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Handout 3 : Interaction by
Particle Exchange and QED
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Recap

* Working towards a proper calculation of decay and scattering processes
Initially concentrate on: _+

+ €. e
et e . p
*e"q »eq
e_ l"l’ q q

A In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections 5
M|

O o
flux
A In Handout 2 covered relativistic treatment of spin-half particles

Dirac Equation

A This handout concentrate on the Lorentz Invariant Matrix Element
* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED

X (phase space)
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Interaction by Particle Exchange

e Calculate transition rates from Fermi’s Golden Rule
[y =27n|Ty|°p(Ey)
where Tﬁ- is perturbation expansion for the Transition Matrix Element

=iy SVIRGVIE |
= Vin+ 2 o ...
iz BTk
*For particle scattering, the first two terms in the perturbation series
can be viewed as:

f S
“scatterin_g in Vi /s “scattering via an
a potential” / J intermediate state”
i Vi ; Vii

- “Classical picture” — particles act as sources for fields which give
rise a potential in which other particles scatter — “action at a distance”

« “Quantum Field Theory picture” — forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles
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(start of non-examinable section)

-Consider the particle interaction a -+ b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

C Initial statei: a+b
Final state f: c+d
Intermediate statej: c+b+x

space

*This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

time
*The corresponding term in the perturbation expansion is:

SIVIDGIVIE
E—E;
(d|V|x+b)(c+x|V|a)
(Ea+Ep) — (Ec + Ex + Ep)

. Tﬁ-b refers to the time-ordering where @ emits X before b absorbs it

T =

ab
Ti
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-Need an expression for (c+x|V|a) in a c
non-invariant matrix element 77; L
*Ultimately aiming to obtain Lorentz Invariant ME X

‘Recall Ty; is related to the invariant matrix element by
Ty = H(ZEk)_l/szi
k
where k& runs over all particles in the matrix element

Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)/2
M4 _.c1x) is the “Lorentz Invariant” matrix element fora = ¢ + x
* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|\Via) =
et xiVia) (2E,2E.2E,)'/?

8a is a measure of the strength of the interaction a = ¢ + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.

Prof. M.A. Thomson Michaelmas 2009 104
Similarl dlVIx—+b) = 8b
Vo V) = G a2 X
Giving Tjgl_b (d|V|x+b){c+x|V]a) b 8b d
(Ea +Eb) - (Ec + E, +Eb)
1 1 8a8b

2E, (2E,2Ep2E.2E )2 (E,—E. —Ey)
* The “Lorentz Invariant” matrix element for the entire process is
M = (2E2E2E2E;)\T

1 8a8b

2E, (E,—E.—E))

Note:

¢ M?lb refers to the time-ordering where a emits x before b absorbs it
It is not Lorentz invariant, order of events in time depends on frame
+ Momentum is conserved at each interaction vertex but not energy
E; #E
+ Particle x is “on-mass shell” i.e. E? = p2 +m?
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* But need to consider also the other time ordering for the process

21 o4 i ¢  °This time-ordered diagram corresponds to
g. 5 : ' b “emitting” X and then a absorbing X
- X is the anti-particle of x e.g.
: e Vel| | e Ve
i j S

time M W [P al

*The Lorentz invariant matrix element for this time ordering is:
Mb 1 8a8b

2E, (Ep—E4—Ex)
*In QM need to sum over matrix elements corresponding to same final

state: My, = MY +MY¥
_ 8a8b i ( 1 4 1 \
2By \Ea—E.—Ex Ep—E;—E:)
_ 8a8b 1 1 Energy conservation:
~ 2E, '<Ea—Ec—Ex_Ea—Ec+Ex) (Eq+E,=E.+Ey)
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8a8b 2E;

2E, (Ea — EC)2 — Ef
8a8b

(Ea _EC)2 _E)%

‘Which gives My =

*From 1sttime ordering E? = 52 +m? = (p, — p.)*> +m?

- 8a8b N ¢
giving My = = z
! (Ea—EC)z_ (pa_pC)z_m)zc \6] = Pa — Pc
o 8a8b
- )2 _m2
(Pa—pe)* —ms (end of non-examinable section)
8a8b

- (M = 5

q- —ny

* After summing over all possible time orderings, My; is (as anticipated)
Lorentz invariant. This is a remarkable result — the sum over all time
orderings gives a frame independent matrix element.

*Exactly the same result would have been obtained by considering the
annihilation process

Prof. M.A. Thomson Michaelmas 2009

107




Feynman Diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

a c

space
space
)
)
E
o

b d b d
thng time
a — c In a Feynman diagram:
% the LHS represents the initial state
X % the RHS is the final state
% everything in between is “how the interaction
b ~d happened”
* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

* The factor 1/(g* —m?) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange
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8a8b
q* —mg
& The fundamental strength of the interaction at the two vertices 84, §b

* The matrix element: Mﬁ depends on:

a The four-momentum, ¢, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

a P, ¢ Here g=pi—p3=pi—pr=t
For elastic scattering: p1 = (E,ﬁl); p3 = (E;ﬁ3)
x e —
. q* = (E—E)*—(p1 — P2)?
b &b d 2 t (13 M H 2
<0 ermed “space-like
. s Here g=p1+p2=p3+ps=s
N X InCoM: p1 = (E,ﬁ); P2 = (Ea_ﬁ)
2 g = (E+E)*—(p—p)* =4E°
>0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
g a C g a C a c
2 B 2 - i
S T e

b d d b d q my

! time I time
~— —~— — ~— —~— —
Momentum conserved at vertices *‘Momentum AND energy conserved
-Energy not conserved at vertices at interaction vertices
‘Exchanged particle “on mass shell” = *Exchanged particle “off mass shell”

2 = |2 2 2
E2 — By = m? ES —|Ps|* = q° # m;
VIRTUAL PARTICLE

«Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source

particles: —_—
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

Interaction by particle exchange in 2"d order perturbation theory.
a c

b 8a8b
Mji= ==
qg-—m
b d X
«Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

sy ol
i Obtain same expression for M; using

*p Vi) = e YUKAWA

Vir) )= 8a8b™ potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view

Prof. M.A. Thomson Michaelmas 2009 11




Quantum Electrodynamics (QED)

*Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

(Non-examinable)
*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part Il electrodynamics)

p—P-qA; E—E—q¢
In QM: P=-iV, E=id/ot
Therefore make substitution:  idy, — id, —qAy
where Ay =(9,-A); 9y =(3/31,4V)
*The Dirac equation:
Yoy +imy=0 = Yo, y+igytA,y+imy =0

(here g = charge)

. v =
(xi) = iyoa—‘;’ﬂy.vw—qymuw—mw:o

Prof. M.A. Thomson Michaelmas 2009 112
m/OalI/ :'\/Oflut — mnr_r'T}eut_l_nfvﬂA._ur
vi at /A ¢ 4 v v v g7 Uy
Xy Ay = (Pm—if’TV)y+q" Ay
~" J
Combined rest Potential
mass + K.E. energy

‘We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

~ (note the A4, term is
Vb = gV Ay just: P PA0— g9

*The final complication is that we have to account for the photon
polarization states.

Au — Sﬁl)ei(ﬁ'?_Et)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(1) 8 Could equally have
ell) — 0 e = 1 chosen circularly
0 0 polarized states
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-Previously with the example of a simple spin-less interaction we had:

lldeVlwb ‘
m

ga gb

*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for Vp. If we were
to do this, remembering to sum over all photon
polarizations, we would obtain:

l/fclVIl//a

8}” (81)*
M — Lot Ny A0, (NS KTV [T o
= Ue\P3)qeY TV Ue\P1)| 2, — 5  |[Ur\P4)]qr
I\ R 9
~ \ ~ 7/ ~— ~
Interaction of ¢~ | | Massless photon propagator | | Interaction of 7~
with photon summing over polarizations with photon

All the physics of QED is in the above expression !
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*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e.

1 0 0 0
©0_ (0 n_ |1 @ _ [0 3 (9
e =1, ell) = 0 e =] £ 0
0 0 0 1
: Ao yx o Cous
d . (e —_ _ This is not obvious - for the
and gives Z u( V) Euv moment just take it on trust
and the invariant matrix element becomes: (end of non-examinable

section)

M = [u}(p3)geY ¥ ue(pr)] —5 [ub(pa) g Vv e (p2)]
-Using the definition of the adjoint spinor ¥ = y'7°

M = [(p3)ge¥* e (p1)]— éw [tz (pa)gcy" ue(p2)]

* This is a remarkably simple expression ! It is shown in Appendix V
of Handout 3 that ;7" uy transforms as a four vector. Writing
JH=1(p3) 1 ue(pr)  Jr =uc(pa)Y uz(p2)
JeJ
M = _QeCI‘L’eq—ZT showing that M is Lorentz Invariant
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Feynman Rules for QED

It should be remembered that the expression
_ Suv
M = [u(p3)ge Y ue(p1)]

uv r—
5 [te(pa)qeY ur(p2)]
hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary — can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

et T @® Propagator factor for each internal line
Y (i.e. each internal virtual particle)
® Dirac Spinor for each external line
e- T (i.e. each real incoming or outgoing particle)
& Vertex factor for each vertex
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Basic Rules for QED

@ External Lines

( incoming particle u(p) —>—
spin 172 < outgoing particle u(p) —>
incoming antiparticle v(p) —<—e
_ outgoing antiparticle v(p) —<—
_ incoming photon el (p) NN
spin 1 outgoing photon el (p)* NN\
@ Internal Lines (propagators) ig
uv
spin 1 photon - q2 'uv\/\/\,v
spin1/2  fermion i(Y"qu +m)

q2

— m2 e ®
@ Vertex Factors
spin1/2  fermion (charge -e) iey"

® Matrix Element —iM = product of all factors
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P1 P3 — .
e.d. - _
o P . p3 o e\)\,u)/,/e i, (p3)[iey" |u.(p1)

—lg
£l
D2 D4 4

. v r -~ v 7 Uc(pa)liey’uc(p2)

—iM = [ﬁe(ps)ieyuue(l?l)]%[ET(IM)WYVW(PZ)]

*Which is the same expression as we obtained previously
€9. et

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
+ The 8uv of the propagator connects the indices at the vertices
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

8a8b
M . -7
4 q* —m;

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—iguv

—iM = [u(p3)iey"u(p1)] qzu [@(pa)iey u(p2)]

* We now have all the elements to perform proper calculations in QED !
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