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Course Synopsis

Handout 1: Introduction, Decay Rates and Cross Sections
Handout 2: The Dirac Equation and Spin

Handout 3: Interaction by Particle Exchange

Handout 4: Electron — Positron Annihilation

Handout 5: Electron — Proton Scattering

Handout 6: Deep Inelastic Scattering

Handout 7: Symmetries and the Quark Model

Handout 8: QCD and Colour

Handout 9: V-A and the Weak Interaction

Handout 10: Leptonic Weak Interactions

Handout 11: Neutrinos and Neutrino Oscillations

Handout 12: The CKM Matrix and CP Violation

Handout 13: Electroweak Unification and the W and Z Bosons
Handout 14: Tests of the Standard Model

Handout 15: The Higgs Boson and Beyond

*  Will concentrate on the modern view of particle physics with the emphasis
on how theoretical concepts relate to recent experimental measurements

* Aim: by the end of the course you should have a good understanding of
both aspects of particle physics
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Preliminaries

Web-page: www.hep.phy.cam.ac.uk/~thomson/partlliparticles/
* All course material, old exam questions, corrections, interesting links etc.
* Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:

* | will derive almost all results from first principles (only a few exceptions).

* In places will include some additional theoretical background in non-
examinable appendices at the end of that particular handout.

* Please let me know of any typos: thomson@hep.phy.cam.ac.uk

Books:
* The handouts are fairly complete, however there a number of decent books:

* “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.

* “Introductory High Energy Physics”, Perkins (Cambridge): slightly below
level of the course but well written.

* “Introduction to Elementary Physics”, Griffiths (Wiley): about right level
but doesn’t cover the more recent material.

 “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level
textbook (slightly above level of this course).

Before we start in earnest, a few words on units/notation and a very brief
“Part Il refresher”...
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Preliminaries: Natural Units

* S.I. UNITS: kg m s are a natural choice for “everyday” objects
e.g. M(Prescott) ~ 250 kg
* not very natural in particle physics

* instead use Natural Units based on the language of particle physics
- From Quantum Mechanics - the unit of action : /;

* From relativity - the speed of light: ¢
* From Particle Physics - unit of energy: GeV (1 GeV ~ proton rest mass energy)

*Units become (i.e. correct dimensions):

Energy GeV Time (GeV/h)~!
Momentum GeV/c Length (GeV/hc)_;
Mass GeV/c? Area (GeV/he)™

* Simplify algebra by setting: | /; — ¢ — |
‘Now all quantities expressed in powers of GeV
Energy GeV Time GeV~!

To convert back to S.I. units,

—1
Momentum GeV Length GeV need to restore missing factors
Mass GCV Area Gev_2 of h and ¢
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Preliminaries: Heaviside-Lorentz Units

2
e
* Electron charge defined by Force equation: F — ——
4meyr?
- In Heaviside-Lorentz units set |€y = 1
o2

and NOW: electric charge 214 r 1
b= 4r? has dimensions [FL ]2 - [EL] 2= [hc] 2

2 =1 ‘u():l

Unless otherwise stated, Natural Units are used throughout these
handouts, E? = p?>+m?, P =k, etc.
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Preliminaries: Relativity and 4-Vector Notation

*Will use 4-vector notation with po as the time-like component, e.g.

pH = {E7ﬁ} = {E,px,py,pz} (contravariant)
pu=8uvP" ={E,—p} ={E,—px,—py,—p:} (covariant)
with 1 0 0 O
_ouv_[0~-1 0 O
By =8 " =10 0-1 0
0O 0 0 -1

+In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.l. quantities formed from 4-vector

scalar products, e.g.

Pupu = E*— P2 =m? Invariant mass

xpy=Et—p.F Phase
*A few words on NOTATION
Four vectors written as either: p" or p

Four vector scalar product: p“qu or p.q
Three vectors written as: p

Quantities evaluated in the centre of mass frame: p*, p* etc.
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Example: Mandelstam s, t and u

* In particle scattering/annihilation there are three particularly useful
Lorentz Invariant quantities: s, tand u / 3

* Consider the scattering process 1 +2 — 344 1 > < 2

‘Define three kinematic variables: s,t and u /
from the following four vector scalar products 4

s=(p1+p2)* t=(p1—p3)? u=(p1—ps)’

Note: S+I+u= m%—l—m%—l—m% —|—m421 (Question 1)
* e.g. Centre-of-mass energy, §:
s=(p1+p2)* = (E1+E2)* — (P1 + P2)°

This is a scalar product of two four-vectors === | orentz Invariant

* Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

p) = (EY,P*) p2=(E5,—D")
= | s=(Ef+E3)

*Hence 4/S is the total energy of collision in the centre-of-mass frame
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Review of The Standard Model

Particle Physics is the study of:

* MATTER: the fundamental constituents of the universe
- the elementary particles

* FORCE: the fundamental forces of nature, i.e. the interactions
between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and
fundamental manner possible

* Current understanding embodied in the STANDARD MODEL.:
* Forces between particles due to exchange of particles
» Consistent with all current experimental data !
* But it is just a “model” with many unpredicted parameters,
e.g. particle masses.
* As such it is not the ultimate theory (if such a thing exists), there
are many mysteries.
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Matter in the Standard Model

* In the Standard Model the fundamental “matter” is described by point-like
spin-1/2 fermions

LEPTONS QUARKS

q | miGeV q | miGeV The masses quoted for the
First e |—1]0.0005|d|-1/3| 03 massee”, Lo the effective
Generation [ [0 | =0 |u| 2| 03 | [ e cenine
Second u-|-1| 0106 |s|-13| 05
Generation v, | 0 =0 c|+2/3| 1.5
Third T |-1| 1.77 | b |-1/3 4.5
Generation v; | 0 =0 t|+2/3| 175

* In the SM there are three generations — the particles in each generation
are copies of each other differing only in mass. (not understood why three).
* The neutrinos are much lighter than all other particles (e.g. v, has m<3 eV)
— we now know that neutrinos have non-zero mass (don’t understand why
so small)
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Forces in the Standard Model

* Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) | JP | mIGeV g
EM (QED) Photon y | 1° 0
Weak W/ Z 1- | 80/91
Strong (QCD) | 8 Gluons g | 1~ 0
Gravity (?) Graviton? | 2* 0 g

* Fundamental interaction strength is given by charge g.
* Related to the dimensionless coupling “constant”

e.g. QED Zem = € =\ 4mogyhce

(both g and & are dimensionless,
* In Natural Units & = V4T but g contains a “hidden” Jic)

* Convenient to express couplings in terms of & which, being
genuinely dimensionless does not depend on the system of
units (this is not true for the numerical value for ¢)
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Standard Model Vertices

* Interaction of gauge bosons with fermions described by SM vertices
* Properties of the gauge bosons and nature of the interaction between
the bosons and fermions determine the properties of the interaction

STRONG EM WEAK CC | WEAK NC
|
|
q 8s q L e p* d W u , ¢ 8z q
|
|
|
|
Only quarks All charged All fermions : All fermions
Never changes fermions Always changes , Never changes
flavour Never changes flavour ' flavour
flavour
o ~ 1 o~ 1/137 Oy 1z ~ 1/40
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Feynman Diagrams

* Particle interactions described in terms of Feynman diagrams

e.g. scattering e.g. annihilation
e_ —
e e p
Y
Y
e w
q q
* IMPORTANT POINTS TO REMEMBER:
«“time” runs from left — right, only in sense that: 1
+ LHS of diagram is initial state INITIAL FINAL
+ RHS of diagram is final state ot ut
¢+ Middle is “how it happened” Y

+ anti-particle arrows in —ve “time” direction
* Energy, momentum, angular momentum, etc. _
conserved at all interaction vertices e H
* All intermediate particles are “virtual”
i.e. E2 # |p|*> +m? (handout 3)

“ti me”
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From Feynman diagrams to Physics

Particle Physics = Precision Physics
* Particle physics is about building fundamental theories and testing their
predictions against precise experimental data
‘Dealing with fundamental particles and can make very precise theoretical
predictions — not complicated by dealing with many-body systems
*Many beautiful experimental measurements
== precise theoretical predictions challenged by precise measurements
*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20t century physics.

Requires understanding of theory and experimental data
* Part Il : Feynman diagrams mainly used to describe how particles interact

* Part lll: ¢+ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes
¢+ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

* Interaction cross sections;
* Particle decay rates;
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Cross Sections and Decay Rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics

* Calculate transition rates from Fermi’s Golden Rule
[y =2n|Ty|°p(Ey)

Fﬁ is number of transitions per unit time from initial state

i) to final state (f] — not Lorentz Invariant !
Tf,- is Transition Matrix Element
(fIH|))(1A]E) H is the i
;= perturbing
Tfl ‘H‘ T Z E;,— E Hamiltonian

J#i
p(Ey) is density of final states

* Rates depend on MATRIX ELEMENT and DENSITY OF STATES
- _/

Y ~ N~ Y
the ME contains the fundamental particle physics just kinematics
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The first five lectures

* Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: e- -
+ + + + €
(] e e_ — u u_ e ,Y u
e q *e (g
(e-q—e—q to probe e- -
proton structure) H q q

A Need relativistic calculations of particle decay rates and cross sections:
M|
flux

A Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function

O =

X (phase space)
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Particle Decay Rates

- Consider the two-body decay 1
i— 142 l
. Want to calculate the decay rate in first order ......................... .. ...............................

perturbation theory using plane-wave descriptions /
of the particles (Born approximation):

v = Nei(ﬁ.?—Et) 7{’._,: =
— Ne P ( =p

where N is the normalisation and pP.X = p“xu

S|
Q
(7]
ey
I
[
~—

For decay rate calculation need to know:
« Wave-function normalisation

- Transition matrix element from perturbation theory f\" In a Ltt;rentz
- Expression for the density of states nvariant rorm

* First consider wave-function normalisation

* Previously (e.g. part Il) have used a non-relativistic formulation
* Non-relativistic: normalised to one particle in a cube of side d

[yy*dV =N? =1/ad°

Prof. M.A. Thomson Michaelmas 2009
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Non-relativistic Phase Space (revision)
- Apply boundary conditions (p = ﬁ%):

» Wave-function vanishing at box boundaries >
== quantised particle momenta: a/\/\/
_ 27ny . _ 27rn}’ . _ 2nng
px — T a4 py — T a4 pZ - T4 a
* Volume of single state in momentum space: Dy a
(22) 3 _ @n) 0
a Vv

* Normalising to one particle/unit volume gives

number of states in element: d°p = dp,dp,dp; o
&Pp 1 &Ep Ve
dn = p3 X — = P i
@en vV (27)?
% p}z,
* Therefore density of states in Golden rule: z
dn dn d|p| with
pEN =75 = |iE ar iy
dE E; d|p| dE Ey )4
* Integrating over an elemental shell in /2
momentum-space gives (E ) B Amp > ﬁ
(3P = 47p>dp) PRI = ()3
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Dirac 6 Function

* In the relativistic formulation of decay rates and cross sections we will make
use of the Dirac é function: “infinitely narrow spike of unit area”

+oo
O(x—a) £) / O(x—a)dx=1

—00

| : [ r0d (- = fla

a X —oc0

- Any function with the above properties can represent 0 (x)

m o (52)
€.g. 5()6) = lim e \20° (an infinitesimally narrow Gaussian)
c—0+/27C

* In relativistic quantum mechanics delta functions prove extremely useful
for integrals over phase space, e.g. inthedecay ¢ — 1 +2

[..8(E,—E|—E))dE and [..8%p,—p1—po)dp

express energy and momentum conservation
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* We will soon need an expression for the delta function of a function §(f(x))
« Start from the definition of a delta function

2 (1 ify <0<y
/y] o(y)dy _{ 0 otherwise Flx)

- Now express in terms of ¥ = f(x) where f(xg) =0
and then change variables

/x6(f( ))((de {1 if x; <xp <xp | N

0 otherwise

* From properties of the delta function (i.e. here only o(f(x))
non-zero at Xg)

y /:ZS(f(x))dx:{ 1 ifx <.X()<x2

dx |, /x 0 otherwise i
* Rearranging and expressing the RHS as a delta function

1 5%

g —1
dx
X0

= | o(f(¥) = 0 (x —xo)

(1)

Prof. M.A. Thomson Michaelmas 2009
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The Golden Rule revisited

Ty =2x|Ty°p(Ey)

* Rewrite the expression for density of states using a delta-function

p (E ) dn dn
f pu— —_— pr— RS
E; dE

i O0(E —E;)dE since £ = E;

Note : integrating over all final state energies but energy conservation now
taken into account explicitly by delta function

- Hence the golden rule becomes: I'y; =27 / |Tﬂ|25(E,- —E)dn

the integral is over all “allowed” final states of any energy

* For dn in a two-body decay, only need to consider
one particle : mom. conservation fixes the other

r —27r/|T 255 Ey) P! o
fi — fi i 1 2 (271_)3 )
* However, can include momentum conservation explicitly by integrating over
the momenta of both particles and using another 3-fn

U= @m)* [ T3P 8(E:i— B~ £2)8 (i — ) G )3

Energy cons. Mom. cons. Density of states
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Lorentz Invariant Phase Space

* In non-relativistic QW normalise to one particle/unit volume: f l//* ydV =1

* When considering relativistic effects, volume contracts by Y = E/m
—

= Ay
. A~ p YaVAY
a a
a a'y
- Particle density therefore increases by Y = E /m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume | [ y*y'dV = 2E

* Previously used ¥ normalised to 1 particle per unit volume [y*ydV =1

* Hence l/l’ = (2E)1/21// is normalised to 2F per unit volume

 Define Lorentz Invariant Matrix Element, Mf,-, in terms of the wave-functions
normalised to 2F particles per unit volume

My =y .y |H|..W _ v = (2E1.2E2.2E;... 2E,) /2 Ty,
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* For the two body decay M i

= (yy|H |y))
I— 142

= (ZEi.2E1.2E2)1/2<l[/1l[/z‘[fll|l}fi>
— (2E;i.2E|.2E)'?Ty,
* Now expressing T; in terms of My; gives

(27:)4] 2 Y P U 3 )
[y = M i|*8(E; — E) — E2) 8 (Pa— P1 —

Note:

Mf,‘ uses relativistically normalised wave-functions. It is Lorentz Invariant

d313’ is the Lorentz Invariant Phase Space for each final state particle
(2%)32E the factor of 2E arises from the wave-function normalisation

(prove this in Question 2)
© This form of Ff,- is simply a rearrangement of the original equation

but the integral is now frame independent (i.e. L.l.)

' Fﬂ is inversely proportional to E , the energy of the decaying particle. This is
exactly what one would expect from time dilation (E, = ym).

" Energy and momentum conservation in the delta functions
Prof. M.A. Thomson Michaelmas 2009
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Decay Rate Calculations

(277:

Ty =

& pi &’ p>
Myi|*8(E;—E| —E»)8° (pi— p1 — P
/l il 0(Ei = Er = E2)8°(Bi = p1 = P2) (27)32E; (27)32E;
* Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.0.M. frame is most convenient

*Inthe C.o.M.frame E;=m; and p;=0 =

1
[y = Mp|28(m; —Ey — E>)83 (P + B
/ Sn-ZEJ' fil~8(mi = Er — E2)8°(P1 + P2) 57—

- Integrating over P> using the 5-function:

d3p1 d3
2E| 2E;

1 d*pi
Ty = |28 (m; — E) — E
I:> fi Q 2 | (ml 1 2)4E1E2
now E3 = (m3+|p1|?) since the 5-function imposes P, = —p
-Writing d*p1 = pidp; sin6d6d¢ = prdp;dQ For convefiience, here

|P1] is writteh as p;

dpldQ
2 /[ 2 /
= Ffl—327r2 /lez| 5 m; — m1+p1 m2+P1> EE,

Prof. M.A. Thomson
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* Which can be written _ 1 / | fi 2
1

e form 1= 30 p1)6(f(p1))dp1dQ  (2)
where g(p1) = pi/(E1E2) = pi(mi +p7)~"/*(m3 + p7) ="/

and  f(p1) =mi— (m}+pi)'? = (m3+pi)'/? i P al
Note: . 5(f(p1)) imposes energy conservation. i/é' .........

« f(p1) =0 determines the C.0.M momenta of /
p*

the two decay products 9
ie. f(p1)=0 for p1 =p*
* Eq. (2) can be integrated using the property of - function derived earlier (eq. (1))

[ sp03 0PI = 775 [ep0)3(o1 -~ p)am = 8()

where P is the value for which f(p*) =0
« All that remains is to evaluate df/dp;

Y 4 pPi o, El+E
dpi (m2+p)1/2 (szrpl)l/2 Ei E E\E>
Prof. M.A. Thomson Michaelmas 2009 25
. 1 5 EE> p1
giving: Ip = 5 /|Mf,-| dQ
32m°E; PiEI+Er) E\Er |, _
3272, J M E\+Es|, _,.

«But from f(p;) =0, i.e. energy conservation: E1+FE; =m

‘_)x

= M ;i [2dQ
Ji— 3271:2Eml/‘ d

In the particle’s rest frame FE; = m,

1 P )
ﬂ — == —— My dQ 3
T 327:2 /I i “ )

VALID FOR ALL TWO-BODY DECAYS !
- p*can be obtained from f(p;) =0

(m% + P*z) 1/2 4 (m% + P*z)l/z =m (Question 3)
1 "
# p = 7 \/Kml — (,nl —'rﬂ”iz)z] [m% — (ml — mz)z] (now try Questions 4 & 5)
m
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Cross section definition

fint ti it ti / t t Flux = number of
- No or Interactions per unit time/per targe incident particles/

incident flux unit area/unit time

* The “cross section”, 5, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

o — . here @ is the projective area of nucleus

Differential Cross section
or generally

do _ no of particles per sec/per target into dQQ do
dQQ incident flux d

A dQ =d(cosH)d¢

© / with | d—GdQ

D \r> integrate over all d
other particles
Prof. M.A. Thomson Michaelmas 2009 27
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+ Consider a single particle of type a with velocity, v , traversing a region of area
A containing n, particles of type b per unit volume (Va + Vb)5f
In time & a particle of type a traverses °
region containing 1, (v, + vp)AOt A .
particles of type b o
o * Interaction probability obtained from effective
A O] cross-sectional area occupied by the
® np (va +Vp )A5t particles of type b
np(vy+vp)AOto
* Interaction Probability = ( = ) = npvoto [v =V, + vb]

A
== | Rate per particle of type a= n,v o

- Consider volume V, total reaction rate = (n,v0).(n,V) = (nyV) (ngv) o
= Nb¢a6

- As anticipated: | Rate = Flux x Number of targets x cross section
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Cross Section Calculations

» Consider scattering process 7 /‘ 3
|+2—3+4 1 > 4 —
V2
- Start from Fermi’s Golden Rule: 4/

Iy =(2n)* /|Tf;\ S(E\+E»—E3—Ey)8 (P + pr— P3 — Pa) —

where Tfl- is the transition matrix for a normalisation of 1/unit volume
-Now Rate/Volume = (flux of 1) X (number density of 2) X &

= n1<V1—|—V2) XnyXoO

« For 1 target particle per unit volume Rate = (Vl + vz)G

L'

c = —

(v1 + V2)
(2m)* / 2 3 &p3 dpy

O = T:i|“0(E1 +E, —E3 —E4)0° (P Dy — D
m— |Ti|"0(E1 + Ex — E3 — E4)0° (p1 + P2 — P3 — )(2717) 3 (211)°
_ ~ ~- ~
“————>_| the parts are not Lorentz Invariant |
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To obtain a Lorentz Invariant form use wave-functions normalised to 2F particles

per unit volume v = (2E>1/2W

+ Again define L.I. Matrix element Mfi = (2E1 2E,2F5 2E4)1/2Tfi

o= (27 /lM!S(EJrE—E E)8(p1+pr— Py — )d3 s &'
T 2E 2B (v ) fi 1T L2 —L£3— L4 P1+p2—P3—Pa 2Es 2E;

* The integral is now written in a Lorentz invariant form

- The quantity F = 2E2F5>(v) +Vv|) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

_ u 2. 211/2 i
F =4 [(pl P2u) m]mz} (see appendix I)
« Consequently cross section is a Lorentz Invariant quantity
Two special cases of Lorentz Invariant Flux:

» Centre-of-Mass Frame » Target (particle 2) at rest
F = 4EEy(vi+w) F = 4EEx(vi+w)
4E\Ex(|P*|/E\+|P*|/E2) = 4Eimv
= 4|p*|(E1 +E>) = 4Eymy(|p1|/E1)
= 4p|Vs = 4my|p|

Prof. M.A. Thomson Michaelmas 2009 30




2—2 Body Scattering in C.o.M. Frame

» We will now apply above Lorentz Invariant formula for the ﬁ}/‘ 3
interaction cross section to the most common cases used g~ =P
in the course. First consider 2—2 scattering in C.o.M. frame 1 q*' ) 2

- Start from 4AA !

(2m) 2 d3ps &3 py

= M?8(Ey +Er—E3—E B
c /| 4P S(Ey + Ey — Ez — E4)8° (py + P> — 3 P4)2E3 s

2E; 2E2(V1 —|—V2
 Here ﬁ1+]32 =0 and E|+E» :\/
d3p3 d3

2
= [—»*|\/—/iMﬁ 0 \[ E3— E4)5 (D3 +Pa) —— 2 2E4

*The integral is exactly the same integral that appeared in the particle decay
calculation but with 71, replaced by /s

- (277:) 2 |pf‘ 12 30)*
= 7= 4|pl\f4f/ Mo
c 17y / M g;|*dQ*
6472s | /i
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* In the case of elastic scattering \ﬁﬂ = |]_5}?| I e e 3
1 2 *
Oelastic — 64725 /|Mfl| dQ ,
+ +
B ph 4

* For calculating the total cross-section (which is Lorentz Invariant) the result on
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o0.M:

1 [P} 5
M 12dO"
64725 |ﬁ|‘ fil

because the angles in dQ* = d(cos 0*)d¢@™ refer to the C.0.M frame
* For the last calculation in this section, we need to find a L.I. expression foido

do =

* Start by expressing dQ2* in terms of Mandelstam ¢ f— 2 ( - )2
i.e. the square of the four-momentum transfer —4 =\P1—P3

_u
e P Pél e

Product of
four-vectors
H H therefore L.l

qﬂ =P — D3
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- Want to express dQQ* in terms of Lorentz Invariant d¢

where = (p1 —p3)2 = p% —I—p3 2p1.p3 = m1 +m3 2p1.p3

¢+ In C.o.M. frame:

x 4
it = (ELO0 ) s I
py = (E3,|P3|sin6%,0,|p5| cos 6%) 1 ZEND 2
Pipsu = E{E;—|pi||p3lcos@” /—/ﬁii 2
t = mi+mi—EfE}+2|pt||P5|cos 0 4
giving  dr =2|pj||p3|d(cos 6”)
; ¥ 4k dfdﬁb*
therefore  dQ* =d(cos0")d¢* = | 1
1 DA 1
hence do = 64n2s%|Mﬁ|2dQ* — 2'64752S|ﬁﬂ2|Mﬁ|2d¢*dt
- Finally, integrating over d¢* (assuming no ¢* dependence of ‘Mfi|2 ) gives:

do 1 )
- My
dt 64ns|ﬁj\2‘ i

Prof. M.A. Thomson Michaelmas 2009

33

Lorentz Invariant differential cross section

- All quantities in the expression for do/d¢ are Lorentz Invariant and
therefore, it applies to any rest frame. It should be noted that ]pl \2
is a constant, fixed by energy/momentum conservation

1
%12 _ 2 2
5717 = s = (- mo)7][s — (1 — )]
- As an example of how to use the invariant expression do/dr

we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E; > m;

b e e.g. electron or neutrino scattering
_ 2
In this limit 7P = %
S
do 1 ,
pu— M _
dt 167(s m§)2| i (m1 =0)
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2—2 Body Scattering in Lab. Frame

* The other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m; =m3 =0, my=my=M
— e- 3

9. 1
€.9. e\

2 X X 4
* Wish to express the cross section in terms of scattering angle of the e-
dQ =2md(cos 6)
therefore do — do dr _ 1l _d do
dQ dr dQ 27w d(cos6) dr
* The rest is some rather tedious algebra.... start from four-momenta
P11 = (E190707E1)7 P2 = (M70a070)7 pP3= (E37E3 SiHG,O,E?, COSO)? P = (E47ﬁ4)
so here t:(pl—p3)2:—2p1.p3 :—2E1E3(1—COSQ)

But from (E,p) conservation p1—+ p> = p3+ pa
and, therefore, can also express f in terms of particles 2 and 4

Integrating

over d¢
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r = ([92—p4)2:2]\42—2}?2.p4:2]\42—2]\4]5'4r
= 2M*—2M(E|+M —E3) = —2M(E| — E3)

Note El is a constant (the energy of the incoming particle) so

dr dEs
- - oM
d(cos9) d(cos @)
Equating the two expressions for f gives |(EF: = EiM
ST M+E; —E|cos0
2\ 2 2
- dEy EM _py (B _B
d(cos0) (M+E| —E|cos0)? E\M M
do _ 1 d& do_ 1, Eids _Ejdo _Ej 1 M 4]
dQ ~ 2md(cosO) dt 2z M dt  m &t m 16m(s—M2)2"
using 5= (p1+p2)? = M>+2p1.py = M? + 2ME, Parce{ masslss.
gives (S_M2) — 2ME] .........................................
2
do _ 1 £ M2 In limit m; — 0
dQ 6472 \ ME,
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In this equation, E; is a function of §:

EM
Es =
M+E;—E;cosf
. do 1/ 1 \?
ivin — lag 12 mi =0
I dQ  64r? \M—I—El—ElcosG} ik (m1 =0)

General form for 2—2 Body Scattering in Lab. Frame

*The calculation of the differential cross section for the case where m; can not be
neglected is longer and contains no more “physics” (see appendix Il). It gives:

do _ 1 1 |ﬁ3‘2 } _‘2
dQ  64n> pymy |P3|(E) +my) — E3|p1|cosO

Again there is only one independent variable, 8, which can be seen from
conservation of energy

L'. | 1. — /|X-|2 | 1/1/12 | /|24|2 | |x.\|2_°|17\'\ ||x.\|nf\(\D | 1/1/12
LlTIIZ—'Vlyjl —I_IIL3_|_’V| ll —l_Illjl A|[Jl||[/j|bUDU—|—IIL4
N— —
. g . . B — 5B _7
i.e. |P3] is afunction of @ ps=p1—p3
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* Used a Lorentz invariant formulation of Fermi’s Golden Rule to
derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay'

2 Where p* is a function of particle masses
3277,'2 p* (2 — (my +mp)?) [m2 — (m1 — my)?|
zmi\/ L\ 1" ]
* Scattering cross section in C.o.M. frame:
1Pyl
. / M 2dey
64m2s |

* Invariant differential cross section (valid in all frames):

do 1
= =¥ (2 ‘jwfi|2 i
dt  64ns|p;|

P = o5 (m )l (mi—ma)’
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Summary cont.

* Differential cross section in the lab. frame (#2,=0)

do 1 [ E3 \* do 1 1 SN
= M -) = M
dQ 6472 (ME1> M dQ  64n? (M—I—El —E) cosG) My

* Differential cross section in the lab. frame (1,7 0)

do 1 1 53|
dQ 6472 |]3'1|m1 |ﬁ3|(E1—|—m2)—E3|ﬁ1|COSQ

M|

with E;+my = \/]1‘9’3\24—171%—1—\/|ﬁ1|2—|—|ﬁ3|2—2];7'9’1|]13'3|cos.6—i—mfL

Summary of the summary:

* Have now dealt with kinematics of particle decays and cross sections
* The fundamental particle physics is in the matrix element
*The above equations are the basis for all calculations that follow
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Appendix | : Lorentz Invariant Flux

NON-EXAMINABLE

=Collinear collision: a > s b
VasPa Vby Pb
F = 2Ea2Eb(Va —|—vb) = 4EaEb |pa| + ‘p_b|
E, Ep

= 4(|PalEp+|Pp|Ea)
To show this is Lorentz invariant, first consider
Pa-Pb = P4 oy = EaEp — Pa-Pp = EaEp + | Pal | Pb|
Giving  F2/16— (phpeu)® = (|BalEs+|Ps|Ea)® — (EaEp+ |Bal Ps])
= |Pal*(E; — |B*) + EZ(1Po]” — Ef)
|Bal*mi, — Ejm;
— i

1/2
Fo= 4[(ptppu)>—mmi)"!
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Appendix Il : general 2—2 Body Scattering in lab frame

NON-EXAMINABLE

plz(E1,0,0,|ﬁ1|), pQI(M,O,O,O), p3:(E3,E38in9,0,E3COSG), p4:(E4,ﬁ4)

) do do dr 1 d do
again — _

dQ ~ dr dQ 27w d(cosH) dr

But now the invariant quantity #:
t = (p2—pa) =m3+mi—2pr.ps=m5+mj—2mEy
= m5+m5—2my(E| +ms — E3)
dr dE;

— 2y ———
- d(cos6) 2 d(cos6)
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Which gives  do _m dE; do
dQ 7 d(cosB) dr

To determine dE,/d(cosé), first differentiate E32 + |3 \2 = m%
dEs L d|ps|
2Ey———— =12 — .
3d(cos 0) |p3‘d(cos 0) (All1)
Then equate t=(p1—p3)*=(pa—p2)* to give

m%—l—m% —2(E1E3 — ‘51Hﬁ3|COSQ) = mi—l—m% —Zmz(El +my —E3)
Differentiate wrt. cos &

(B +m) 50— [t cos8 120 =[5 7o
dcos 6 dcos 6
Using (1) dEs |P1]|3)? (AlL2)
d(cosB)  |p3|(E| +my)— E3|p1|cosB
do m, dE; do m» dE; 1 )
= = *|2|Mfi|

dQ 7 d(cos®) dr 71 d(cosB) 647s|p:

l
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It is easy to show |p|\/s = my|p1|

do . dE; my
dQ  d(cos @) 647m2m3|p; |2
and using (All.2) obtain

M|

do 1 1 B3]
dQ  64r2 p1mi ‘ﬁ3|(E1+m2)—E3|ﬁ1|COSQ

My
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