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Quantum
Electrodynamics

QUANTUM ELECTRODYNAMICS: is the quantum theory of
the electromagnetic interaction.

CLASSICAL PICTURE: Action at a distance : forces arise
from E and B fields. Particles act as sources of the fields

— V (1).

Q.E.D. PICTURE: Forces arise from the exchange of virtual
field quanta.

Although a complete derivation of the theory of Q.E.D. and
Feynman diagrams is beyond the scope of this course, the main

features will be derived.
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‘ Interaction via Particle Exchange I

FERMI'S GOLDEN RULE for Transition rate, I‘fz-:
27
h
p(E¢) = density of final states.

Ty = |Mg;|?p(Ey)

|_Frah 15¢ order perturbation theory, matrix element
Mfii

My = (g |H|9;)

where H is the operator corresponding to the
perturbation to the Hamiltonian.

Iﬂ is only the 15t order term in the perturbation
expansion. In 274 order perturbation theory:

1
My — My + ) |[Mgj| | M|
i Bi = Ej

where the sum is over all intermediate states 7, and E;
and F; are the energies of the initial and intermediate state

@cattering, the 15t and 2™ order terms can be

viewed as: f f
vfj/
V..
i fi i /Vji
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Consider the particle interaction
a+b—c+d
which involves the exchange a particle X . This could be

the elastic scattering of electrons and protons, e.g.
e~ p — e pwhere X is an exchanged photon.

@ possible space-time picture for this process is

Initial State, 2: a+b

Final State, f: c+d

Intermediate State, 7:
b+c+ X

3
&
7]

Time
|J—hﬁ|Time Ordered interaction consistsofa — ¢ + X
followed by b + X — d. For example e; p; — €, Dy

has the electron emitting a photon (e; — e ) followed
by the photon being absorbed by the proton (pi'y — pf).

IJ—hﬂlcorresponding term in 2™ order PT:
(g [ H |95) (3 [H |4y
E;, — E;
(Pa|H! |1 x ) (thethx |H |1pa)
(Eo + Ey) — (Ec.+ Ex + Ep)

(Pa|H |9 x1p) (thetpx |H [pa)
(Ea - Ec - EX)

b
M4
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Before we go any further some comments:

[_THhe superscript ab on M}‘I; indicates the time ordering
where a interacts with X before b

consequently the results are not Lorentz Invariant

i.e. depend on rest frame.

[ Mbmentum is conserved ina — ¢ + X and

b+ X — d.
[__THe exchanged particle X is ON MASS SHELL:
2 2 2
Exy —px = mk

[The matrix elements {tpg|H’|1 x 1) and

(e1px |H'|1he ) depend on the “strength” of the
interaction. e.g. the strength of the ve™ and yp
interaction which determines the probability that an
electron(proton) will emit(absorb) a photon.

[__FEdr the electromagnetic interaction:

(Yr|H' |15} = ecol{tbr|z|1;)
for a photon with polarization in the z-direction. (see Dr
Ritchie’s QM Il lecture 10)

[_Néglecting spin (i.e. for assuming all particles are
spin-0i.e. scalars) the ME becomes:

(Ya|H |1 xcbp) = e

[ Mbre generally, (¢d|I:I’|¢X¢b) = ¢, where g is the
interaction strength.
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Now consider the other time ordering b — d + X
followed bya + X — b

. ®
a— Vi —C <
) | (&) (%

3
&
&

Time Time

The corresponding term in 24 order PT:

(e|H' |thxtha) (Parh x [H' [1hs)
(Eo + Ey) — (Ea+ Ex + E,)
(e|H' |9 xPa) (Pathx |H|1p)

(Ey, — Eq — Ex)

(e H' |9 x a0 ) (tharh x [H'|1bs)
(Ey — Eq — Ex)
Assume a common interaction strength, g, at both vertices,

e, (Yo H |t x1ha) = (Yaipx |H |1p) =
2

ba _—
= My =

b
M7

1
X -
(Ey — Eq — Ex) 2F x

WARNING : | have introduced an (unjustified) factor of

L. This arises from the relativistic normalization of the

2E

wave-function for particle X (see appendix). For initial/final
state particles the normalisation is cancelled by
corresponding terms in the flux/phase-space. For the

“intermediate” particle X no such cancelation occurs.
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Now sum over two time ordered transition rates

L — ab ba
My = M% + M5

) ( 1 1 ) 1
+ X
E,-E.-Ex EyE4Ex) 2Ex

since F,+FE, = FE.+ E4
- b, —FE; = E.—FE,
giving: ) ( ) ) ) Y
Mg, = + X ——
E . -E.-Ex E.-E,-Fx 2F x

) ( 1 1 ) y 1
o E, E..Ex E,E.+Ex 2F
2FE 1

2 X —
(E, — E.)2 — E% ~ 2Ex

From the first time ordering:

Egg' — (ﬁa — I‘Bc)2 + m%{

therefore >
Myg; = — —
’ (Ea - Ec)2 _ (pa _ pc)2 - m?}(
2
My; =

with ¢* = q*q, = E* — |p|?
where (E, |p|) are energy/momentum carried by the
virtual particle. The SUM of time-ordered processes
depends on q2 and is therefore Lorentz invariant ! The
‘invariant mass’ of the exchanged particle, X,
m? = E? — |p|?, is NOT the REST MASS, m x.
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The term

Is called the PROPAGATOR

It corresponds to the term in the matrix element arising
from the exchange of a massive particle which mediates the
force. For massless particles e.g. photons :

1

q2

NOTE: q2 Is the 4-momentum of the exchanged particle
(q* = q"qu, = E* — |p|?)

Previously we obtained the matrix
element for elastic scattering in the YUKAWA potential:

2

YUK __ g
M:"" = — )

For elastic scattering Fx = 0, and q2 — —|f)|2

2

(2

/4

Which is exactly the expression obtained on the previous
page. Hence, elastic scattering via particle exchange in 2nd
order P.T. is equivalent to scattering in a Yukawa potential
using 1st order P.T.
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| Action at a Distance I

NEWTON : “...that one body can act upon
another at a distance, through a vacuum, without
the mediation of anything else,..., is to me a great

absurdity”

[_InlClassical Mechanics and non-relativistic
Quantum Mechanics forces arise from
potentials V' (T) which act instantaneously

over all space.

[ InlQuantum Field theory, forces are mediated
by the exchange of virtual field quanta - and
there is no mysterious action at a distance.

[__Matter and Force described by ‘particles’
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‘ Feynman Diagrams I

[__THe results of calculations based on a single
process in Time-Ordered Perturbation Theory
(sometimes called old-fashioned, OFPT)
depend on the reference frame.

[ Hdwever, the sum of all time orderings is
not frame dependent and provides the basis
for our relativistic theory of Quantum
Mechanics.

[ THe sum of time orderings are represented by

FEYNMAN DIAGRAMS

Space

S
S
2 +
Time Time

_I Feynman
— Diagram

[__Edergy and Momentum are conserved at the
interaction vertices

[ Bt the exchanged particle no longer has
m?% = E% — p5., itis VIRTUAL
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‘ Virtual Particles |

Space
+
Space

Virtual Particles:

|_Fdrces due to exchanged particle X which is
termed VIRTUAL.

[ THe exchanged particle is off mass-shell, i.e.
for the exchanged VIRTUAL
particle E* # p? 4+ m%.

[id m? = E?c — p?x does not give the
physical mass, ™ x. The mass of the virtual
particle m? = E?c — p?X can be +ve or -ve.

Qualitatively: the propagator is inversely
proportional to how far the particle is off-shell.
The further off-shell, the smaller the probability of
producing such a virtual state.
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‘ Understanding Feynman Diagrams I

@nman diagrams are the language of
modern particle physics. They will be used
extensively throughout this course.

The Basic Building Blocks

e > e Note : the positron (e+)
+ +

e < e line is drawn as a neg-
\/\/y\/\/ ative energy electron

traveling backwards in
Time time

4

The et — photon interactions

e e Note: none of these pro-
e v cesses are allowed in
e+ Y+ isolation : Forbidden by

e ~ .
Y\N\N<e- (E, p) conservation.

[_Thle strength of the interaction between the
virtual photon and fermions is called the coupling
strength. For the electromagnetic interaction this
IS proportional to electric charge
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‘ The Electromagnetic Vertex I

[ Thé electromagnetic interaction is described
by the photon propagator and the vertex:

Electromagnetic T

vertex e’g T
o Qo COUPLING  strength
e’a’T proportional to the

fermion charge.

o= e°/4m Y

melectromagnetic Interactions can be
described in terms of the above diagram

mays conserve energy and momentum +
(angular momentum, charge)

|IE|Z) Vertex NEVER changes flavour i.e.
e — e ~Ybutnote — u vy

|IEb Vertex also conserves PARITY

[_Qubiitatively : Q+/c can be thought of the

probability of a charged particle emitting a
photon, the probability is proportional to 1/q? of
the photon.
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‘ Physics with Feynman Diagrams I

Scattering cross sections calculated from:

@mion wave functions

[ veltex Factors : coupling strength
@pagator
[_Phkse Space

Propagator

Proton Current

P

Matrix element M factorises into 3 terms :

—iM = Electron Current
—ighv
X — Photon Propagator
q2
X (w,|tey”|u,) Proton Current

The factors ¥ and g"*” are 4 X 4 matrices which
account for the spin-structure of the interaction
(described in the lecture on the Dirac Equation).
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‘ Pure QED Processes I

Compton Scattering

e propagator ~ 2
/e ~ |M|? ~ e*
y 0~ (4m)%a’
Bremsstrahlung
v M ~ e.e.e
e_ |M|2 ~ 66
y ) o ~ @m)*7Z%a°
e
nucleus
eTe~ Pair Production
e
M ~ e.e.”Ze
Y . |IM|? ~ e’
Y e o ~ (4n)*z%a?
nucleus
¥ Decay
u

M ~ e. e

o ~ (4m)*Q’a?

15
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Electron-Proton Scattering

e e
M ~ e.e
y |M|2 ~ 64
o ~ (4m)2*a?
P P

ete™ Annihilation

€ q M ~ e. e
Y |M|2 ~ 64
i o ~ (4m)? o
- a (47)
J/ — ptu”
¢ W M ~ e.e
Jhy ! |M|? ~ e
¥ o ~ (4m)2Q%a?
T 28

Coupling strength determines ‘order of magnitude’ of
matrix element. For particles interacting/decaying via
electromagnetic interaction: typical values for cross
sections/lifetimes

Cerm ~ 1072 mb
Torn ~ 10720 s
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‘ Scattering in QED I

EXAMPLE Calculate the “spin-less” cross sections for the

two processes:
[__elbctron-proton scattering
[_elbctron-positron annihilation

e e e e+ +

az
Here we will consider the case where all particles are
spin-0, (see lecture on Dirac Equation for complete

p-~ €7~p €

treatment)

Fermi’s Golden rule and Born Approximation:

do
— = 2w|M|*dp(Es)/dQ
o M |*dp(E;)/
For both processes write the SAME matrix element
e? Jdro
M p— —_— =
q? q?

However, the four-momentum transfer (q2 = FE? — (~12) IS
very different (q is the 3-momentum of the virtual photon)

[_Elbstic e -proton scattering : ¢ = (0, q)

q* = —1q/*
[_et e annihilation: ¢ = (2E, 0)
q> = +4E?
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‘ “Spin-less” e-p Scattering I )

e e €
. P
e—>
Y
Iy 2 Adro
P P o qz o qz
do 0 E?
— = 27w|M|
d? (27)3
(4ma)? E? 402 E?
= 27 —
q* (2m)3 q?
q2 Is the four-momentum transfer:
¢ = q"q, = (Ey — E;)*> — (pr — Pi)?

= E}+ E} —2E;E; — ps” — Di” + 2.Pr.Ds
— ng — ZEfE,,; -+ 2|ﬁf||f)1| cos 6

neglecting electron mass: i.e. m2 = 0and |pg| = Ey
q¢° = —2E;E;(1— cos9)
qg? = —4Ez-Efsinzg
Therefore for ELASTIC scattering F; = E¢
do o
dQ ~  4E2sin? g

i.e. the Rutherford scattering formula
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‘ “Spin-less” eTe~ Annihilation I

+ +
€ H
4T
v M — h
q
e w
do X (4ma)? E? 4c? E?
- — TT e
dQ g* (2m)? q*

same formula, but different four-momentum transfer:

19

@ = ¢"qu=(E.+ +E.-)? — (Po+ + P.-)?

Assuming we are in the centre-of-mass system

E, = E, =E
Pe- = —DPet
— q° = (2E)* =s
do 40*E? 4o® E?
dQ ¢ 16E*
o2
T s

Integrating gives total cross section:

a2

o = 47—
S

Dr M.A. Thomson
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This is not quite correct - because we have neglected spin.

The actual cross section (see lecture on Dirac Equation) is

do o

—— = (14 cos®6

d) 43( + )
471 o?

oete”™ = putp™) =

3s

Natural Units Example cross section at /s = 22 GeV
I.e. 11 GeV electrons colliding with 11 GeV positrons.

41 o 41 1
3s 13723 x 222
=4.6 X 1077 GeV 2
=4.6 x 107" (hc)?/(1.6 x 10~ 1%)%2 m?
—=1.8 x 1073®m? = 0.18 nb

Octe——putpu— —

10

T T l Tl 1 L L I T

ete” =ty

U B LR AL

v Jade

L1y it

O Mark J

L]

A Pluto

O Tasso

g {nb)
T ||||||{
11 11|||rl

Oqep

0.1

lllll

T IIIIII‘

T

0,01||¢1|11|1i1|1t11|11
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Vs (GeV)
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| The Drell-Yan Process I

[_Cdn also annihilate qq as in the Drell-Yan
process

eg. ™ p — putu~ + hadrons

o(r”p — pTp” + hadrons) < Q7 o’

(see Question 3 on the problem sheet)
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‘ Experimental Tests of QED I

[__QED is an incredibly successful theory

Example

[Mhgnetic moments of e, pu*

- € _
— ——S
M 92m

[__Edr a point-like spin 1/2 particle :
222

However higher order terms induce an anomalous magnetic
moment i.e. g not quite 2.

YYYY

@ — 11596521.869 + 0.041 X 1010 ExpT

@ = 11596521.3 4+ 0.3 X 10~1° THEORY

[ Agreement at the level of 1 in 108

[__QIE.D. provides a remarkably precise description of the
electromagnetic interaction !
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‘ Higher Orders I

So far only considered lowest order term in the
perturbation series. Higher order terms also
contribute

Lowest Order: g

2 1
|M | x « e
Second Order
2
|M| x ot ~ 1374

Third Order:

M W .

2 1
[M|* o< o ~ 1376

Second order suppressed by o relative to first
order. Provided o is small, i.e. perturbation is
small, lowest order dominates.
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‘ Running of o I

2
[ ol = Z—W specifies the strength of the interaction

between an electron and photon.
[ BUT v isn’t a constant

Consider a free electron: Quantum fluctuations lead to a
‘cloud’ of virtual electron/positron pairs

this is just one of
many (an infinite set)
such diagrams.

[__The vacuum acts like a dielectric medium
[ The virtual eTe™ pairs are polarized
[__Aflarge distances the bare electron charge is screened.

8 At largeR test charge
G@ ®© sees screened € charge
© ®
®® @6 Test Charge
®
©
8 At small R test charge
®® ®® seesbaree charge
O® Test Charge
® @
© ® ©
©
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‘ Running of o I

Measure a(g?) frometTe™ — put ™ etc.

+ +
e n
i
e L
~15 ——1T—————T—T—1
g : TOPAZ pu/eeup: o qq: A ]
"'5 150 |- Fitstoleptonic data from: ]
- *DORIS, OPETRA, ¢ TRISTAN 1
145 | =
WOl o i
135 | =
130 \K@H 02,(@ o
125 , éf OPAL® -
120 | .
115 | .
110 | ]
105 e
0 25 50 75 lOO 125 150 175 200

Q/GeVv

[_alincreases with the increasing g2 (i.e. closer to the
bare charge).

[Alg? =0:a=1/137
[Alqg® = (100 GeV)2%: o = 1/128
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‘ Appendix: Relativistic Phase Space I

NON-EXAMINABLE

[_Pdeviously normalized wave-functions to 1 particle in a
box of side L (see Handout 1, pages 33-34).

. i

Rest Frame Lab. Frame
1 particle/V 1 particle/(V/y)
[_In kelativity, box will be Lorentz Contracted by a factor of
1 E
T = -
V1—v2/c2 m
m
1.€. VI = V(=)
E

i.e. EZ/m particles per volume V/
NEED to adjust normalization volume with energy

Conventional choice:

[ Inlmost scattering process the factors of \/ﬁ in the
wave-function normalization cancel with corresponding
factors in the expressions for flux and density of states,
just as the factors of L3 were canceled previously
(Handout 1, pages 35)
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