Particle Physics

Michaelmas Term 2010
Prof Mark Thomson

Handout 3 : Interaction by
 Particle Exchange and QED

Recap

* Working towards a proper calculation of decay and scattering processes Initially concentrate on:
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$
- $\mathrm{e}^{-} \mathrm{q} \rightarrow \mathrm{e}^{-} \mathrm{q}$

人 In Handout 1 covered the relativistic calculation of particle decay rates and cross sections

$$
\sigma \propto \frac{|\mathrm{M}|^{2}}{\text { flux }} \times(\text { phase space })
$$

人 In Handout 2 covered relativistic treatment of spin-half particles

Dirac Equation

^ This handout concentrate on the Lorentz Invariant Matrix Element

- Interaction by particle exchange
- Introduction to Feynman diagrams
- The Feynman rules for QED

Interaction by Particle Exchange

- Calculate transition rates from Fermi's Golden Rule

$$
\Gamma_{f i}=2 \pi\left|T_{f i}\right|^{2} \rho\left(E_{f}\right)
$$

where $T_{f i}$ is perturbation expansion for the Transition Matrix Element

$$
T_{f i}=\langle f| V|i\rangle+\sum_{j \neq i} \frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}+\ldots
$$

- For particle scattering, the first two terms in the perturbation series can be viewed as:
"scattering in a potential"

"scattering via an intermediate state"
- "Classical picture" - particles act as sources for fields which give rise a potential in which other particles scatter - "action at a distance"
- "Quantum Field Theory picture" - forces arise due to the exchange of virtual particles. No action at a distance + forces between particles now due to particles
- Consider the particle interaction $a+b \rightarrow c+d$ which occurs via an intermediate state corresponding to the exchange of particle x
- One possible space-time picture of this process is:

Initial state $i: a+b$
Final state $f: c+d$
Intermediate state $j: c+b+x$

- This time-ordered diagram corresponds to a "emitting" x and then b absorbing x
-The corresponding term in the perturbation expansion is:

$$
\begin{aligned}
T_{f i} & =\frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}} \\
T_{f i}^{a b} & =\frac{\langle d| V|x+b\rangle\langle c+x| V|a\rangle}{\left(E_{a}+E_{b}\right)-\left(E_{c}+E_{x}+E_{b}\right)}
\end{aligned}
$$

- $T_{f i}^{a b}$ refers to the time-ordering where \boldsymbol{a} emits \boldsymbol{x} before \boldsymbol{b} absorbs it
- Need an expression for $\langle c+x| V|a\rangle$ in non-invariant matrix element $T_{f i}$
- Ultimately aiming to obtain Lorentz Invariant ME
- Recall $T_{f i}$ is related to the invariant matrix element by

$$
T_{f i}=\prod_{k}\left(2 E_{k}\right)^{-1 / 2} M_{f i}
$$

where k runs over all partıcies in the matrix element

- Here we have

$$
\langle c+x| V|a\rangle=\frac{M_{(a \rightarrow c+x)}}{\left(2 E_{a} 2 E_{c} 2 E_{x}\right)^{1 / 2}}
$$

$M_{(a \rightarrow c+x)}$ is the "Lorentz Invariant" matrix element for $\boldsymbol{a} \rightarrow \boldsymbol{c}+\boldsymbol{x}$
\star The simplest Lorentz Invariant quantity is a scalar, in this case

$$
\langle c+x| V|a\rangle=\frac{g_{a}}{\left(2 E_{a} 2 E_{c} 2 E_{x}\right)^{1 / 2}}
$$

g_{a} is a measure of the strength of the interaction $a \rightarrow c+x$
Note : the matrix element is only LI in the sense that it is defined in terms of Ll wave-function normalisations and that the form of the coupling is LI
Note : in this "illustrative" example g is not dimensionless.

Similarly

$$
\langle d| V|x+b\rangle=\frac{g_{b}}{\left(2 E_{b} 2 E_{d} 2 E_{x}\right)^{1 / 2}}
$$

Giving

$$
\begin{aligned}
& \begin{aligned}
\text { Giving } T_{f i}^{a b} & =\frac{\langle d| V|x+b\rangle\langle c+x| V|a\rangle}{\left(E_{a}+E_{b}\right)-\left(E_{c}+E_{x}+E_{b}\right)} \\
& =\frac{1}{2 E_{x}} \cdot \frac{b}{\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2}} \cdot \frac{g_{a} g_{b}}{\left(E_{a}-E_{c}-E_{x}\right)}
\end{aligned} \\
& \text { 太The "Lorentz Invariant" matrix element for the entire process is } \\
& \qquad \begin{aligned}
M_{f i}^{a b} & =\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2} T_{f i}^{a b} \\
& =\frac{1}{2 E_{x}} \cdot \frac{g_{a} g_{b}}{\left(E_{a}-E_{c}-E_{x}\right)}
\end{aligned}
\end{aligned}
$$

Note:

- $M_{f i}^{a b}$ refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame

- Momentum is conserved at each interaction vertex but not energy $E_{j} \neq E_{i}$
- Particle \boldsymbol{x} is "on-mass shell" i.e. $E_{x}^{2}=\vec{p}_{x}^{2}+m^{2}$
\star But need to consider also the other time ordering for the process

-The Lorentz invariant matrix element for this time ordering is:

$$
M_{f i}^{b a}=\frac{1}{2 E_{x}} \cdot \frac{g_{a} g_{b}}{\left(E_{b}-E_{d}-E_{x}\right)}
$$

$\star \ln$ QM need to sum over matrix elements corresponding to same final
state: $\quad M_{f i}=M_{f i}^{a b}+M_{f i}^{b a}$

$$
\begin{array}{ll}
=\frac{g_{a} g_{b}}{2 E_{x}} \cdot\left(\frac{1}{E_{a}-E_{c}-E_{x}}+\frac{1}{E_{b}-E_{d}-E_{x}}\right) & \\
=\frac{g_{a} g_{b}}{2 E_{x}} \cdot\left(\frac{1}{E_{a}-E_{c}-E_{x}}-\frac{1}{E_{a}-E_{c}+E_{x}}\right) & \left(E_{a}+E_{b}=E_{c}+E_{d}\right)
\end{array}
$$

- Which gives

$$
\begin{aligned}
M_{f i} & =\frac{g_{a} g_{b}}{2 E_{x}} \cdot \frac{2 E_{x}}{\left(E_{a}-E_{c}\right)^{2}-E_{x}^{2}} \\
& =\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-E_{x}^{2}}
\end{aligned}
$$

- From $1^{\text {st }}$ time ordering $E_{x}^{2}=\vec{p}_{x}^{2}+m_{x}^{2}=\left(\vec{p}_{a}-\vec{p}_{c}\right)^{2}+m_{x}^{2}$
giving $M_{f i}=\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-\left(\vec{p}_{a}-\vec{p}_{c}\right)^{2}-m_{x}^{2}}$

$$
=\frac{g_{a} g_{b}}{\left(p_{a}-p_{c}\right)^{2}-m_{x}^{2}}
$$

(end of non-examinable section)

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}}
$$

- After summing over all possible time orderings, $M_{f i}$ is (as anticipated) Lorentz invariant. This is a remarkable result - the sum over all time orderings gives a frame independent matrix element.
-Exactly the same result would have been obtained by considering the annihilation process

Feynman Diagrams

- The sum over all possible time-orderings is represented by a FEYNMAN diagram

In a Feynman diagram:
3 the LHS represents the initial state
(3) the RHS is the final state

- everything in between is "how the interaction happened"
- It is important to remember that energy and momentum are conserved at each interaction vertex in the diagram.
- The factor $1 /\left(q^{2}-m_{x}^{2}\right)$ is the propagator; it arises naturally from the above discussion of interaction by particle exchange
\star The matrix element: $M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}}$ depends on:
- The fundamental strength of the interaction at the two vertices g_{a}, g_{b}
- The four-momentum, q, carried by the (virtual) particle which is determined from energy/momentum conservation at the vertices. Note q^{2} can be either positive or negative.

Here $q=p_{1}-p_{3}=p_{4}-p_{2}=t$
"t-channel"
For elastic scattering: $p_{1}=\left(E, \vec{p}_{1}\right) ; \quad p_{3}=\left(E, \vec{p}_{3}\right)$
$q^{2}=(E-E)^{2}-\left(\vec{p}_{1}-\vec{p}_{3}\right)^{2}$
$q^{2}<0 \quad$ termed "space-like"
Here $q=p_{1}+p_{2}=p_{3}+p_{4}=s$
"s-channel"
In CoM: $\quad p_{1}=(E, \vec{p}) ; \quad p_{2}=(E,-\vec{p})$

$$
\begin{aligned}
& q^{2}=(E+E)^{2}-(\vec{p}-\vec{p})^{2}=4 E^{2} \\
& q^{2}>0 \quad \text { termed "time-like" }
\end{aligned}
$$

Virtual Particles

- Momentum conserved at vertices
- Energy not conserved at vertices
-Exchanged particle "on mass shell"

$$
E_{x}^{2}-\left|\vec{p}_{x}\right|^{2}=m_{x}^{2}
$$

Feynman diagram

- Momentum AND energy conserved at interaction vertices
- Exchanged particle "off mass shell"

$$
E_{x}^{2}-\left|\vec{p}_{x}\right|^{2}=q^{2} \neq m_{x}^{2}
$$

VIRTUAL PARTICLE

- Can think of observable "on mass shell" particles as propagating waves and unobservable virtual particles as normal modes between the source particles:

Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:
- Interaction by particle exchange in $2^{\text {nd }}$ order perturbation theory.

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}}
$$

- Could also evaluate the same process in first order perturbation theory treating proton as a fixed source of a field which gives rise to a potential $\mathrm{V}(\mathrm{r})$

$$
M=\left\langle\psi_{f}\right| V(r)\left|\psi_{i}\right\rangle
$$

Obtain same expression for $M_{f i}$ using

$$
V(r)=g_{a} g_{b} \frac{e^{-m r}}{r}
$$ YUKAWA potential

* In this way can relate potential and forces to the particle exchange picture * However, scattering from a fixed potential $V(r)$ is not a relativistic invariant view

Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange of a photon. Although the general ideas we applied previously still hold, we now have to account for the spin of the electron/tau-lepton and also the spin (polarization) of the virtual photon.
(Non-examinable)
-The basic interaction between a photon and a charged particle can be introduced by making the minimal substitution (part II electrodynamics)

$$
\vec{p} \rightarrow \vec{p}-q \vec{A} ; \quad E \rightarrow E-q \phi
$$

In QM:

$$
\vec{p}=-i \vec{\nabla} ; \quad E=i \partial / \partial t
$$

Therefore make substitution: $\quad i \partial_{\mu} \rightarrow i \partial_{\mu}-q A_{\mu}$ where $\quad A_{\mu}=(\phi,-\vec{A}) ; \quad \partial_{\mu}=(\partial / \partial t,+\vec{\nabla})$
-The Dirac equation:

$$
\begin{gathered}
\gamma^{\mu} \partial_{\mu} \psi+i m \psi=0 \quad \Longrightarrow \quad \gamma^{\mu} \partial_{\mu} \psi+i q \gamma^{\mu} A_{\mu} \psi+i m \psi=0 \\
(\times i) \quad \Longrightarrow \quad i \gamma^{0} \frac{\partial \psi}{\partial t}+i \vec{\gamma} \cdot \vec{\nabla} \psi-q \gamma^{\mu} A_{\mu} \psi-m \psi=0
\end{gathered}
$$

$$
\begin{aligned}
i \gamma^{0} \frac{\partial \psi}{\partial t}=\gamma^{0} \hat{H} \psi & = \\
\hat{H} \psi & =\underbrace{\left(\gamma^{0} m-i \gamma^{0} \vec{\gamma} \cdot \vec{\nabla}\right)}_{\begin{array}{c}
\text { Combined rest } \\
\text { mass + K.E. }
\end{array}} \psi+\underbrace{q \gamma^{0} \gamma^{\mu} A_{\mu} \psi}_{\begin{array}{c}
\text { Potential } \\
\text { energy }
\end{array}} \psi
\end{aligned}
$$

-We can identify the potential energy of a charged spin-half particle in an electromagnetic field as:

$$
\hat{V}_{D}=q \gamma^{0} \gamma^{\mu} A_{\mu}
$$

(note the A_{0} term is just: $\quad q \gamma^{0} \gamma^{0} A_{0}=q \phi$)
-The final complication is that we have to account for the photon polarization states.

$$
A_{\mu}=\varepsilon_{\mu}^{(\lambda)} e^{i(\vec{p} \cdot \vec{r}-E t)}
$$

e.g. for a real photon propagating in the z direction we have two orthogonal transverse polarization states

$$
\varepsilon^{(1)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \varepsilon^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Could equally have chosen circularly polarized states
-Previously with the example of a simple spin-less interaction we had:

* In QED we could again go through the procedure of summing the time-orderings using Dirac spinors and the expression for \hat{V}_{D}. If we were to do this, remembering to sum over all photon polarizations, we would obtain:

$$
\begin{aligned}
& M=\underbrace{\left[u_{e}^{\dagger}\left(p_{3}\right) q_{e} \gamma^{0} \gamma^{\mu} u_{e}\left(p_{1}\right)\right.}_{\text {Interaction of } \boldsymbol{e}^{-}}] \underbrace{\sum_{\lambda} \frac{\varepsilon_{\mu}^{\lambda}\left(\varepsilon_{v}^{\lambda}\right)^{*}}{q^{2}}}_{\text {Massless photon propagator }} \underbrace{\left[u_{\tau}^{\dagger}\left(p_{4}\right) q_{\tau}\right.} \\
& \text { with photon } \\
& \text { Massless photon propagator } \\
& \text { summing over polarizations }
\end{aligned}
$$

All the physics of QED is in the above expression!

- The sum over the polarizations of the VIRTUAL photon has to include longitudinal and scalar contributions, i.e. 4 polarisation states

$$
\varepsilon^{(0)}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \varepsilon^{(1)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \varepsilon^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad \varepsilon^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and gives:

$$
\sum_{\lambda} \varepsilon_{\mu}^{\lambda}\left(\varepsilon_{v}^{\lambda}\right)^{*}=-g_{\mu v}
$$

This is not obvious - for the moment just take it on trust and the invariant matrix element becomes:
(end of non-examinable

$$
M=\left[u_{e}^{\dagger}\left(p_{3}\right) q_{e} \gamma^{0} \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu \nu}}{q^{2}}\left[u_{\tau}^{\dagger}\left(p_{4}\right) q_{\tau} \gamma^{0} \gamma^{v} u_{\tau}\left(p_{2}\right)\right]
$$

- Using the definition of the adjoint spinor $\bar{\psi}=\psi^{\dagger} \gamma^{0}$

$$
M=\left[\bar{u}_{e}\left(p_{3}\right) q_{e} \gamma^{u} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu v}}{q^{2}}\left[\bar{u}_{\tau}\left(p_{4}\right) q_{\tau} \gamma^{v} u_{\tau}\left(p_{2}\right)\right]
$$

* This is a remarkably simple expression! It is shown in Appendix V
of Handout 2 that $\bar{u}_{1} \gamma^{\mu} u_{2}$ transforms as a four vector. Writing

$$
\begin{aligned}
& j_{e}^{\mu}=\bar{u}_{e}\left(p_{3}\right) \gamma^{\mu} u_{e}\left(p_{1}\right) \quad j_{\tau}^{v}=\bar{u}_{\tau}\left(p_{4}\right) \gamma^{v} u_{\tau}\left(p_{2}\right) \\
& M=-q_{e} q_{\tau} \frac{j_{e} \cdot j_{\tau}}{q^{2}} \quad \text { showing that } M \text { is Lorentz Invariant }
\end{aligned}
$$

Feynman Rules for QED

- It should be remembered that the expression

$$
M=\left[\bar{u}_{e}\left(p_{3}\right) q_{e} \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-g_{\mu \nu}}{q^{2}}\left[\bar{u}_{\tau}\left(p_{4}\right) q_{\tau} \gamma^{v} u_{\tau}\left(p_{2}\right)\right]
$$

hides a lot of complexity. We have summed over all possible timeorderings and summed over all polarization states of the virtual photon. If we are then presented with a new Feynman diagram we don't want to go through the full calculation again.
Fortunately this isn't necessary - can just write down matrix element using a set of simple rules

Basic Feynman Rules:

- Propagator factor for each internal line (i.e. each internal virtual particle)
- Dirac Spinor for each external line
(i.e. each real incoming or outgoing particle)
- Vertex factor for each vertex

Basic Rules for QED

External Lines

spin $1 / 2$
spin 1

Internal Lines (propagators)
spin 1
photon
$-\frac{i g_{\mu \nu}}{q^{2}}$
 outgoing antiparticle
$u(p)$
$\bar{u}(p)$
$\bar{v}(p)$
$v(p)$

$$
\begin{array}{ll}
\varepsilon^{\mu}(p) & \text { ~~。 } \\
\varepsilon^{\mu}(p)^{*} & \text { ~~ }
\end{array}
$$

spin 1/2 fermion

Vertex Factors
spin 1/2 fermion (charge - $|e|$)

e.g.

$$
\overbrace{-i M=\left[\bar{u}_{e}\left(p_{3}\right) i e \gamma^{\mu} u_{e}\left(p_{1}\right)\right] \frac{-i g_{\mu v}}{q^{2}}\left[\bar{u}_{\tau}\left(p_{4}\right) i e \gamma^{v} u_{\tau}\left(p_{2}\right)\right]}^{\mathrm{e}^{-}}
$$

-Which is the same expression as we obtained previously
e.g.

Note: - At each vertex the adjoint spinor is written first

- Each vertex has a different index
- The $g_{\mu \nu}$ of the propagator connects the indices at the vertices

Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix Element of the form

$$
M_{f i}=\frac{g_{a} g_{b}}{q^{2}-m_{x}^{2}}
$$

Derived the basic interaction in QED taking into account the spins of the fermions and polarization of the virtual photons:

$$
-i M=\left[\bar{u}\left(p_{3}\right) i e \gamma^{\mu} u\left(p_{1}\right)\right] \frac{-i g_{\mu v}}{q^{2}}\left[\bar{u}\left(p_{4}\right) i e \gamma^{v} u\left(p_{2}\right)\right]
$$

\star We now have all the elements to perform proper calculations in QED!

