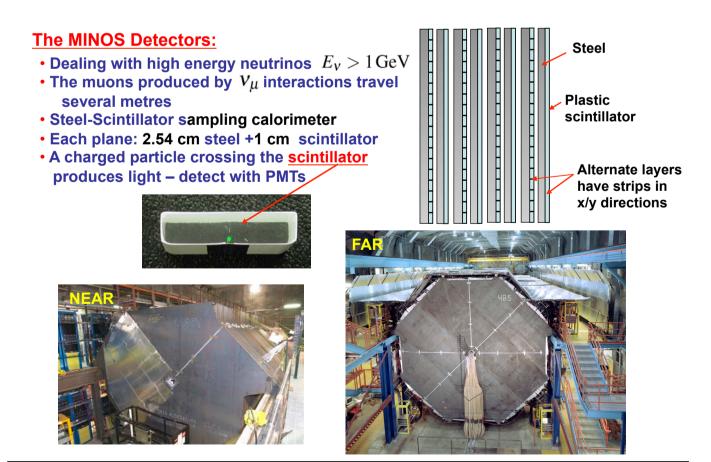
- •120 GeV protons extracted from the MAIN INJECTOR at Fermilab (see p. 271)
- 2.5x10¹³ protons per pulse hit target \implies very intense beam 0.3 MW on target

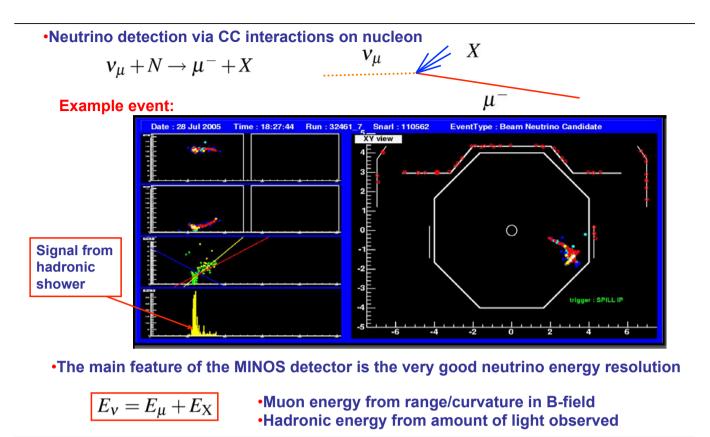
Two detectors:

Prof. M.A. Thomson

Michaelmas 2011

379





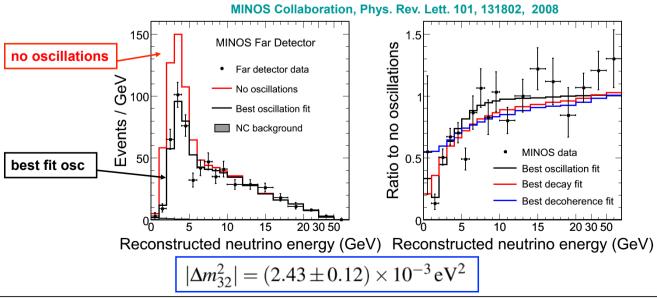
```
Prof. M.A. Thomson
```

Michaelmas 2011

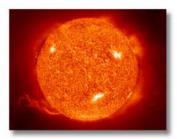
381

MINOS Results

- For the MINOS experiment L is fixed and observe oscillations as function of E_V For $|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \, {\rm eV}^2$ first oscillation minimum at $E_V = 1.5 \, {\rm GeV}$
- To a very good approximation can use two flavour formula as oscillations corresponding to $|\Delta m_{21}^2| \sim 8 \times 10^{-5} \,\mathrm{eV}^2$ occur at $E_v = 50 \,\mathrm{MeV}$, beam contains very few neutrinos at this energy + well below detection threshold

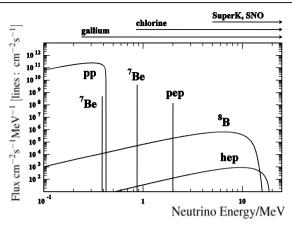


2) Solar Neutrinos



•The Sun is powered by the weak interaction – producing a very large flux of electron neutrinos

$$2 \times 10^{38} v_e \,\mathrm{s}^{-1}$$



•Several different nuclear reactions in the sun ⇒complex neutrino energy spectrum

$$\frac{p+p \rightarrow d+e^++v_e}{^{8}B \rightarrow ^{8}Be^*+e^++v_e} \quad E_{v} < 0.5 \,\mathrm{MeV}$$

 $p + e^{-} + p \rightarrow d + v_{e}$ $^{7}Be + e^{-} \rightarrow ^{7}Li + v_{e}$ $^{3}He + p \rightarrow ^{4}He + e^{+} + v_{e}$

•All experiments saw a deficit of electron neutrinos compared to experimental prediction – the SOLAR NEUTRINO PROBLEM

• e.g. Super Kamiokande

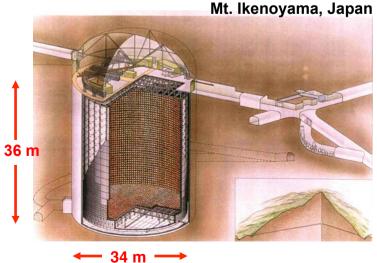
```
Prof. M.A. Thomson
```

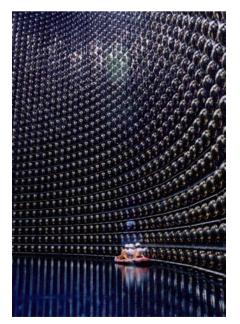
Michaelmas 2011

383

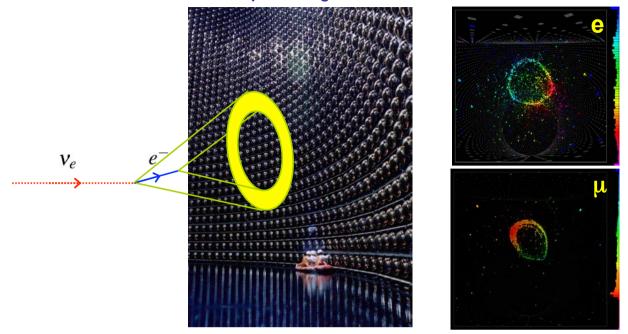
Solar Neutrinos I: Super Kamiokande

- 50000 ton water Čerenkov detector
- Water viewed by 11146 Photo-multiplier tubes
- Deep underground to filter out cosmic rays otherwise difficult to detect rare neutrino interactions





•Detect neutrinos by observing Čerenkov radiation from charged particles which travel faster than speed of light in water *c/n*

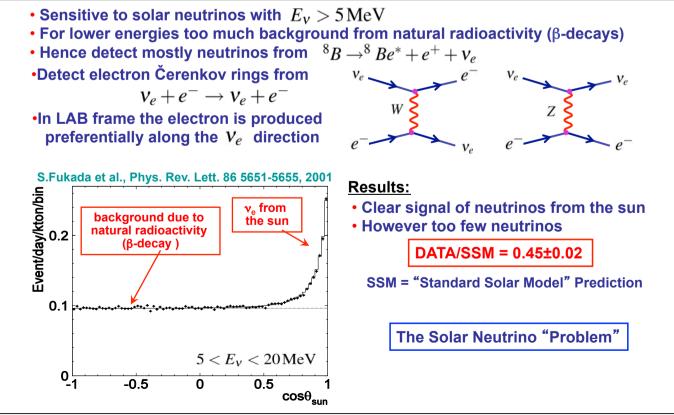


•Can distinguish electrons from muons from pattern of light – muons produce clean rings whereas electrons produce more diffuse "fuzzy" rings

Prof. M.A. Thomson

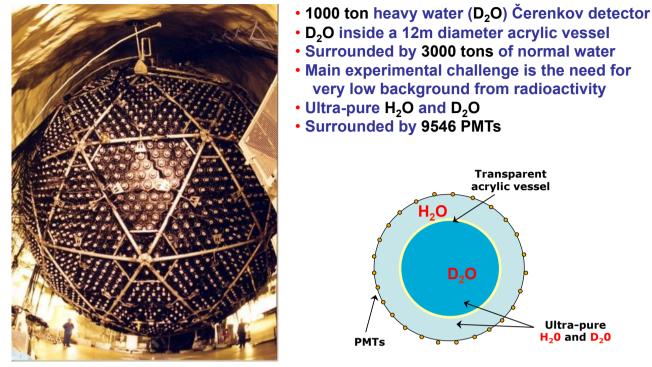
Michaelmas 2011

385



Solar Neutrinos II: SNO

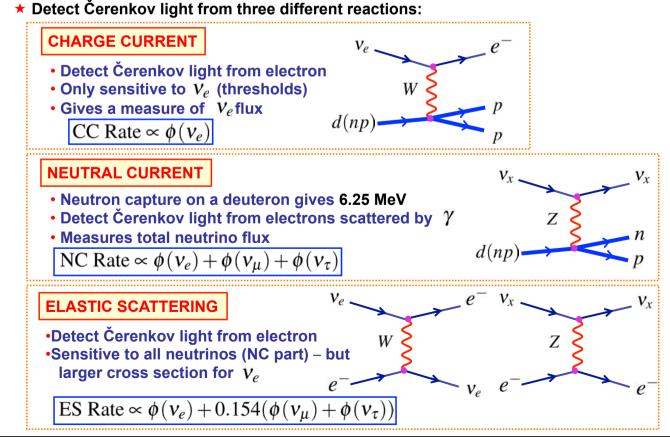
•<u>S</u>udbury <u>N</u>eutrino <u>O</u>bservatory located in a deep mine in Ontario, Canada



Prof. M.A. Thomson

Michaelmas 2011

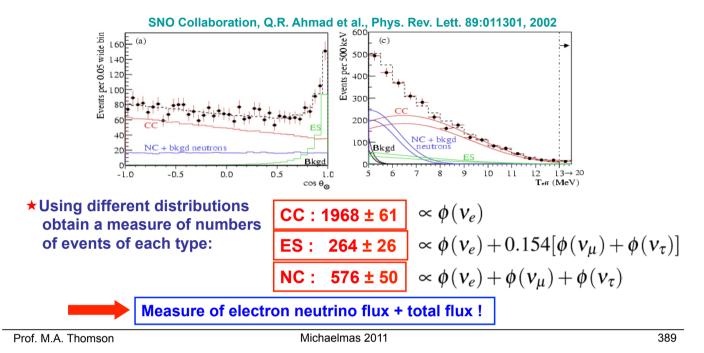
```
387
```



Prof. M.A. Thomson

★ Experimentally can determine rates for different interactions from:

- angle with respect to sun: electrons from ES point back to sun
- energy: NC events have lower energy 6.25 MeV photon from neutron capture
- radius from centre of detector: gives a measure of background from neutrons



SNO

φ_{ES}

 $[\phi(
u_{\mu}) + \phi(
u_{ au})] / 10^6 \, {
m cm^{-2} \, s^{-1}}$

6

3

2

٥

0

1

SNO

φ_{cc}

2

only)

NC constrains

total flux)

SSM

5

 $\phi(v_e)/10^6 \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

SNO NC

3

- Using known cross sections can convert observed numbers of events into fluxes
 - ★ The different processes impose different constraints
 - ★ Where constraints meet gives separate measurements of V_e and $V_{\mu} + V_{\tau}$ fluxes

SNO Results: $\phi(v_e) = (1.8 \pm 0.1) \times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}$

$$\phi(\mathbf{v}_{\mu}) + \phi(\mathbf{v}_{\tau}) = (3.4 \pm 0.6) \times 10^{-6} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

SSM Prediction:

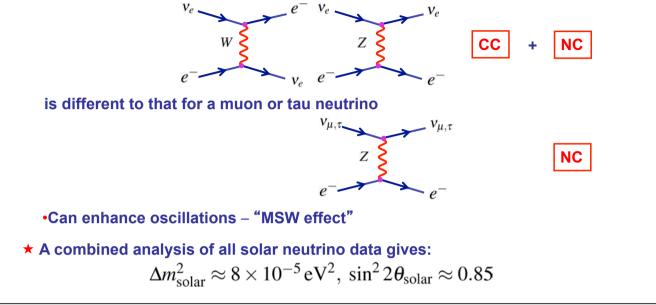
 $\phi(v_e) = 5.1 \times 10^{-6} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

•Clear evidence for a flux of V_{μ} and/or V_{τ} from the sun •Total neutrino flux is consistent with expectation from SSM •Clear evidence of $V_e \rightarrow V_{\mu}$ and/or $V_e \rightarrow V_{\tau}$ neutrino transitions SNO Collaboration, Q.R. Ahmad Phys. Rev. Lett. 89:011301, 2002

t et al.,

Interpretation of Solar Neutrino Data

- The interpretation of the solar neutrino data is complicated by MATTER EFFECTS
 The quantitative treatment is non-trivial and is not given here
 - Basic idea is that as a neutrino leaves the sun it crosses a region of high electron density
 - The coherent forward scattering process ($V_e \rightarrow V_{e}$) for an electron neutrino



Prof. M.A. Thomson

Michaelmas 2011

391

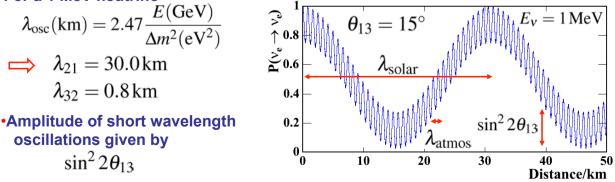
3) Reactor Experiments

•To explain reactor neutrino experiments we need the full three neutrino expression for the electron neutrino survival probability (11) which depends on U_{e1}, U_{e2}, U_{e3} •Substituting these PMNS matrix elements in Equation (11):

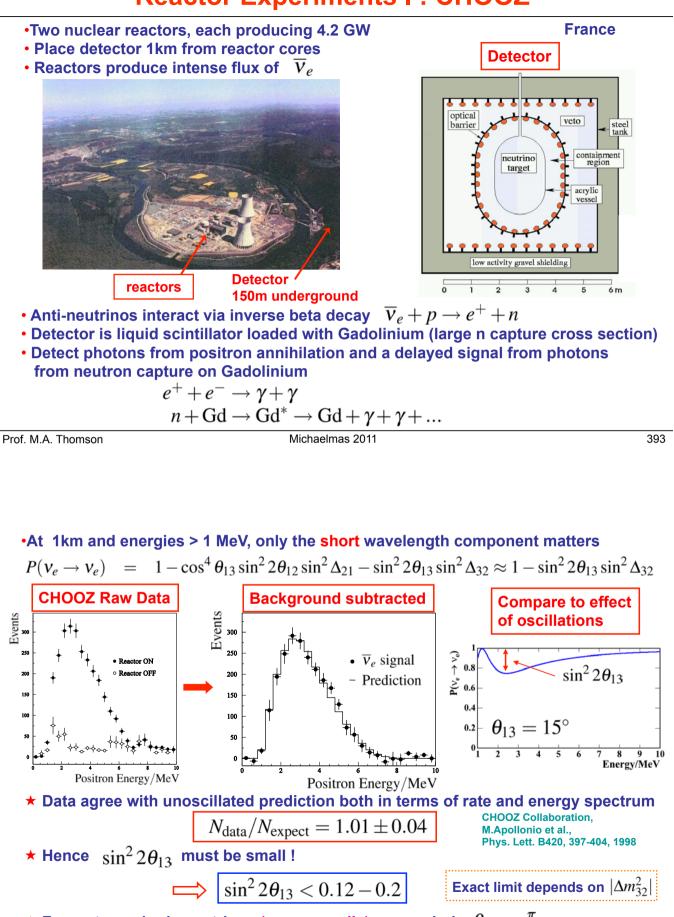
$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{e}) \approx 1 - 4U_{e1}^{2}U_{e2}^{2}\sin^{2}\Delta_{21} - 4(1 - U_{e3}^{2})U_{e3}^{2}\sin^{2}\Delta_{32}$$

= $1 - 4(c_{12}c_{13})^{2}(s_{12}c_{13})^{2}\sin^{2}\Delta_{21} - 4(1 - s_{13}^{2})s_{13}^{2}\sin^{2}\Delta_{32}$
= $1 - c_{13}^{4}(2s_{12}c_{12})^{2}\sin^{2}\Delta_{21} - (2c_{13}s_{13})^{2}\sin^{2}\Delta_{32}$
= $1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} - \sin^{2}2\theta_{13}\sin^{2}\Delta_{32}$

•Contributions with short wavelength (atmospheric) and long wavelength (solar) •For a 1 MeV neutrino



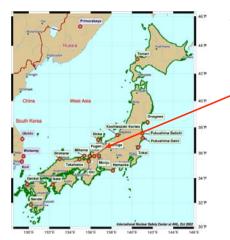
Reactor Experiments I : CHOOZ



★ From atmospheric neutrinos (see appendix) can exclude $heta_{13} \sim rac{\pi}{2}$

• Hence the CHOOZ limit: $\sin^2 2 heta_{13} < 0.2$ can be interpreted as $\sin^2 heta_{13} < 0.05$

Reactor Experiments II : KamLAND



Detector located in same mine as Super Kamiokande

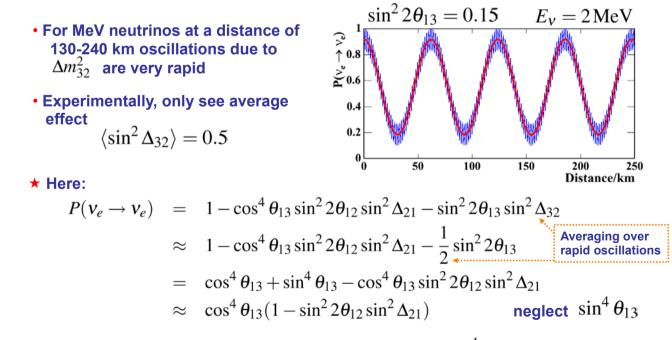
18m

- 70 GW from nuclear power (7% of World total) from reactors within 130-240 km
- Liquid scintillator detector, 1789 PMTs
- Detection via inverse beta decay: $v_e + p \rightarrow e^+ + n$ Followed by $e^+ + e^- \rightarrow \gamma + \gamma$ prompt $n + p \rightarrow d + \gamma (2.2 \,\mathrm{MeV})$ delayed

Prof. M.A. Thomson

Michaelmas 2011

395

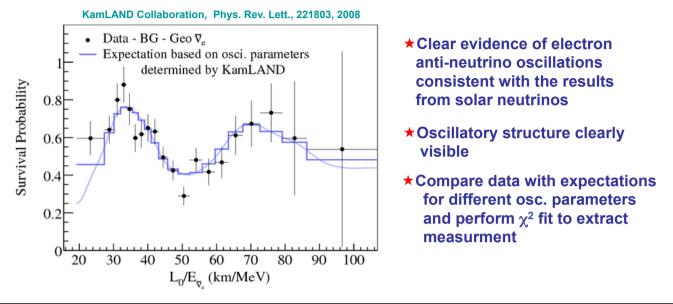


- Obtain two-flavour oscillation formula multiplied by $\cos^4 heta_{13}$
- From CHOOZ $\cos^4 \theta_{13} > 0.9$

(Try Question 21)

KamLAND RESULTS:

Observe: 1609 events **Expect:** 2179±89 events (if no oscillations)



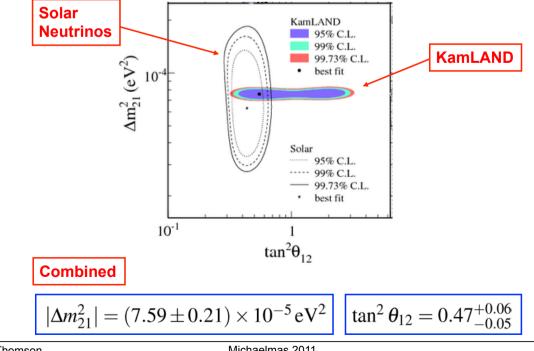
Prof. M.A. Thomson

Michaelmas 2011

397

Combined Solar Neutrino and KamLAND Results

- **★** KamLAND data provides strong constraints on $|\Delta m^2_{21}|$
- \star Solar neutrino data (especially SNO) provides a strong constraint on $\, heta_{12}$



STOP Press

- \star In past few months, increasing evidence for non-zero value of non-zero $heta_{13}$
 - T2K: $V_{\mu} \rightarrow V_{e}$ appearance (2.5 σ)

[Cambridge PhD work]

• MINOS: $V_{\mu} \rightarrow V_{e}$ appearance (2 σ) • Double-CHOOZ: \overline{V}_{e} disappearance (2 σ)

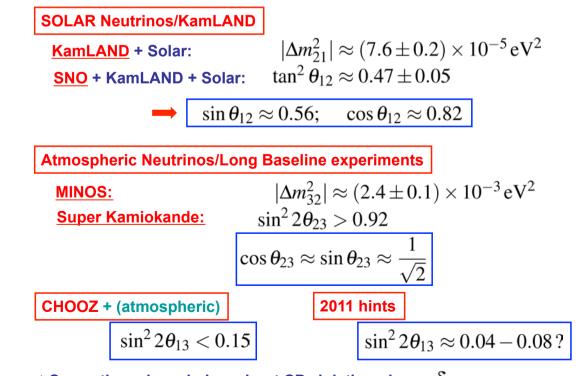
$$\sin^2 2\theta_{13} \approx 0.04 - 0.08$$
?

Prof. M.A. Thomson

Michaelmas 2011

399

Summary of Current Knowledge



★Currently no knowledge about CP violating phase $\,\delta\,$

• Regardless of uncertainty in $heta_{13}$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \approx \begin{pmatrix} c_{12} & s_{12} & ? \\ -s_{12}c_{23} & c_{12}c_{23} & s_{23} \\ s_{12}s_{23} & -c_{12}s_{23} & c_{23} \end{pmatrix}$$

•For the approximate values of the mixing angles on the previous page obtain:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \approx \begin{pmatrix} 0.85 & 0.53 & 0.1e^{i\delta}? \\ -0.37 & 0.60 & 0.71 \\ 0.37 & -0.60 & 0.71 \end{pmatrix}$$

★Have approximate expressions for mass eigenstates in terms of weak eigenstates:

Prof. M.A. Thomson

Michaelmas 2011

401

Final Words: Neutrino Masses

Neutrino oscillations require non-zero neutrino masses

• But only determine mass-squared differences – not the masses themselves

• No direct measure of neutrino mass – only mass limits:

 $m_{\nu}(e) < 2 \,\mathrm{eV}; \quad m_{\nu}(\mu) < 0.17 \,\mathrm{MeV}; \quad m_{\nu}(\tau) < 18.2 \,\mathrm{MeV}$

Note the e, μ, τ refer to charged lepton flavour in the experiment, e.g. $m_v(e) < 2 \, {
m eV}$ refers to the limit from tritium beta-decay

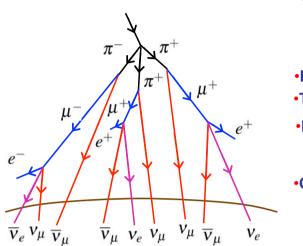
Also from cosmological evolution infer that the sum

$$\sum_i m_{v_i} < \text{few eV}$$

- ★ 10 years ago assumed massless neutrinos + hints that neutrinos might oscillate !
- **★** Now, know a great deal about massive neutrinos
- **★** But many unknowns: $heta_{13}, \delta$, mass hierarchy, absolute values of neutrino masses
- **★** Measurements of these SM parameters is the focus of the next generation of expts.

Examinable Appendix: Atmospheric Neutrinos

- High energy cosmic rays (up to 10²⁰ eV) interact in the upper part of the Earth's atmosphere
- The cosmic rays (~86% protons, 11% He Nuclei, ~1% heavier nuclei, 2% electrons)
 mostly interact hadronically giving showers of mesons (mainly pions)



•Neutrinos produced by: $\pi^+ \rightarrow \mu^+ \nu_\mu \qquad \pi^- \rightarrow \mu^- \overline{\nu}_\mu$ $\downarrow e^+ \nu_e \overline{\nu}_\mu \qquad \downarrow e^- \overline{\nu}_e \nu_\mu$ •Flux $\sim 1 \text{ cm}^{-2} \text{ sr}^{-1} \text{ s}^{-1}$ •Typical energy : $E_\nu \sim 1 \text{ GeV}$ •Expect $\frac{N(\nu_\mu + \overline{\nu}_\mu)}{N(\nu_e + \overline{\nu}_e)} \approx 2$ •Observe a lower ratio with deficit of $\nu_\mu/\overline{\nu}_\mu$

•Observe a lower ratio with deficit of V_{μ}/V_{μ} coming from below the horizon, i.e. large distance from production point on other side of the Earth

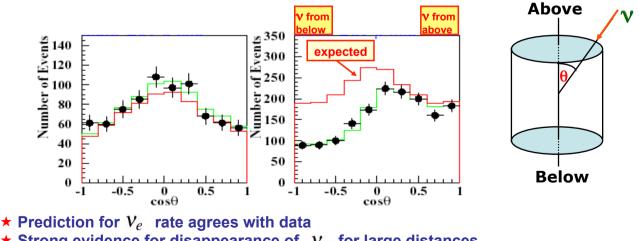
Prof. M.A. Thomson

Michaelmas 2011

403

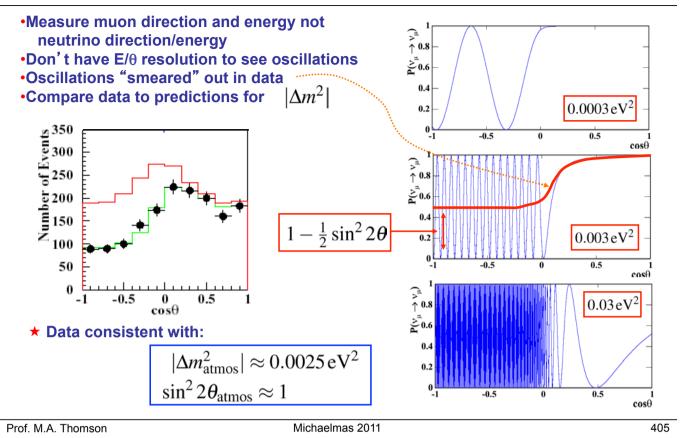
Super Kamiokande Atmospheric Results

- •Typical energy: $E_{v} \sim 1 \, GeV$ (much greater than solar neutrinos no confusion)
- Identify V_e and V_{μ} interactions from nature of Čerenkov rings
- Measure rate as a function of angle with respect to local vertical
- Neutrinos coming from above travel ~20 km
- Neutrinos coming from below (i.e. other side of the Earth) travel ~12800 km



- **\star** Strong evidence for disappearance of v_{μ} for large distances
- \star Consistent with $V_{\mu}
 ightarrow V_{ au}$ oscillations
- \star Don't detect the oscillated V_t as typically below interaction threshold of 3.5 GeV

Interpretation of Atmospheric Neutrino Data



3-Flavour Treatment of Atmospheric Neutrinos

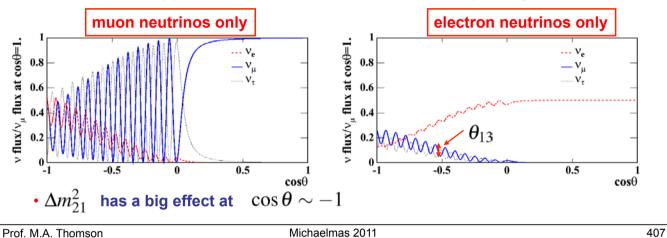
If we neglect the	$1000 \mathrm{km}$ corresponding term in the $P(v_{\mu} \rightarrow v_{\tau})$ - equation (16)	$\lambda_{\rm osc}({\rm km}) = 2.47 \frac{E({\rm GeV})}{\Delta m^2({\rm eV}^2)}$
	$\approx -4U_{\mu 1}U_{\tau 1}U_{\mu 2}U_{\tau 2}\sin^2$	
	$\approx 4U_{\mu3}^2 U_{\tau3}^2 \sin^2 \Delta_{32}$	
	$= 4\sin^2\theta_{23}\cos^2\theta_{23}\cos^4\theta_{23}$	$\Theta_{13}\sin^2\Delta_{32}$
	$= \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \Delta$	32
the possibility of	kande data are consistent wit of $\cos^4 \theta_{13}$ being small	
Hence the CHOO	Z limit: $\sin^2 2\theta_{13} < 0.2$ can	be interpreted as $\sin^2 \theta_{13} < 0.03$
NOTE: the three fl	avour treatment of atmospher	ic neutrinos is discussed below.

3-Flavour Treatment of Atmospheric Neutrinos

- •Previously stated that the long-wavelength oscillations due to Δm_{21}^2 have little effect on atmospheric neutrino oscillations because for a the wavelength for a 1 GeV neutrino is approx 30000 km.
- However, maximum oscillation probability occurs at $\lambda/2$
- This is not small compared to diameter of Earth and cannot be neglected
- As an example, take the oscillation parameters to be

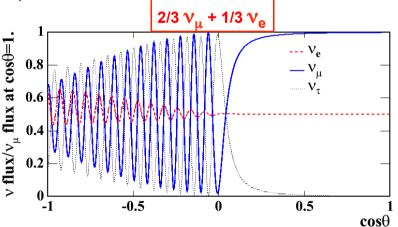
$$\theta_{12} = 32^{\circ}; \ \theta_{23} = 45^{\circ}; \ \theta_{13} = 7.5^{\circ}$$

- Predict neutrino flux as function of $\cos heta$
- Consider what happens to muon and electron neutrinos separately



• From previous page it is clear that the two neutrino treatment of oscillations of atmospheric muon neutrinos is a very poor approximation

- However, in atmosphere produce two muon neutrinos for every electron neutrino
- Need to consider the combined effect of oscillations on a mixed "beam" with both V_{μ} and V_{e}



- At large distances the average muon neutrino flux is still approximately half the initial flux, but only because of the oscillations of the original electron neutrinos and the fact that $\sin^2 2\theta_{23} \sim 1$
- Because the atmospheric neutrino experiments do not resolve fine structure, the observable effects of oscillations approximated by two flavour formula