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Handout 3 : Interaction by
Particle Exchange and QED
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Recap

* Working towards a proper calculation of decay and scattering processes
Initially concentrate on: _+

+ €. e
ce’e”— utu- © Y H
*e"q ~eq
e_ u q q

A In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections 5
M|

O oC
flux
A In Handout 2 covered relativistic treatment of spin-half particles

Dirac Equation

A This handout concentrate on the Lorentz Invariant Matrix Element
* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED

X (phase space)
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Interaction by Particle Exchange

» Calculate transition rates from Fermi’s Golden Rule
_ 2
Uy = 27| Tyi|"p(Ey)

where Tfi is perturbation expansion for the Transition Matrix Element

SIVIHGIVIED
Tri = (f|V]i)
i = (Vi) +; E-g

*For particle scattering, the first two terms in the perturbation series
can be viewed as:

"scatterin.g !’n Vi j “scattering via an
a potential intermediate state”
i Vi . Vii
1

» “Classical picture” - particles act as sources for fields which give
rise a potential in which other particles scatter - “action at a distance”
* “Quantum Field Theory picture” - forces arise due to the exchange

of virtual particles. No action at a distance + forces between particles
now due to particles
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(start of non-examinable section)

«Consider the particle interaction a +b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

g1 C  Initial statei: a4+ b

Final state f: c+d
Intermediate state j: c+ b+ x

spac

d *This time-ordered diagram corresponds to
; a “emitting” x and then b absorbing x

time
*The corresponding term in the perturbation expansion is:
SIVIRGIVED
E,—E;
(d|V|x+Db){(c+x|V|a)
(E -l—Eb) (E + E, +Eb)

fz refers to the time-ordering where 2 emits X before b absorbs it

Ty =

T Cl‘b

Prof. M.A. Thomson Michaelmas 2010 104




*Need an expression for (¢ +x|V|a) in a c
non-invariant matrix element 7y; 8a
*Ultimately aiming to obtain Lorentz Invariant ME

*Recall T}; is related to the invariant matrix element by
Ty = H(zEk)_l/szi
where k runs over ail ;]3art|CIes In the matrix element

*Here we have
{(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)1/2
M(a_,(,+x) is the “Lorentz Invariant” matrix element fora - c + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x\Via) =
e+ fVla) (2E,2E.2E,)!/?
ga is a measure of the strength of the interactiona - ¢ + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI
Note : in this “illustrative” example g is not dimensionless.
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Similarl dlVIx+b) = 8b
Giving Tﬁb (d|V]x+Db){(c+x|V|a) b 8b d
(ECl +Eb) - (Ec "‘Ex —l_Eb)
1 1 8a8b

2E, (2E,2E,2E2E )/ (E,—E.—Ey)
*The “Lorentz Invariant” matrix element for the entire process is
M = (2E,2E,2E2E.)\?Tsh

1 8a8b

2E. (E,—E.—E,)

Note:

¢ Mjﬁf? refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
+ Momentum is conserved at each interaction vertex but not energy
E; #E
+ Particle x is “on-mass shell” i.e. £2 = p2 +m?

Prof. M.A. Thomson Michaelmas 2010 106




* But need to consider also the other time ordering for the process

Sl g4 C *This time-ordered diagram corresponds to
§ ; b “emitting” X and then a absorbing x
* x is the anti-particle of x e.g.
: : : e Ve e Ve
b T W %
i j f
time Vu AT H
*The Lorentz invariant matrix element for this time ordering is:
1 8a8b

Mba :
: 2E, (Ep—E;—E))

*In QM need to sum over matrix elements corresponding to same final

. b b
state: My = M$+M7
_ 8a8b ) ( 1 + 1
2Ey \E,—E.—Ex Ep—E;—E/
_ 8a8b 1 1 Energy conservation:
~ 2E, \E,—E.—E. E,—E.+E, (Ea+Ep =E.+Ey)
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. 8a8b 2E;
*Which gives My = .
J /i 2E,  (Fa—E.)?—E2
_ 8a8b
(Ea o EC)2 o E)%
*From 1st time ordering E% — "% +m% = (Pu — ﬁc)z +m)26
a C
T 8a8b g
giving My = LA a
’ (Eq = Ec)* = (Pa— Pe)* —m3 N4 = Pa—De
_ 8a8b
- V)
(Pa = pe)? —mg (end of non-examinable section)
8a8b
) Mﬂ = 5 5
q- — nmx

* After summing over all possible time orderings, My; is (as anticipated)
Lorentz invariant. This is a remarkable result - the sum over all time

orderings gives a frame independent matrix element.

* Exactly the same result would have been obtained by considering the
annihilation process
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Feynman Diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

] v 4
2| a c & a c a c
& &
X = —
+ ¥ = x
b d b d . b P
time time
a c In a Feynman diagram:
% the LHS represents the initial state
X % the RHS is the final state

@ everything in between is “how the interaction
b ~d happened”

* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

* The factor 1/(q2 — m)%) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange
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8a8b
q* —mg
& The fundamental strength of the interaction at the two vertices &a, &»

* The matrix element: Mf,- depends on:

@ The four-momentum, ¢, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

c Here g=p1—p3=ps—pr=t “t-channel”
For elastic scattering: p1 = (E,p1); p3=(E,p3)
g = (E—E)*—(p1—P3)’

q*<0 termed “space-like”
o . Here g =pi1+p2=p3+ps=s “s-channel”
o> X /%, InCoM: p1=(E,p); p»=(E,—p)
n RN = (E+ER— (- p)R = 4B
g*>0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
$ta g
g, g,
7] /0] gagb
X Z M= 2l
b q —m
! tlme tlme
N— — N— —
—— ——
*Momentum conserved at vertices *Momentum AND energy conserved
*Energy not conserved at vertices at interaction vertices
«Exchanged particle “on mass shell” .| *Exchanged particle “off mass shell”
2 _m2_,2 2
—|pu? = m? E: = |P:l" =g~ # my

VIRTUAL PARTICLE

*Can think of observable “on mass shell” particles as propagating waves

and unobservable virtual particles as normal modes between the source
particles: —_—
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

eInteraction by particle exchange in 2"9 order perturbation theory.
a c

8a8b
]‘4]%.:“—2

b d 612 — niy

*Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) J M= <l[/f|V(7")|lI/i>
i \J Obtain same expression for A y; using
®p e YUKAWA
V() V(r) = 88 P potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view
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Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

(Non-examinable)
*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part Il electrodynamics)

p—P—gA; E—E—q¢
In QM: P=-iV, E=id/ot
Therefore make substitution:  idy, — id, —qAy
where Ap=(0,—-4); 9, =(9/dt,+V)
*The Dirac equation:
Yoy +imy=0 = Yo, y+igytAyy+imy =0

(here g = charge)

: d Lo
(xi) = i}’oa—li[-f—i’}/.Vl[/—q’yHAul[/—ml[I:O
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;,‘,Oaw — 'vofhu — mll[ ﬁ_’/enr.l_nfvﬂA_ur
v at ' vi- v 47 Uy
<y Ay = v”m—woy )Wty Ay
H_J

Comblned rest Potential
mass + K.E. energy
*We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

Vp = qy°vHA, just:  gY°¥°Ao = q¢ )

*The final complication is that we have to account for the photon
polarization states. ) (57
Au _ gu el(p.r—Et)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(1) 8 Could equally have
el) — 0 e = 1 chosen circularly
0 0 polarized states
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*Previously with the example of a simple spin-less interaction we had:

i
M= (velViva) 7= <wd\V|wb>\ ‘ X

1l I
8a Sb b T d o- P1 3
*In QED we could again go through the procedure - ©
of summing the time-orderings using Dirac
spinors and the expression for V. If we were
to do this, remembering to sum over all photon p2 P4
polarizations, we would obtain: T \% -
8)‘ (8)’)*
A [Ny Al (NS HNVS g N a0V ]
M= |U\P3)GeV TV Ue\P1)]| 2 — 75 |Uz\P4)qzT 7 Ur\P2)]
I\ R 1
~ " ~— ~
Interaction of e~ | | Massless photon propagator | | Interaction of 7~
with photon summing over polarizations with photon
* All the physics of QED is in the above expression !
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

1 0 0 0

©_ (0 n_ |1 @_ (0 3 (Y

e =1, ell) = 0 e =] £ 0

0 0 0 1
. ) AfoAyx This is not obvious - for the

d . E/E = —
andgives ; K ( v ) Suv moment just take it on trust
and the invariant matrix element becomes: (end of non-examinable

—& + section)
M = [u} (p3)qey v ue(p1)] qzuv (u3(P4) a7 ue(p2)]
«Using the definition of the adjoint spinor ¥ = y'y"

M = [i,(p3)ge 7" ue(p1 )] ‘j;‘” e (pa) ey uz(p2)]

* This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that ;7" u, transforms as a four vector. Writing
B =Te(p3) 7 ue(pr)  Jr =Uz(pa)y uz(p2)

M = —qequeq'% showing that M is Lorentz Invariant
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Feynman Rules for QED

|t should be remembered that the expression

M = [t.(p3)ge " u.(p1)]

_géw [tiz(pa)gey  uz(p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary - can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

et T @ Propagator factor for each internal line
Y (i.e. each internal virtual particle)
@ Dirac Spinor for each external line
e- T (i.e. each real incoming or outgoing particle)
& Vertex factor for each vertex
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Basic Rules for QED

@& External Lines

( incoming particle u(p) —3>—e

spin 1/2 < outgoing particle u(p) —>
incoming antiparticle ?(p) —z0

L outgoing antiparticle V(p) —<—

_ incoming photon et (p) AN
spin 1 outgoing photon el (p)* AN\

@ Internal Lines (propagators)

. _Bwy o v
spin 1 photon q2 [aVaVaX )
spin 1/2  fermion (Y qu ‘|‘m)

q* —m?

® Vertex Factors
spin1/2  fermion (charge -le|)  ieY"

® Matrix Element —j) = product of all factors
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ed: __ pi P e e\\p;/,/e— e (p3)liey" |ue(p1)

—1
£l 2
P2 P4 . . 1
T v r _/S\>\ _ _ .
T v Uz(pa)[iey]uc(p2)

—ig v[

—iM = [ﬁe(pg,)iey“ue(m)]q—; ur(pa)iey’us(p2)]

*Which is the same expression as we obtained previously
eq. et D2 pt
y P

—ﬂW=W@ﬂwWMmﬂ_§”W@ﬁwWWmﬂ

/P1

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
+ The Suv of the propagator connects the indices at the vertices
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant

Matrix Element of the form

8a8b
My 2 2
q my

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—m=wwww%@m‘§”mmmwwmn

* We now have all the elements to perform proper calculations in QED !
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