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Appendix I: Logitudinal invariance of ‘Lorentz Invariant Flux’

The argument in this appendix aims to show that the so-called ‘Lorentz Invariant Flux’, F ,
defined only for collinear collisions a ���!

va,~pa
 ���
vb,~pb

b by

F = 2Ea2Eb (va + vb)

may be written in a Lorentz Invariant way, constant across all frames for which the
collision is colliner.
For all such frames: pa · pb = pµ

a pbµ = EaEb � ~pa · ~pb = EaEb + |~pa| |~pb|. (It is the last step
therein which assumes collinearity!) Thus, for all such frames:

F 2/16� (pµ
a pbµ)

2 =
1
16

✓
2Ea2Eb

✓
|~pa|
Ea

+
|~pb|
Eb

◆◆2

� (pa · pb)2

= (|~pa|Eb + |~pb|Ea)
2 � (EaEb + |~pa| |~pb|)2

= |~pa|2
⇣
E 2
b � |~pb|2

⌘
+ E 2

a

⇣
|~pb|2 � E 2

b

⌘

= |~pa|2 m2
b � E 2

am
2
b

= �m2
am

2
b

and so

F = 4
h
(pµ

a pbµ)
2 �m2

am
2
b

i1/2
.

513 / 614



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 Ref App

Appendix II: General 2 ! 2 Body Scattering in lab frame I

p1 = (E1, 0, 0, |~p1|) , p2 = (M2, 0, 0, 0) , p3 = (E3,E3 sin ✓, 0,E3 cos ✓) , p4 = (E4, ~p4)
again

d�
d⌦

=
d�
dt

dt
d⌦

=
1
2⇡

dt
d(cos ✓)

d�
dt

But now the invariant quantity t :

t = (p2 � p4)
2 = m2

2 +m2
4 � 2p2 · p4 = m2

2 +m2
4 � 2m2E4

= m2
2 +m2

4 � 2m2 (E1 +m2 � E3)

) dt
d(cos ✓)

= 2m2
dE3

d(cos ✓)
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Appendix II: General 2 ! 2 Body Scattering in lab frame II

Which gives d�
d⌦ = m2

⇡
dE3

d(cos ✓)
d�
dt

To determine dE3/d (cos ✓ , first di↵erentiate E 2
3 � |~p3|2 = m2

3

2E3
dE3

d(cos ✓)
= 2 |~p3|

d |~p3|
d(cos ✓)

(172)

Then equate

t = (p1 � p3)
2 = (p4 � p2)

2 to give

m2
1 +m2

3 � 2 (E1E3 � |~p1| |~p3| cos ✓) = m2
4 +m2

2 � 2m2 (E1 +m2 � E3)

Di↵erentiate wrt. cos ✓

(E1 +m2)
dE3

d cos ✓
� |~p1| cos ✓

d |~p3|
d cos ✓

= |~p1| |~p3|

Using (172)

dE3

d(cos ✓)
=

|~p1| |~p3|2

|~p3| (E1 +m2)� E3 |~p1| cos ✓
(173)

d�
d⌦

=
m2

⇡
dE3

d(cos ✓)
d�
dt

=
m2

⇡
dE3

d(cos ✓)
1

64⇡s |~p⇤
i
|2
|Mfi |2
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Appendix II: General 2 ! 2 Body Scattering in lab frame III

It is easy to show |~p⇤
i |
p
s = m2 |~p1|

d�
d⌦

=
dE3

d(cos ✓)
m2

64⇡2m2
2 |~p1|2

|Mfi |2

and using (173) obtain

d�
d⌦

=
1

64⇡2
· 1
m2 |~p1|

· |~p3|2

|~p3| (E1 +m2)� E3 |~p1| cos ✓
· |Mfi |2 .
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Appendix III: Dimensions of the Dirac Matrices I

In a d-dimensional spacetime there will always be d gamma matrices, as one is associated
with each spacetime derivative in the Hamiltonian. That is why in 4-dimensional
spacetime we have four gamma matrices: �0, �1, �2 and �3.
But why does d = 4 force those matrices to be (4⇥ 4)-matrices ?
Rather than answer the above question, we instead state (and later prove) the more
general result (174) linking the (n ⇥ n) size of gamma matrices to the number d of
spacetime dimension with which they are associated:

n = 2b
d

2 c. (174)

The result (174) is a direct consequence of the gamma matrices having to satisfy (as we
already saw in (30)) the defining property of a (so called) ‘Cli↵ord Algebra’, namely that:

�µ�⌫ + �⌫�µ = 2gµ⌫1n⇥n. (175)

Warning: the proof we provide for the above statement relies on Schur’s Lemma. This may be a source of

dissatisfaction for some persons taking the course because Schur’s Lemma, although stated in the Groups and

Representations section of the Part IB Mathematics course within Natural Sciences Tripos, was stated in that

coure without proof. If you find that annoying, you will have to find an alternative proof.
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Appendix III: Dimensions of the Dirac Matrices II

Aside on size of Pauli matrices:

Although we are mainly interested in proving (174) to substantiate the claim that each �µ

is a (4⇥ 4)-matrix, we note that the same result can be used to explain why the Pauli
matrices are (2⇥ 2)-matrices. The reason is that the three (d = 3) Pauli matrices satisfy
their own equivalent of (175), namely: �i�j + �j�i = 2�ij . Hence n = 2b3/2c = 21 = 2.

We wish to prove the result stated in (174) is the relationship between the dimension d of
spacetime and the dimension n of the (irreducible) (n ⇥ n) irreducible matrices �µ
satisfying (175) with µ, ⌫ = 0, 1, · · · , d � 1. Conveniently, the relationship (174) between
n and d which we seek to prove does not depend on the signature of the metric since it is
possible to convert a representation designed for one signature (say
gµ⌫ = diag(+,�,�,�)) to another (say gµ⌫ = diag(+,+,+,+)) without changing n by
multiplying appropriate �-matrices by i =

p
�1.

Therefore, without loss of generality, we actually take as our start point the simplest
possibility, namely:

�µ�⌫ + �⌫�µ = 2�µ⌫ · 1n⇥n. (176)

We nonetheless demand that the �-matrices are irreducible – i.e. that there is not a
similarity transformation that would reduce them all to a (non-trivial) block diagonal form.
We start by noting that with those assumptions:
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Appendix III: Dimensions of the Dirac Matrices III

Every �µ is invertible. [To prove this simply set µ = ⌫ in (176) and take the
determinant of both sides.]

For the matrix �⇤ ⌘ �0�1 · · · �d�1 we have

�⇤�µ = (�1)d�1�µ�⇤. (177)

[Proof: When �µ commutes with �⇤ it must pass d � 1 dissimilar �-matrices and a
single ‘identical’ �-matrix. Given (176) there are therefore d � 1 anti-commutations
and a single commutation. ⇤]

The matrix �⇤ ⌘ �0�1 · · · �d�1 squares to either +1 or -1 depending on d . [Proof:
it takes 1

2 (d � 1)d flips of adjacent pairs to reverse the order of d objects, and since
all the �-matrices in �⇤ are dissimilar and thus anti-commute we can deduce that

�⇤ ⌘ �0�1 · · · �d�1 = (�1)
1
2 (d�1)d · �d�1 · · · �1�0
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Appendix III: Dimensions of the Dirac Matrices IV

and so

(�⇤)2 = (�1)
1
2 (d�1)d · (�d�1 · · · �1�0) · (�0�1 · · · �d�1)

= (�1)
1
2 (d�1)d

d�1Y

µ=0

�µµ

= (�1)
1
2 (d�1)d

= s(d) (178)

in which s(d) ⌘ (�1) 1
2 (d�1)d is a d-dependent sign in {+1,�1}.]

If d > 1 then n must be even. [To prove this, consider µ 6= ⌫ (which requires
d > 1) in (176). In this case (176) becomes �µ�⌫ = ��µ�µ which implies that
det{�µ} det{�⌫} = (�1)n det{�⌫} det{�µ} which (since every �µ is invertible)
implies that 1 = (�1)n and thus that n is even. ]
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Appendix III: Dimensions of the Dirac Matrices V

Theorem A: Any product of any number of �-matrices may (up to a sign) be
written as a product of at most d gamma matrices in strictly ascending order of
their indices. [This is because (176) states that dissimilar �-matrices anti-commute,
and that individual �-matrices square to ±1’. Therefore, an arbitrary product of
�-matrices can always have its �-matrices permuted into numerical order (with a sign
change if an odd number of permutations is required) leaving at most one copy of
each �-matrix as repeats will disappear (up to a sign) on account of the squaring
property.]

The last result above motivates the following definition.

Definition

If A is any integer whose binary representation modulo 2d is ~A, i.e. if (A
mod 2d) =

P
d�1
i=0 Ai · 2i with each Ai 2 {0, 1}, then define �A by

�A =
d�1Y

i=0

(
�i if Ai = 1

1 otherwise

)
. (179)

For example, this definition would make �13 = �0�2�3 since
13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23.
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Appendix III: Dimensions of the Dirac Matrices VI

On account of the modulo 2d part of the definition, any continuous range of indices of
length 2d would su�ce to include every such �-matrix. Without loss of generality will
always take indices A to be in the set

A = {1, 2, · · · , 2d},

and mapped into that range, if necessary, by an implicit modulo 2d operation. We
therefore define a complete list, L, of �-matrices as follows:

L = (�1, �2, . . . , �2d ) = (�A | A 2 A). (180)

Note that although we have defined 2d quantities �A in the list L we have not shown that
they are all unique. In other words, we cannot assume ‘(A 6= B) =) (�A 6= �B)’ or
‘(�A = �B) =) (A = B)’ unless later proved.

We now state and prove two important properties of the �-matrices:
Lemma 1:
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Appendix III: Dimensions of the Dirac Matrices VII

The most general form of this Lemma is

Tr [�A] =

8
><

>:

n if A = 0 mod 2n

0 if (A 6= 0 mod 2n) and (d is even or
P

d

i=1 Ai is even)

Tr [�A] otherwise.

(181)

Alternatively, a narrower form could be stated as follows

When d is even: Tr [�A] =

(
n if A = 0 mod 2n

0 otherwise.
(182)

Proof of Lemma 1:
The trace of �0 is always trivially n as �0 = 1n⇥n. Every other �A is the product of one or
more dissimilar �-matrices. We split the remainder of the proof into two parts: part (i)
shows that traces of products are zero where the remaining products contain an even
number of �-matrices, while part (ii) shows the same for products containing any odd
number of �-matrices. Note the subtle di↵erences between these two parts of of the proof:
the first needs to assume that the multiplied gammas are distinct but does not need to
worry about whether d is even or odd. In contrast the second does not care about
distinctness in the gammas but needs to assume that d is even.

523 / 614



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 Ref App

Appendix III: Dimensions of the Dirac Matrices VIII

Part (i): even products
If k is an integer greater than zero, and if a1, a2, . . . , ak are k distinct integers in [0, d � 1]
and if T = Tr

⇥
�a1�a2 · · · �ak�1�ak

⇤
then

T = Tr
⇥
�a1�a2 · · · �ak�1�ak

⇤

= (�1)k�1 · Tr
⇥
�ak�a1�a2 · · · �ak�1

⇤

(after k � 1 anti-commutations using (176) and k > 0)

= (�1)k�1 · Tr
⇥
�a1�a2 · · · �ak�1�ak

⇤
(trace cyclicity)

= (�1)k�1 · T

therefore:

“The trace of the product of an even number of distinct �-matrices . . .

. . . is zero provided the even number is greater than or equal to two”. (183)

Part (ii): odd products
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Appendix III: Dimensions of the Dirac Matrices IX

If k is an integer greater than zero, and if a1, a2, . . . , ak are k integers in [0, d � 1] and if
T = Tr

⇥
�a1�a2 · · · �ak�1�ak

⇤
then

T = Tr
⇥
�a1�a2 · · · �ak�1�ak

⇤

=) s(d) · T = Tr
⇥
(�⇤�⇤)�a1�a2 · · · �ak�1�ak

⇤
(by (178))

=) s(d) · T = Tr
⇥
�⇤�a1�a2 · · · �ak�1�ak�

⇤⇤ (trace cyclicity)

=) s(d) · T = ((�1)d�1)k · Tr
⇥
�⇤�⇤�ak�a1�a2 · · · �ak�1

⇤
(after k uses of (177))

=) T = (�1)k(d�1) · Tr
⇥
�ak�a1�a2 · · · �ak�1

⇤
(by (178) again)

=) T = (�1)k(d�1) · T

therefore:

“when d is even, the trace of the product of an odd number of �-matrices is zero”.
(184)

This concludes our proof of Lemma 1. ⇤
Lemma 2:

�A�B = s(A,B) · �A�B (185)
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Appendix III: Dimensions of the Dirac Matrices X

in which ‘�’ represents ‘bitwise exclusive or’ and s(A,B) is a function mapping pairs
of indices to the set {+1,�1}.
Proof of Lemma 2:

�A�B =
d�1Y

i=0

(
�i if Ai = 1

1 otherwise

)
d�1Y

i=0

(
�i if Bi = 1

1 otherwise

)

= s1(A,B)
d�1Y

i=0

 (
�i if Ai = 1

1 otherwise

) (
�i if Bi = 1

1 otherwise

)!
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Appendix III: Dimensions of the Dirac Matrices XI

where s1(A,B) 2 {+1,�1} is a sign which will depend on how many anti-commutations
deriving from (176) were needed to re-order the matrices, and so

�A�B = s1(A,B)
d�1Y

i=0

8
><

>:

(�i )
2 if Ai = Bi = 1

�i if Ai � Bi = 1

1 otherwise

9
>=

>;

= s1(A,B)
d�1Y

i=0

8
><

>:

gii (no sum i) if Ai = Bi = 1

�i if Ai � Bi = 1

1 otherwise

9
>=

>;
(by (176))

= s(A,B)
d�1Y

i=0

8
><

>:

1 if Ai = Bi = 1

�i if Ai � Bi = 1

1 otherwise

9
>=

>;
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Appendix III: Dimensions of the Dirac Matrices XII

where s(A,B) is a new sign function that accounts for our having replaced gii with 1, and
so

�A�B = s(A,B)
d�1Y

i=0

(
�i if Ai � Bi = 1

1 otherwise

)

= s(A,B)�A�B ⇤.

A corollary of (185) is that every �-matrix is invertible. [Proof: setting B equal to A in
(185) tells us that (�A)

2 = s(A,A) · �0 = s(A,A) · 1n⇥n = ±1n⇥n and so

(�A)
�1 is either �A or ��A. (186)

]
Perhaps we can do better. Suppose A has a ones in its binary representation
(i.e. a =

P
d�1
i=0 Ai so that �A is a product of a gamma matrices in ascending order of

index). If we then square �A we could attempt to permute adjacent gamma matrices
within the product so as to annihilate every identical pairing, leaving behind only a sign.
This process would require a� 1 anticommutations to annihilate the first pair, a� 2 the
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Appendix III: Dimensions of the Dirac Matrices XIII

second, etc, and none for the last. This is a total of 1
2 (a� 1)a anticommutations, and so

we can make the very specific claim that

(�A)
2 = (�1)

1
2 (a�1)a (187)

or equivalently

(�A)
�1 = (�1)

1
2 (a�1)a · �A. (188)

Indeed, we see that the already derived result (178) could be viewed with hindsight as a
simple corollary of (187).
Knowing that the �-matrices are all invertible we may define a matrix S as follows:

S =
X

X2A

(�X )
�1 · Y · �X (189)
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Appendix III: Dimensions of the Dirac Matrices XIV

where Y is an arbitrary (n ⇥ n)-matrix whose value we will fix later. It is follows that for
any integer A (not summed) in the usual range A:

(�A)
�1 · S · �A =

X

X2A

(�X�A)
�1 · Y · (�X�A)

=
X

X2A

(sX�A�X )
�1 · Y · (sX�A�X ) (using (185))

=
X

X2A

(�A�X )
�1 · Y · (�A�X )

=
X

X2A�A

(�X )
�1 · Y · (�X )

=
X

X2A

(�X )
�1 · Y · (�X ) (since A�A ⌘ {A� B,B 2 A} = A)

= S

and thus S · �A = �A · S .
Having found a matrix S which commutes with every element �A of a list L of matrices,
one might hope to use Schur’s Lemma to claim that S is some multiple of 1n⇥n. However,
a precondition of the only version of Schur’s Lemma which I understand and which also
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Appendix III: Dimensions of the Dirac Matrices XV

allows that conclusion to be drawn requires the elements of L to form an irreducible
representation of some group G . Not only have we not yet shown that this precondition is
satisfied, it actually looks likely to be false! For example, for the usual �-matrices in d = 4
dimensions we would have �1�2 = �1�2 = � �2�1 = ��2�1 and so for L to be closed under
multiplication it would need to contain both +�2�1 and ��2�1. This seems unlikely as we
did not set up L to contain negated copies of every element. It therefore seems unlikely
that L is closed under multiplication and so it seems unlikely that L represents a group.
It could be argued that the source of the problem is the annoying sign s(A,B) in (185). If
that pesky sign were not there and the constant ‘+1’ were always in its place, products of
�-matrices would be closed. We cannot arbitrarily dispose of that pesky sign, but it does
suggest a resolution: we could double the length of our list L by adding to it another copy
of itself but with the sign of every matrix reversed in the second half. The elements of this
list will then be closed under multiplication, which is would be a requirement for them to
be any kind of representation. We shall call the set containing all those elements G :

G = {+�A | A 2 A} [ {��A | A 2 A}. (190)

This set of matrices is: (i) closed under multiplication, (ii) contains the identity
�2d = 1n⇥n, (iii) contains an inverse for every element (see proof in (186)). Finally (iv)
matrix multiplication is associative. Therefore G together with the operation of matrix
multiplication forms a group. As it is a finite matrix group it is also representation of
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Appendix III: Dimensions of the Dirac Matrices XVI

itself. This representation must be irreducible since the representation contains elements
which are copies of the original �-matrices (e.g. �1 = �0, �2 = �1, ... �2d = �d), and those
original �-matrices were taken to be be irreducible at the outset by assumption (see
paragraph containing (176)). Although we have increased the number of elements in G
relative to L, we can be sure that our old S will commute with every element of the new G
because

([S ,+�A] = 0) () ([S ,��A] = 0).

We have thus established all the preconditions necessary to allow us to use Schur’s Lemma
to state that S is a multiple of the identity, or more specifically:

� · 1n⇥n =
X

X2A

(�A)
�1 · Y · �A (191)
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Appendix III: Dimensions of the Dirac Matrices XVII

for some scalar � that will depend on Y . Taking the trace of both sides of (191) and
using the cyclicity of the trace gives us:

n� =
X

X2A

Tr
h
(�A)

�1 · Y · �A

i

=
X

X2A

Tr
h
Y · �A · (�A)

�1
i

=
X

X2A

TrY

= 2d · TrY

and thus

� =
2d

n
· TrY . (192)

Putting this value for � back into (191) yields

2d

n
· TrY · 1n⇥n =

X

X2A

(�A)
�1 · Y · �A. (193)
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Appendix III: Dimensions of the Dirac Matrices XVIII

We now exercise our remaining freedom to choose Y to be any (n ⇥ n)-matrix we wish,
deciding to let

[Y ]ij = �is�jt

where s and t are integers in [1, n] which we may choose to fix later. With that choice in
mind, and with i and j being other arbitrary integers also in [1, n], (193) can be expanded
as:


2d

n
· TrY · 1n⇥n

�

ij

=

"
X

X2A

(�A)
�1 · Y · �A

#

ij

or equivalently

2d

n
· (�ms�mt) · �ij =

X

X2A

((�A)
�1)im · (�ms�nt) · (�A)nj

which simplifies to

2d

n
· �st · �ij =

X

X2A

((�A)
�1)is · (�A)tj . (194)
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Appendix III: Dimensions of the Dirac Matrices XIX

Since (194) is true for any i ,j ,s,t in [1, n], let us set s ! i and t ! j and then sum over i
and j . Making use of the summation convention over i and j we find that:

2d

n
· �ij · �ij =

X

A2A

((�A)
�1)ii · (�A)jj

which simplifies to

2d

n
· n =

X

A2A

Tr
h
(�A)

�1
i
· Tr[�A]

or

2d =
X

A2A

Tr
h
(�A)

�1
i
· Tr[�A]. (195)

d-even
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For the case that d is even we may now use (182) to simplify (195) to

2d = Tr
h
(�0)

�1
i
· Tr[�0]

= Tr
h
(1n⇥n)

�1
i
· Tr[1n⇥n]

= Tr[1n⇥n] · Tr[1n⇥n]

= n · n = n2

=) n = 2d/2 (but only for d even!). (196)

d-odd
This is a bit of a trick. One may always generate an irreducible representation of the
gamma matrices for an odd spacetime dimension d + 1 from an irreducible representation
valid for an even number of spacetime dimensions d . The way to do this is surprisingly
simple: if n

�0, �1, . . . , �d�1
o

is an irrep of (176) for an even number of spacetime dimensions d , and if we define

�⇤ ⌘ �0�1 · · · �d�1
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and if we recall the definition of s(d) from (178), then
n
�0, �1, . . . , �d�1

o
[ {

p
s(d) · �⇤} (197)

will be an irrep of (176) valid for dimension d + 1 spacetime dimensions. That (197) is
the irrep it is claimed to be is a consequence of three things: (i) �⇤ was proved in (177) to
anticommute with all the other gamma matrices when d is even and this
anti-commutation is the property enforced/required by (176) whenever µ 6= ⌫, (ii) thatp

s(d)�⇤ squares to 1 was proved in (178), and this is the property enforced/required by
(176) whenever µ = ⌫, and (iii) the representation (197) is an irrep as the first d gammas
formed an irrep by themselves (i.e. as there was no transformation which could ‘reduce’
them, there cannot be an irrep that could ‘reduce’ both then and �⇤). It may be observed
that this argument cannot be used to grow irreps without limit, since once an irrep for
even d is grown to an irrep for odd d , the ‘next’ �⇤ would fail to anticommute as desired.
Nonetheless, the clear message is that the dimension of the gamma matrices for odd
spacetime dimension d is always the same as the even dimension d � 1, and so (196) now
informs us that

n = 2(d�1)/2 (but only when d is odd!). (198)
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General spacetime dimension d (even or odd)
There result (196) for even d can be merged with the result (198) for odd d into a single
expression valid for any d :

n =

(
2d/2 (when d is even)

2(d�1)/2 (when d is odd)

=) n = 2bd/2c (for any d). (199)

This concludes the proof of (174) which is also a proof of the lesser claim that Dirac
Spinors have four components in the usual 4-dimensional spacetime.
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In the part II Relativity and Electrodynamics course it was shown that the motion of a
charged particle in an electromagnetic field Aµ = (�, ~A) can be obtained by making

the minimal substitution ~p ! ~p � q ~A; E ! E � q�

Applying this to (37) and (38)

(~�.~p � q~�.~A)uB = (E �m � q�)uA

(~�.~p � q~�.~A)uA = (E +m � q�)uB (200)

Multiplying (200) by (E +m � q�)

(~�.~p � q~�.~A)uB = (E �m � q�)uA

(~�.~p � q~�.~A)uA = (E +m � q�)uB (201)

where kinetic energy T = E �m

In the non-relativistic limit T ⌧ m (201) becomes

(~�.~p � q~�.~A)(~�.~p � q~�.~A)uA ⇡ 2m(T � q�)uAh
(~�.~p)2 � q(~�.~A)(~�.~p)� q(~�.~p)(~�.~A) + q2(~�.~A)2

i
uA ⇡ 2m(T � q�)uA(202)
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Now ~�.~A =

✓
Az Ax � iAy

Ax + iAy �Az

◆
; ~�.~B =

✓
Bz Bx � iBy

Bx + iBy �Bz

◆
; which leads

to (~�.~A)(~�.~B) = ~A.~B + i~�.(~A ^ ~B)

and (~�.~A)2 = |~A|2

The operator on the LHS of (202):

= ~p2 � q
h
~A.~p + i~�.~A ^ ~p + ~p.~A+ i~�.~p ^ ~A

i
+ q2 ~A2

= (~p � q ~A)2 � iq~�.
h
~A ^ ~p + ~p ^ ~A

i

= (~p � q ~A)2 � q2~�.
h
~A.~r+ ~r.~A

i
(since ~p = �i ~r)

= (~p � q ~A)2 � q~�.(~r^ ~A) (since (~r^ ~A) = ~r^ (~A ) + ~A ^ (~r ))
= (~p � q ~A)2 � q~�.~B (since ~B = ~r^ ~A)

Substituting back into (202) gives the Schrödinger-Pauli equation for the motion of a
non-relativisitic spin ½ particle in an EM field:


1
2m

(~p � q ~A)2 � q
2m

~�.~B + q�

�
uA = TuA.
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Since the energy of a magnetic moment in a field is we can identify the intrinsic
magnetic moment of a spin-half particle to be:

~µ =
q
2m

~�

In terms of the spin: ~S = 1
2~�

~µ =
q
m
~S

Classically, for a charged particle current loop

µ =
q
2m

~L

The intrinsic magnetic moment of a spin half Dirac particle is twice that expected
from classical physics. This is often expressed in terms of the gyromagnetic ratio is
g=2.

~µ = g
q
2m

~S
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Appendix V: Generators of Lorentz Transformations I

It will shortly be seen that the quantities

(M↵�)µ⌫ = gµ↵g⌫� � g⌫↵gµ� (203)

or the equivalent (but less symmetric) quantities

(M↵�)µ⌫ = gµ↵��⌫ � �↵⌫ gµ� (204)

are generators of Lorentz Transformations. The indices ↵� choose between generators
M↵� , while µ

⌫ in (M↵�)µ⌫ are there to act on vector indices. Evident antisymmetry in the
↵� of (203) means that there are only six independent non-zero generators. Suppressing
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the vector indices (taken to be µ
⌫) and taking gµ⌫ = diag(+,�,�,�) the six independent

generators are:

K1 = M01 = �M10 =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

CCA

K2 = M02 = �M20 =

0

BB@

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

1

CCA

K3 = M03 = �M30 =

0

BB@

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1

CCA
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and

J1 = M23 = �M32 =

0

BB@

0 0 0 0
0 0 0 0
0 0 0 �1
0 0 +1 0

1

CCA

J2 = M31 = �M13 =

0

BB@

0 0 0 0
0 0 0 +1
0 0 0 0
0 �1 0 0

1

CCA

J3 = M12 = �M21 =

0

BB@

0 0 0 0
0 0 �1 0
0 +1 0 0
0 0 0 0

1

CCA

or, for short:

Ji =
1
2
✏ijkM

jk

Ki = M0i .
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[Aside: The generators obey commutation relations

[Ji , Jj ] = ✏ijkJk , [Ji ,Kj ] = ✏ijkKk , [Ki ,Kj ] = �✏ijkJk .

The first of these says that the J’s generate rotations in three-dimensional space and fixes
the overall sign of the Js. The second says the K s transform as a vector under rotations.
End of aside]
With above definition1 one could represent and arbitrary Lorentz transformation (boost,
rotation or both) as

x 0µ = ⇤µ
⌫x

⌫

with

⇤µ
⌫ =

✓
exp


1
2
w↵�(M

↵�)••

�◆µ

⌫

(205)

= �µ⌫ +
1
2
!↵�(M

↵�)µ⌫ + O(!2) (206)

using a set of parameters w↵� which may as well be antisymmetric in ↵� (since any
symmetric part would not participate in (206) on account of the (↵$ �)-antisymmetry of
M↵�) and so contain six independent degrees of freedom (controlling three boosts and
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Appendix V: Generators of Lorentz Transformations V

three rotations) as required. In most of the proofs which follow we use the infinitesimal
transformations to first order in ! since if some properties can be proved for infinitesimal
transformations then it is always be possible to generalise that result to the exponential
form for a finite transformation.
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Lorentz transformations should be continuously connected to the identity (which (206) is,
when !↵� = 0) and should preserve inner products. The transformation in Eq. (206)
preserves inner products because:

x 0 · y 0 = gµ⌫x
0µy 0⌫

= gµ⌫(⇤
µ
�x

�)(⇤⌫
⌧y

⌧ )

= gµ⌫(�
µ
� +

1
2
!↵�(M

↵�)µ�)(�
⌫
⌧ +

1
2
!↵̄�̄(M

↵̄�̄)⌫⌧ )x
�y⌧ + O(!)2

=


g�⌧ +

1
2

⇣
!↵�(M

↵�)⌧� + !↵̄�̄(M
↵̄�̄)�⌧

⌘�
x�y⌧ + O(!2)

=


g�⌧ +

1
2

⇣
!↵�(M

↵�)⌧� + !↵�(M
↵�)�⌧

⌘�
x�y⌧ + O(!2) relabelling

=


g�⌧ +

1
2

⇣
!↵�(M

↵�)⌧� � !↵�(M
↵�)⌧�

⌘�
x�y⌧ + O(!2) antisymmetry of M

= g�⌧x
�y⌧ + O(!2)

= x · y + O(!2).
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Appendix V Why do (M↵�)µ⌫ generate Lorentz transformations? II

If the above argument seems too abstract, a more concrete way of checking that we have
generators of Lorentz transformations might instead be to compute

exp{(⌘K1)} =

0

BB@

cosh ⌘ sinh ⌘ 0 0
sinh ⌘ cosh ⌘ 0 0
0 0 1 0
0 0 0 1

1

CCA (207)

as this will be recognised by some as a boost in the positive x-direction with rapidity ⌘
(that is with cosh ⌘ = � and sinh ⌘ = ��) while

exp{(✓J1)} =

0

BB@

1 0 0 0
0 1 0 0
0 0 cos ✓ � sin ✓
0 0 sin ✓ cos ✓

1

CCA (208)

will be recognised by most as a rotation by an angle ✓ about the x-axis.
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Appendix V: Lorentz covariance of the Dirac equation I

If the Dirac Equation:

i�µ@µ = m (209)

is to be Lorentz covariant, there would have to exist a matrix S(⇤) such that  0 = S(⇤) 
is the solution of the Lorentz transformed Dirac Equation

i�µ@0
µ 

0 = m 0. (210)

Equation (210) implies

i�µ@
0µ 0 = m 0 (211)

and so

i�µ⇤
µ
⌫@

⌫S(⇤) = mS(⇤) (212)

and so since S(⇤) is independent of position

i�µS(⇤)⇤
µ
⌫@

⌫ = S(⇤)m (213)

which using (209) becomes

i�µS(⇤)⇤
µ
⌫@

⌫ = S(⇤)i�µ@µ 
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Appendix V: Lorentz covariance of the Dirac equation II

and hence

i�µS(⇤)⇤ ⌫
µ @⌫ = S(⇤)i�⌫@⌫ 

or

i
⇥
�µS(⇤)⇤ ⌫

µ � S(⇤)�⌫⇤ @⌫ = 0. (214)

Therefore, if we can show that there exists a matrix S(⇤) satisfying

�µS(⇤)⇤ ⌫
µ = S(⇤)�⌫ (215)

we will have found a solution to (214) and thus will have found that the Dirac Equation is
Lorentz covariant as desired. Thought it would be entirely possible to work directly with
(215) it is perhaps nicer to bring both S matrices to the left hand side

S�1(⇤)�µS(⇤)⇤ ⌫
µ = �⌫

and then use the identity

⇤ ⌫
µ ⇤�

⌫ ⌘ ��µ (216)
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so that (215) ends up being written in the more common and (perhaps) more suggestive
and useful form:

S�1(⇤)��S(⇤) = ⇤�
⌫�

⌫ . (217)

[Aside: Here is (for infinitesimal Lorentz transformations) a proof of the identity (216):

⇤ ⌫
µ ⇤�

⌫ =

✓
g ⌫
µ +

1
2
!↵�(M

↵�) ⌫
µ

◆✓
g�

⌫ +
1
2
!↵̄�̄(M

↵̄�̄)�⌫

◆
+ O(!2)

= ��µ +
1
2

h
!↵�(M

↵�) �
µ + !↵̄�̄(M

↵̄�̄)�µ

i
+ O(!2)

= ��µ +
1
2

h
!↵�(M

↵�) �
µ + !↵�(M

↵�)�µ

i
+ O(!2) (relabelling)

= ��µ +
1
2
!↵�

h
(M↵�) �

µ + (M↵�)�µ
i
+ O(!2) (factorising)

= ��µ +
1
2
!↵�

h
(M↵�)⌧� + (M↵�)�⌧

i
gµ⌧ + O(!2) (tidying)

= ��µ +
1
2
!↵�

h
(M↵�)⌧� � (M↵�)⌧�

i
gµ⌧ + O(!2) (antisymmetry of M)

= ��µ + O(!2).
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End of aside]

Lemma

A valid choice of S(⇤) (for an infinitesimal Lorentz transformation) is given by:

S(⇤) = 1 +
1
4
!↵��

↵�� + O(!2). (218)
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Proof.

S�1(⇤)��S(⇤) =

✓
1� 1

4
!↵��

↵��

◆
��

✓
1 +

1
4
!↵̄�̄�

↵̄��̄

◆
+ O(!2)

= �� +
1
4

⇣
!↵̄�̄�

��↵̄��̄ � !↵��
↵����

⌘
+ O(!2)

= �� +
1
4
!↵�

⇣
���↵�� � �↵����

⌘
+ O(!2)

= �� +
1
4
!↵�

⇣
(���↵ + �↵��)�� � �↵(���� + ����)

⌘
+ O(!2)

= �� +
1
4
!↵�

⇣
2g�↵�� � �↵2g��

⌘
+ O(!2) since {�µ, �⌫} ⌘ 2gµ⌫

=

✓
��⌫ +

1
2
!↵�

⇣
g�↵��⌫ � �↵⌫ g��

⌘◆
�⌫ + O(!2)

=

✓
��⌫ +

1
2
!↵�(M

↵�)�⌫

◆
�⌫ + O(!2) using (204)

= ⇤�
⌫�

⌫ + O(!2) using (206).
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[Aside: Since �↵�� = 1
2{�

↵, ��}+ 1
2 [�

↵, �� ] we can also rewrite (218) in the more
frequently seen (conventional) form:

S(⇤) = 1 +
1
8
!↵� [�

↵, �� ] + O(!2). (219)

End of aside]
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Appendix V: Transformation properties of � , ��µ and ��µ�⌫ . I

Each of the expressions � , ��µ and ��µ�⌫ is of the form ��µ�⌫ · · · �⌧ . To
understand how any of them is a↵ected by a Lorentz transformation it is therefore
interesting to consider the following set of manipulations:2

�0�µ�⌫ · · · �⌧ 0 = (S(⇤)�)[�µ�⌫ · · · �⌧ ](S(⇤) )

= �†S†(⇤)�0[�µS(⇤)S�1(⇤)�⌫S(⇤) · · · S�1(⇤)�⌧ ]S(⇤) 

= �†S†(⇤)�0S(⇤)(S�1(⇤)�µS(⇤))(S�1(⇤)�⌫S(⇤)) · · · (S�1(⇤)�⌧S(⇤)) 

= �†S†(⇤)�0S(⇤)(⇤µ
↵�

↵)(⇤⌫
��

�) · · · (⇤⌧
��

�) using (217)

which itself suggests that if we can show that

S†(⇤)�0S(⇤) = �0 (220)

then we will have proved that

�0�µ�⌫ · · · �⌧ 0 = �(⇤µ
↵�

↵)(⇤⌫
��

�) · · · (⇤⌧
��

�) 

which will itself have showed that each of the expressions under consideration transforms
like a tensor of the appropriate rank.
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We must therefore prove (220). To do so is a two-stage process. First we compute S†(⇤).
Then we combine it with �0S(⇤). Starting with (218):

S†(⇤) =


1 +

1
4
!↵��

↵��

�†
+ O(!2)

= 1 +
1
4
!↵�(�

↵��)† + O(!2) (!↵� are real)

= 1 +
1
4
!↵�(�

�)†(�↵)† + O(!2)

= 1 +
1
4
!↵�(�

0���0)(�0�↵�0) + O(!2)

= 1 +
1
4
!↵��

0���↵�0 + O(!2) (221)
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from which we can deduce (using (218)) that

S†(⇤)�0S(⇤) =

✓
1 +

1
4
!↵��

0���↵�0

◆
�0

✓
1 +

1
4
!↵̄�̄�

↵̄��̄

◆
+ O(!2)

= �0 +
1
4

⇣
!↵��

0���↵�0�0 + !↵̄�̄�
0�↵̄��̄

⌘
+ O(!2)

= �0


1 +

1
4

⇣
!↵��

��↵ + !�↵�
��↵

⌘�
+ O(!2) ((↵̄, �̄)! (�,↵))

= �0 [1 + 0] + O(!2) (!↵� = �!�↵)

= �0 + O(!2)

verifying (220) as required. This completes our proof that:

� is Lorentz invariant scalar,

��µ transforms as a Lorentz vector, and

��µ�⌫ transforms as a second-rank tensor, etc.
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Appendix VI: Spin-1 Rotation Matrices I

Consider the spin-1 state with spin +1 along the axis defined by unit vector

~n = (sin ✓, 0, cos ✓)

Spin state is an eigenstate of ~n · ~S with eigenvalue +1

(~n.~S)| i = +1| i (222)

Express in terms of linear combination of spin 1 states which are eigenstates of Sz

| i = ↵|1, 1i+ �|1, 0i+ �|1,�1i

with
↵2 + �2 + �2 = 1
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Appendix VI: Spin-1 Rotation Matrices II

(222) becomes:

(sin ✓Sx + cos ✓Sz) (↵|1, 1i+ �|1, 0i+ �|1,�1i) = ↵|1, 1i+ �|1, 0i+ �|1,�1i
(223)

Write Sx in terms of ladder operators Sx = 1
2 (S+ + S�) where

S+|1, 1i = 0 S+|1, 0i =
p
2|1, 1i S+|1,�1i =

p
2|1, 0i

S�|1, 1i =
p
2|1, 0i S�|1, 0i =

p
2|1,�1i S�|1,�1i = 0

from which we find Sx |1, 1i = 1p
2
|1, 0i

(223) becomes

Sx |1, 0i =
1p
2
(|1, 1i+ |1,�1i)

Sx |1,�1i =
1p
2
|1, 0i

sin ✓


↵p
2
|1, 0i+ �p

2
|1,�1i+ �p

2
|1, 1i+ �p

2
|1, 0i

�
+

↵ cos ✓|1, 1i � � cos ✓|1,�1i = ↵|1, 1i+ �|1, 0i+ �|1,�1i
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Appendix VI: Spin-1 Rotation Matrices III

which gives
� sin ✓p

2
+ ↵ cos ✓ = ↵

(↵+ �) sin ✓p
2
= �

� sin ✓p
2
� � cos ✓ = �

9
>=

>;
.

Using ↵2 + �2 + �2 = 1 the above equations yield

↵ =
1p
2
(1 + cos ✓) � =

1p
2
sin ✓ � =

1p
2
(1� cos ✓)

hence

 =
1
2
(1� cos ✓)|1,�1i+ 1p

2
sin ✓|1, 0i+ 1

2
(1 + cos ✓)|1,+1i.

The coe�cients ↵,�, � are examples of what are known as quantum mechanical
rotation matrices. The express how angular momentum eigenstate in a particular
direction is expressed in terms of the eigenstates defined in a di↵erent direction
d j

m0,m(✓).

For spin-1 (j = 1) we have just shown that

d1
1,1(✓) =

1
2
(1 + cos ✓) d1

0,1(✓) =
1p
2
sin ✓ d1

�1,1(✓) =
1
2
(1� cos ✓).
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Appendix VI: Spin-1 Rotation Matrices IV

For spin-1/2 it is straightforward to show

d
1
2
1
2 ,

1
2
(✓) = cos

✓
2

d
1
2

� 1
2 ,

1
2
(✓) = sin

✓
2
.
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Appendix VII: Crossing Symmetry

Having derived the Lorentz invariant matrix element for e�e+ �! µ�µ+ ‘rotate’ the
diagram to correspond to e�µ� �! e�µ� and apply the principle of crossing
symmetry to write down the matrix element !

rotates to

The transformation: p1 ! p0
1; p2 ! �p0

3; p3 ! p0
4; p4 ! �p0

2 changes the spin
averaged matrix element (see page 142) for

e�e+ ! µ�µ+ to that for e�µ� ! e�µ� :

h|Mfi |2i = 2e4 (p1.p3)2 + (p1.p4)2

(p1.p2)2
! h|Mfi |2i = 2e4 (p

0
1.p

0
4)

2 + (p0
1.p

0
2)

2

(p0
1.p

0
3)

2
.
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Appendix VIII: the SU(2) anti-quark representation

Define an anti-quark doublet

q̄ =

✓
�d̄
ū

◆
=

✓
�d⇤

u⇤

◆

from which it follows that
✓

0 1
�1 0

◆
q̄ =

✓
u⇤

d⇤

◆
. (224)

The quark doublet q =

✓
u
d

◆
transforms as

✓
u0

d 0

◆
= U

✓
u
d

◆
which complex conjugates to

✓
u0⇤

d 0⇤

◆
= U⇤

✓
u⇤

d⇤

◆

which using (224) can be re-written as
✓

0 1
�1 0

◆
q̄0 = U⇤

✓
0 1
�1 0

◆
q̄.

Therefore, multiplying both sides of the last equation by the inverse of its left-most
matrix, we see that q̄ transforms as follows:

q̄0 =

✓
0 �1
1 0

◆
U⇤

✓
0 1
�1 0

◆
q̄. (225)
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An arbitrary 2⇥ 2 unitary matrix with unit determinant can always be written in the form

U =

✓
c11 c12

�c⇤12 c⇤11

◆

provided that one chooses c11 and c12 such that |c11|2 + |c12|2 = 1. Therefore, (225) can
be re-written to express an arbitrary SU(2) trasformation of q̄ as:

q̄0 =

✓
0 1
�1 0

◆✓
c⇤11 c⇤12

�c12 c11

◆✓
0 �1
1 0

◆
q̄

=

✓
c11 c12

�c⇤12 c⇤11

◆
q̄

= Uq̄

which proves that the anti-quark doublet q̄ =

✓
�d̄
ū

◆
transforms in the same way as the

quark doublet q =

✓
u
d

◆
– thus allowing us to use the same ladder operators on q and q̄.

This is a special property of SU(2). For SU(3) there is no analogous representation of the
anti-quarks.
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Appendix IX: Electromagnetism

? In Heaviside-Lorentz units "0 = µ0 = c = 1 Maxwell’s equations in the vacuum become

~r · ~E = ⇢; ~r^ ~E = �@
~B
@t

; ~r · ~B = 0; ~r^ ~B = ~J +
@ ~E
@t

? The electric and magnetic fields can be expressed in terms of scalar and vector potentials

~E = �@
~A
@t
� ~r�; ~B = ~r^ ~A

? In terms of the 4-vector potential Aµ = (�, ~A) and the 4-vector current jµ = (⇢, ~J)
Maxwell’s equations can be expressed in the covariant form:

@µF
µv = jv (226)

where Fµv is the anti-symmetric field strength tensor

Fµ⌫ = @µAv � @vAµ =

0

BB@

0 �Ex �Ey �Ez

Ex 0 �Bz By

Ey Bz 0 �Bx

Ez �By Bx 0

1

CCA (227)

-Combining (226) and (227)
@µ (@µAv � @vAµ) = jv
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which can be written

⇤2Aµ � @µ (@⌫A
v ) = jµ (228)

where the D’Alembertian operator

⇤2 = @⌫@
v =

@2

@t2
� ~r2

-Acting on (228) with @V gives

@v j
v = @⌫@µ@

µAv � @µ@⌫@vAµ = 0

) @⇢
@t

+ ~r · ~J = 0 Conservation of Electric Charge
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Appendix X: Gauge Invariance

Conservation laws are associated with symmetries. Here the symmetry is the GAUGE
INVARIANCE of electro-magnetism

? The electric and magnetic fields are unchanged for the gauge transformation:

~A! ~A0 = ~A+ ~r�; �! �0 = �� @�
@t

where � = �(t, ~x) is any finite di↵erentiable function of position and time
? In 4-vector notation the gauge transformation can be expressed as:

Aµ ! A0
µ = Aµ + @µ�
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Using the fact that the physical fields are gauge invariant, choose � to be a solution of
? In this case we have

@µA0
µ = @µ (Aµ + @µ�) = @µAµ +⇤2� = 0

? Dropping the prime we have a chosen a gauge in which

@µA
µ = 0 The Lorentz Condition

With the Lorentz condition, equation (228) becomes:

⇤2Aµ = jµ . (229)

Having imposed the Lorentz condition we still have freedom to make a further gauge
transformation, i.e.

Aµ ! A0
µ = Aµ + @µ⇤

where ⇤(t, ~x) is any function that satisfies

⇤2⇤ = 0 (230)

? Clearly (229) remains unchanged, in addition the Lorentz condition still holds:

@µA0
µ = @µ (Aµ + @µ⇤) = @µAµ +⇤2⇤ = @µAµ = 0
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Appendix XI: Photon Polarization

For a free photon (i.e. jµ = 0 ) equation (229) becomes

⇤2Aµ = 0 (231)

(note have chosen a gauge where the Lorentz condition is satisfied)
Equation (230) has solutions (i.e. the wave-function for a free photon)

Aµ = "µ(q)e�iq·x

where "µ is the four-component polarization vector and q is the photon four-momentum

0 = ⇤2Aµ = �q2"µe�iq·x

) q2 = 0

Hence equation (231) describes a massless particle.
But the solution has four components - might ask how it can describe a spin-1
particle which has three polarization states?
But for (230) to hold we must satisfy the Lorentz condition:

0 = @µA
µ = @µ

⇣
"µe�iq·x

⌘
= "µ@⌫

⇣
e�iq·x

⌘
= �i"µqµe�iq·x

Hence the Lorentz condition gives

qµ"
µ = 0 (232)

i.e. only 3 independent components. 569 / 614
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? However, in addition to the Lorentz condition still have the addional gauge freedom of
Aµ ! A0

µ = Aµ + @µ⇤ with (230) ⇤2⇤ = 0
-Choosing ⇤ = iae�iq·x which has ⇤2⇤ = q2⇤ = 0

Aµ ! A0
µ = Aµ + @µ⇤ = "µe

�iq·x + ia@µe
�iq·x

= "µe
�iq·x + ia (�iqµ) e�iq·x

= ("µ + aqµ) e
�iq·x

? Hence the electromagnetic field is left unchanged by

"µ ! "0µ = "µ + aqµ

? Hence the two polarization vectors which di↵er by a mulitple of the photon
four-momentum describe the same photon. Choose a such that the time-like component
of "µ is zero, i.e. "0 ⌘ 0
? With this choice of gauge, which is known as the COULOMB GAUGE, the Lorentz
condition (232) gives

~" · ~q = 0

i.e. only 2 independent components, both transverse to the photons momentum
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? A massless photon has two transverse polarisation states. For a photon travelling in the
z direction these can be expressed as the transversly polarized states:

"µ1 = (0, 1, 0, 0); "µ2 = (0, 0, 1, 0)

? Alternatively take linear combinations to get the circularly polarized states

"µ� =
1p
2
(0, 1,�i , 0); "µ+ = � 1p

2
(0, 1, i , 0)

It can be shown that the "+state corresponds the state in which the photon spin is
directed in the +z direction, i.e. Sz = +1
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Appendix XII: Massive Spin-1 particles

For a massless photon we had (before imposing the Lorentz condition) we had from
equation (228):

⇤2Aµ � @µ (@vA
v ) = jµ

? The Klein-Gordon equation for a spin-0 particle of mass m is
⇣
⇤2 +m2

⌘
� = 0

suggestive that the appropriate equations for a massive spin-1 particle can be obtained by
replacing ⇤2 ! ⇤2 +m2

This is indeed the case, and from QFT it can be shown that for a massive spin 1
particle equation (228): becomes

⇣
⇤2 +m2

⌘
Bµ � @µ (@vB

v ) = jµ

Therefore a free particle must satisfy

⇣
⇤2 +m2

⌘
Bµ � @µ (@⌫B

⌫) = 0 (233)
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Acting on equation (233) with @v gives

⇣
⇤2 +m2

⌘
@µB

µ � @µ@µ (@vB
v ) = 0

⇣
⇤2 +m2

⌘
@µB

µ �⇤2 (@vB
v ) = 0

m2@µB
µ = 0 (234)

Hence, for a massive spin-1 particle, unavoidably have @µBµ = 0; note this is not a
relation that reflects to choice of gauge.

-Equation (233) becomes

⇣
⇤2 +m2

⌘
Bµ = 0 : (235)

? For a free spin-1 particle with 4-momentum, pµ, equation (235): admits solutions

Bµ = "µe
�ip.x

Substituting into equation (234) gives

pµ"
µ = 0

? The four degrees of freedom in "µ are reduced to three, but for a massive particle,
equation (235) does not allow a choice of gauge and we can not reduce the number of
degrees of freedom any further.
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? Hence we need to find three orthogonal polarisation states satisfying

pµ"
µ = 0 (236)

? For a particle travelling in the z direction, can still admit the circularly polarized states.

"µ� =
1p
2
(0, 1,�i , 0); "µ+ = � 1p

2
(0, 1, i , 0)

? Writing the third state as

"µ
L
=

1p
↵2 + �2

(↵, 0, 0,�)

equation (236) gives ↵E � �pz = 0

) "µ
L
=

1
m

(pz , 0, 0,E)

This longitudinal polarisation state is only present for massive spin-1 particles, i.e.
there is no analogous state for a free on-shell photon.
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Appendix XIII: Local Gauge Invariance

? The Dirac equation for a charged particle in an electro-magnetic field can be obtained
from the free particle wave-equation by making the minimal substitution

~p ! ~p � q ~A; E ! E � q� (q = charge )

In QM: i@µ ! i@µ � qAµ and the Dirac equation becomes

�µ (i@µ � qAµ) �m = 0

In Appendix X: saw that the physical EM fields where invariant under the gauge
transformation

Aµ ! A0
µ = Aµ � @µ�

? Under this transformation the Dirac equation becomes

�µ (i@µ � qAµ + q@µ�) �m = 0

which is not the same as the original equation. If we require that the Dirac equation is
invariant under the Gauge transformation then under the gauge transformation we need to
modify the wave-functions

 !  0 =  e iq�
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? To prove this, applying the gauge transformation :

Aµ ! A0
µ = Aµ � @µ�  !  0 =  e iq�

to the original Dirac equation gives

�µ (i@µ � qAµ + q@µ�) e
iq� �m e iq� = 0 (237)

? But
i@µ

⇣
 e iq�

⌘
= ie iq�@µ � q (@µ�) e

iq� 

? Equation (237) becomes

�µe iq� (i@µ � qAµ + q@µ�� q@µ�) �m e iq� = 0

) �µe iq� (i@µ � qAµ) �m e iq� = 0

=)
�µ (i@µ � qAµ) �m = 0

which is the original form of the Dirac equation
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Appendix XIV : Local Gauge Invariance 2

? Reverse the argument of Appendix XIII. Suppose there is a fundamental symmetry of
the universe under local phase transformations

 (x)!  0(x) =  (x)e iq�(x)

Note that the local nature of these transformations: the phase transformation
depends on the space-time coordinate x = (t, ~x)

? Under this transformation the free particle Dirac equation

i�µ@µ �m = 0

becomes i�µ@µ
�
 e iq�

�
�m e iq� = 0

ie iq��µ (@µ + iq @µ�)�m e iq� = 0

i�µ (@µ + iq@µ�) �m = 0

Local phase invariance is not possible for a free theory, i.e. one without interactions
To restore invariance under local phase transformations have to introduce a massless
”gauge boson” Aµ which transforms as

Aµ ! A0
µ = Aµ � @µ�

and make the substitution

@µ ! Dµ = @µ + iqAµ
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Appendix XV: Alternative evaluation of colour factors

? The colour factors can be obtained (more intuitively) as follows :
-Write C(ik ! jl) = 1

2c1c2

-Where the colour coe�cients at the two vertices depend on
the quark and gluon colours

-Sum over all possible exchanged gluons conserving colour at
both vertices
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� Configurations involving a single colour

rr

r r

rr

r r

e.g.                  : two possible exchanged gluons

bb

b b

e.g.                  : only one possible exchanged gluon
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� Configurations where quarks swap colours 

� Other configurations where quarks don’t change colour 
rr

b b

gr

g r
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Appendix XVI: Colour Potentials

-Previously argued that gluon self-interactions lead to a +�r long-range potential and that
this is likely to explain colour confinement

Have yet to consider the short range potential - i.e. for quarks in mesons and baryons
does QCD lead to an attractive potential?

-Analogy with QED: (NOTE this is very far from a formal proof)

Repulsive Potential
Attractive Potential

? by analogy with QED expect potentials of form

? Whether it is a attractive or repulsive potential depends on sign of colour factor
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? Consider the colour factor for a q q̄ system in the colour singlet state:

 =
1p
3
(r r̄ + gḡ + bb̄)

with colour potential hVqq̄i = h |VQCD| i

-Have 3 terms like r r̄ ! r r̄ , bb̄ ! bb̄, . . . and 6 like r r̄ ! gḡ , r r̄ ! bb̄, . . .

hVqq̄i = � 1
3
↵S

r
[3⇥ C(r r̄ ! r r̄) + 6⇥ C(r r̄ ! gḡ)] = � 1

3
↵S

r

⇥
3⇥ 1

3 + 6⇥ 1
2

⇤

�! hVqq̄i = � 4
3
↵S

r
NEGATIVE ) ATTRACTIVE

-The same calculation for a q q̄ colour octet state, e.g. r ḡ gives a positive repulsive
potential: C(r ḡ �! r ḡ) = � 1

6
? Whilst not a formal proof, it is comforting to see that in the colour singlet qq̄ state the
QCD potential is indeed attractive.
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* Combining the short-range QCD potential with the linear long-range term discussed
previously:

VQCD = �4
3
↵s

r
+ �r

? This potential is found to give a good description of the observed charmonium (cc) and
bottomonium (bb) bound states

NOTE:
·c, b are heavy quarks -approx.
non-relativistic - orbit close together
- probe 1/r part of VQCD

Agreement of data with prediction provides strong evidence that VQCD has the Expected
form 583 / 614
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Appendix XVII: Deep-Inelastic Neutrino Scattering

Two steps:
First write down most general cross section in terms of structure functions.
Then evaluate expressions in the quark-parton model.

QED Revisited:
In the limit s � M

2the most general electro-magnetic deep-inelastic cross section (from
single photon exchange) can be written (Eq. (90) of Handout 6) as

d
2�

e±p

dx dQ2
=

4⇡↵2

Q4


(1 � y)

F2(x ,Q2)

x
+ y

2
F1(x ,Q

2)

�
.

For neutrino scattering typically measure the energy of the produced muon
Eµ = E⌫(1 � y) and di↵erential cross-sections expressed in terms of dx dy

Q
2 = (s �M

2)xy ⇡ sxy �!

d
2�

dx dy
=

����
dQ

2

dy

����
d

2�

dx dQ2
= sx

d
2�

dx dQ2
.
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In the limit s � M2 the general Electro-magnetic DIS cross section can be written

d2�e
±
p

dx dy
=

4⇡↵2s
Q4

h
(1� y)F2(x ,Q

2) + y 2xF1(x ,Q
2)
i
. (238)

NOTE: This is the most general Lorentz Invariant parity conserving expression
For neutrino DIS parity is violated and the general expression includes an additional
term to allow for parity violation. New structure function: F3(x ,Q2):
⌫µp ! µ�X

d2�⌫p

dx dy
=

G 2
F s
2⇡

h
(1� y)F ⌫p

2 (x ,Q2) + y 2xF ⌫p
1 (x ,Q2) + y

⇣
1� y

2

⌘
xF ⌫p

3 (x ,Q2)
i

For anti-neutrino scattering new structure function enters with opposite sign
⌫̄µp ! µ+X

d2�⌫̄p

dx dy
=

G 2
F s
2⇡

h
(1� y)F ⌫̄p

2 (x ,Q2) + y 2xF ⌫̄p
1 (x ,Q2)� y

⇣
1� y

2

⌘
xF ⌫̄p

3 (x ,Q2)
i

Similarly for neutrino-neutron scattering
⌫µn! µ�X

d2�⌫n

dx dy
=

G 2
F s
2⇡

h
(1� y)F ⌫n

2 (x ,Q2) + y 2xF ⌫n
1 (x ,Q2) + y

⇣
1� y

2

⌘
xF ⌫n

3 (x ,Q2)
i

⌫̄µn! µ+X

d2�⌫̄n

dx dy
=

G 2
F s
2⇡

h
(1� y)F ⌫̄n

2 (x ,Q2) + y 2xF ⌫̄n
1 (x ,Q2)� y

⇣
1� y

2

⌘
xF ⌫̄n

3 (x ,Q2)
i
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Neutrino Interaction Structure Functions

In terms of the parton distribution functions we found (106):

d2�⌫p

dx dy
=

G 2
F

⇡
sx
h
d(x) + (1� y)2ū(x)

i

Compare coe�cients of y with the general Lorentz Invariant form (238) and assume
Bjorken scaling, i.e. F (x ,Q2)! F (x)

d2�⌫p

dx dy
=

G 2
F s
2⇡

h
(1� y)F ⌫p

2 (x) + y 2xF ⌫p
1 (x) + y

⇣
1� y

2

⌘
xF ⌫p

3 (x)
i

Re-writing (106):

d2�⌫p

dx dy
=

G 2
F

2⇡
s
h
2xd(x) + 2xū(x)� 4xyū(x) + 2xy 2ū(x)

i

and equating powers of y

2xd + 2xū = F2

�4xū = �F2 + xF3

2ū = F1 � xF3/2

gives:
F ⌫p

2 = 2xF ⌫p
1 = 2x [d(x) + ū(x)]

xF ⌫p
3 = 2x [d(x)� ū(x)].
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NOTE: again we get the Callan-Gross relation F2 = 2xF1.

No surprise, underlying process is scattering from point-like spin-1/2 quarks

d2�⌫p

dx dy
=

G 2
F s
2⇡

✓
1� y +

y 2

2

◆
F ⌫p

2 (x) + y
⇣
1� y

2

⌘
xF ⌫p

3 (x)

�

Experimentally measure F2 and F3 from y distributions at fixed x
Di↵erent y dependencies (from di↵erent rest frame angular distributions) allow
contributions from the two structure functions to be measured

Then use F
⌫p
2 = 2x[d(x) + ū(x)] and F

⌫p
3 = 2[d(x)� ū(x)] �!d(x) and ū(x) separately
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Neutrino experiments require large detectors (often iron) i.e. isoscalar target
F ⌫N

2 = 2xF ⌫N
1 = 1

2 (F
⌫p
2 + F ⌫n

2 ) = x [u(x) + d(x) + ū(x) + d̄(x)]
xF ⌫N

3 = 1
2 (xF

⌫p
3 + xF ⌫n

3 ) = x [u(x) + d(x)� ū(x)� d̄(x)]

For electron – nucleon scattering: F ep

2 = 2xF ep

1 = x [ 4
9u(x) +

1
9d(x) +

4
9 ū(x) +

1
9 d̄(x)]

F en

2 = 2xF en

1 = x [ 4
9d(x) +

1
9u(x) +

4
9 d̄(x) +

1
9 ū(x)] F

⌫N
2 = 18

5 F
eN

2

For an isoscalar target

F eN

2 =
1
2
(F ep

2 + F en

2 ) =
5
18

x [u(x) + d(x) + ū(x) + d̄(x)]

Note that the factor 5
18 = 1

2

�
q2
u + q2

d

�
and by comparing neutrino to electron

scattering structure functions measure the sum of quark charges

Experiment: 0.29 ± 0.02
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Measurements of F2(x) and F3(x)

CHDS Experiment ⌫µ + Fe! µ� + X
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Valence Contribution

Separate parton density functions into sea and valence components

u(x) = uV (x) + uS(x) = uV (x) + S(x)

d(x) = dV (x) + dS(x) = dV (x) + S(x)

ū(x) = ūS(x) = S(x)

d̄(x) = d̄S(x) = S(x)

�!F ⌫N
3 = [u(x) + d(x)� ū(x)� d̄(x)] = uV (x) + dV (x) �!

Z 1

0

F ⌫N
3 (x) dx =

Z 1

0

(uV (x) + dV (x)) dx = NV

u + NV

d

Area under measured function gives a measurement of the total number of valence
quarks in a nucleon! Expect Z 1

0

F ⌫N
3 (x) dx = 3

“Gross–Llewellyn-Smith sum rule” Experiment: 3.0± 0.2.

Note: F ⌫̄p
2 = F ⌫n

2 ; F ⌫̄n
2 = F ⌫p

2 ; F ⌫̄p
3 = F ⌫n

3 ; F ⌫̄n
3 = F ⌫p

3 and anti-neutrino structure
functions contain same pdf information.
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Appendix XVIII: Determination of the CKM Matrix

The experimental determination of the CKM matrix elements comes mainly from
measurements of leptonic decays (the leptonic part is well understood).

It is easy to produce/observe meson decays, however theoretical uncertainties
associated with the decays of bound states often limits the precision

Contrast this with the measurements of the PMNS matrix, where there are few
theoretical uncertainties and the experimental di�culties in dealing with neutrinos
limits the precision.

Appendix I: Determination of the CKM Matrix

•The experimental determination of the CKM matrix elements comes mainly from
measurements of leptonic decays (the leptonic part is well understood). 

• It is easy to produce/observe meson decays, however theoretical uncertainties
associated with the decays of bound states often limits the precision 

• Contrast this with the measurements of the PMNS matrix, where there are few
theoretical uncertainties and the experimental difficulties in dealing with neutrinos
limits the precision.

|Vud| from nuclear beta decay�

Super-allowed 0+¦0+  beta decays are
relatively free from theoretical uncertainties

Non-examinable

456 / 557
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|Vus| from semi-leptonic kaon decays�

� |Vcd| from neutrino scattering

Look for opposite charge di-muon events in          scattering from production and
decay of a                  meson        

…

opposite sign
µµ pair

Measured in various
collider experiments 

592 / 614



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 Ref App

|Vcs| from semi-leptonic charmed meson decays�
e.g.

•Precision limited by theoretical uncertainties

experimental error theory uncertainty

|Vcb| from semi-leptonic B hadron decays�
e.g.

|Vub| from semi-leptonic B hadron decays�
e.g.
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Appendix XIX: Particle–AntiParticle Mixing

-The wave-function for a single particle with lifetime ⌧ = 1/� evolves with time as:

 (t) = Ne��t/2e�iMt

which gives the appropriate exponential decay of

h (t) |  (t)i = h (0) |  (0)ie�t/⌧

-The wave-function satisfies the time-dependent wave equation:

Ĥ| (t)i =
✓
M � 1

2
i�

◆
| (t)i = i

@
@t

| (t)i

-For a bound state such as a K 0 the mass term includes the ”mass” from the weak
interaction ”potential” Ĥweak

M = mK0 +
D
K 0

���Ĥweak

���K 0
E
+
X

j

���
D
K 0

���Ĥweak

��� j
E���

2

mK0 � Ej

 
Sum over
intermediate
states j

The third term is the 2nd order term in the perturbation expansion corresponding to box
diagrams resulting in K 0 �!K 0
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The total decay rate is the sum over all possible decays K 0 ! f

� = 2⇡
X

f

���
D
f
���Ĥweak

���K 0
E���

2
⇢F  � Density of final states

? Because there are also diagrams which allow K 0 $ K̄ 0 mixing need to consider the
time evolution of a mixed stated

 (t) = a(t)K 0 + b(t)K̄ 0

? The time dependent wave-equation of (A1) becomes

✓
M11 � 1

2 i�11 M12 � 1
2 i�12

M21 � 1
2 i�21 M22 � 1

2 i�22

◆✓ ��K 0(t)
↵

��K̄ 0(t)
↵
◆

= i
@
@t

✓ ��K 0(t)
↵

��K̄ 0(t)
↵
◆

the diagonal terms are as before, and the o↵-diagonal terms are due to mixing.

M11 = mK0 +
D
K 0

���Ĥweak

���K 0
E
+
X

n

���
D
K 0

���Ĥweak

���K 0
E���

2

mK0 � En
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-The o↵-diagonal decay terms include the e↵ects of interference between decays to a
common final state

�12 = 2⇡
X

f

D
f
���Ĥweak

���K 0
E⇤ D

f
���Ĥweak

��� K̄ 0
E
⇢F

-In terms of the time dependent coe�cients for the kaon states, (A3) becomes


M� i

1
2
�

�✓
a
b

◆
= i

@
@t

✓
a
b

◆

where the Hamiltonian can be written:

H = M� i
1
2
� =

✓
M11 M12

M21 M22

◆
� 1

2

✓
�11 �12

�21 �22

◆

-Both the mass and decay matrices represent observable quantities and are Hermitian

M11 = M⇤
11, M22 = M⇤

22, M12 = M⇤
21

�11 = �⇤
11, �22 = �⇤

22, �12 = �⇤
21

-Furthermore, if CPT is conserved then the masses and decay rates of the K̄ 0 and K 0 are
identical:

M11 = M22 = M; �11 = �22 = �
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-Hence the time evolution of the system can be written:

✓
M � 1

2 i� M12 � 1
2 i�12

M⇤
12 � 1

2 i�
⇤
12 M � 1

2 i�

◆✓
a
b

◆
= i

@
@t

✓
a
b

◆

To solve the coupled di↵erential equations for a(t) and b(t), first find the eigenstates
of the Hamiltonian (the KL and KS ) and then transform into this basis. The
eigenvalue equation is:

✓
M � 1

2 i� M12 � 1
2 i�12

M⇤
12 � 1

2 i�
⇤
12 M � 1

2 i�

◆✓
x1

x2

◆
= �

✓
x1

x2

◆

-Which has non-trivial solutions for

|H� �I | = 0

)
✓
M � 1

2
i�� �

◆2

�
✓
M⇤

12 �
1
2
i�⇤

12

◆✓
M12 �

1
2
i�12

◆
= 0

with eigenvalues

� = M � 1
2
i�±

s✓
M⇤

12 �
1
2
i�⇤

12

◆✓
M12 �

1
2
i�12

◆
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-The eigenstates can be obtained by substituting back into (A5)
�
M � 1

2 i�
�
x1 +

�
M12 � 1

2 i�12

�
=
⇣
M � 1

2 i�±
q�

M⇤
12 � 1

2 i�
⇤
12

� �
M12 � 1

2 i�12

�⌘
x1

) x2

x1
= ±

s
M⇤

12 � 1
2 i�

⇤
12

M12 � 1
2 i�12

? Define

⌘ =

s
M⇤

12 � 1
2 i�

⇤
12

M12 � 1
2 i�12

Hence the normalised eigenstates are

|K±i =
1p

1 + |⌘|2

✓
1
±⌘

◆
=

1p
1 + |⌘|2

⇣���K 0
E
± ⌘

���K̄ 0
E⌘

? Note, in the limit where M12, �12 are real, the eigenstates correspond to the CP
eigenstates K1 and K2. Hence we can identify the general eigenstates as as the long and
short lived neutral kaons:

|KLi =
1p

1 + |⌘|2
⇣���K 0

E
+ ⌘

���K̄ 0
E⌘

|KSi =
1p

1 + |⌘|2
⇣���K 0

E
� ⌘

���K̄ 0
E⌘
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Substituting these states back into (A2):

| (t)i = a(t)
���K 0

E
+ b(t)

���K̄ 0
E

=
p

1 + |⌘|2

a(t)
2

(KL + KS) +
b(t)
2⌘

(KL � KS)

�

=
p

1 + |⌘|2
✓

a(t)
2

+
b(t)
2⌘

◆
KL +

✓
a(t)
2
� b(t)

2⌘

◆
KS

�

=

p
1 + |⌘|2
2

[aL(t)KL + aS(t)KS ]

with

aL(t) ⌘ a(t) +
b(t)
⌘

aS(t) ⌘ a(t)� b(t)
⌘

Now consider the time evolution of aL(t)

i
@aL
@t

= i
@a
@t

+
i
⌘
@b
@t

? Which can be evaluated using (A4) for the time evolution of a(t) and b(t) :
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i
@aL
@t

=

✓
M � 1

2
i�12

◆
a+

✓
M12 �

1
2
i�12

◆
b

�
+

1
⌘

✓
M⇤

12 �
1
2
i�⇤

12

◆
a+

✓
M � 1

2
i�

◆
b

�

=

✓
M � 1

2
i�

◆✓
a+

b
⌘

◆
+

✓
M12 �

1
2
i�12

◆
b +

1
⌘

✓
M⇤

12 �
1
2
i�⇤

12

◆
a

=

✓
M � 1

2
i�

◆
aL +

✓
M12 �

1
2
i�12

◆
b +

 s✓
M⇤

12 �
1
2
i�⇤

12

◆✓
M12 �

1
2
i�12

◆!
a

=

✓
M � 1

2
i�

◆
aL +

 s✓
M⇤

12 �
1
2
i�⇤

12

◆✓
M12 �

1
2
i�12

◆!✓
a+

b
⌘

◆

=

✓
M � 1

2
i�

◆
aL +

 s✓
M⇤

12 �
1
2
i�⇤

12

◆✓
M12 �

1
2
i�12

◆!
aL

=

✓
mL �

1
2
i�L

◆
aL

? Hence:

i
@aL
@t

=

✓
mL �

1
2
i�L

◆
aL

with mL = M + Re
nq�

M⇤
12 � 1

2 i�
⇤
12

� �
M12 � 1

2 i�12

�o

and �L = �� 2I
nq�

M⇤
12 � 1

2 i�
⇤
12

� �
M12 � 1

2 i�12

�o
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? Following the same procedure obtain:

i
@aS
@t

=

✓
mS �

1
2
i�S

◆
aS

with mS = M �R
nq�

M⇤
12 � 1

2 i�
⇤
12

� �
M12 � 1

2 i�12

�o

and �S = �+ 2J
nq�

M⇤
12 � 1

2 i�
⇤
12

� �
M12 � 1

2 i�12

�o

? In matrix notation we have
? Solving we obtain

✓
ML � 1

2 i�L 0
0 MS � 1

2 i�S

◆✓
aL
aS

◆
= i

@
@t

✓
aL
aS

◆

aL(t) / e�imLt��Lt/2 aS(t) / e�imS t��S t/2

? Hence in terms of the KL and KS basis the states propagate as independent particles
with definite masses and lifetimes (the mass eigenstates). The time evolution of the
neutral kaon system can be written

| (t)i = ALe
�imLt��Lt/2 |KLi+ ASe

�imS t��S t/2 |KSi

where AL and AS are constants
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Appendix XX: CP Violation : ⇡⇡ decays

? Consider the development of the K 0 � K̄ 0 system now including CP violation
? Repeat previous derivation using

|KSi =
1p

1 + |"|2
[|K1i+ " |K2i] |KLi =

1p
1 + |"|2

[|K2i+ " |K1i]

-Writing the CP eigenstates in terms of K 0, K̄ 0

|KLi =
1p
2

1p
1 + |"|2

h
(1 + ") |K0i+ (1� ")

���K̄ 0
Ei

|KSi =
1p
2

1p
1 + |"|2

h
(1 + ") |K0i � (1� ")

���K̄ 0
Ei

Inverting these expressions obtain

���K 0
E
=

r
1 + |"|2

2
1

1 + "
(|KLi+ |KSi)

���K̄ 0
E
=

r
1 + |"|2

2
1

1� " (|KLi � |KSi) |

-Hence a state that was produced as a K 0 evolves with time as:

| (t)i =
r

1 + |"|2
2

1
1 + "

(✓L(t) |KLi+ ✓S(t) |KSi)

where as before ✓S(t) = e
�
⇣
imS+

�
S

2

⌘
t
and ✓L(t) = e

�
⇣
imL+

�
L

2

⌘
t
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-If we are considering the decay rate to ⇡⇡ need to express the wave-function in terms of
the CP eigenstates (remember we are neglecting CP violation in the decay)

| (t)i = 1p
2

1
1 + "

[(|K2i+ " |K1i) ✓L(t) + (|K1i+ " |K2i) ✓S(t)]

=
1p
2

1
1 + "

[(✓S + "✓L) |K1i+ (✓L + "✓S) |K2i]

CP Eigenstates

-Two pion decays occur with CP = +1 and therefore arise from decay of the CP = +1
kaon eigenstate, i.e. K1

�
⇣
K 0

t=0 ! ⇡⇡
⌘
/ |hK1 |  (t)i|2 =

1
2

����
1

1 + "

����
2

|✓S + "✓L|2

Since |"|⌧ 1

����
1

1 + "

����
2

=
1

(1 + "⇤) (1 + ")
⇡ 1

1 + 2R{"} ⇡ 1� 2R{"}

Now evaluate the |✓S + "✓L|2 term again using

|z1 ± z2|2 = |z1|2 + |z2|2 ± 2R (z1z
⇤
2 )
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|✓S + "✓L|2 =

����e
�imS t�

�
S

2 t + "e�imLt�
�
L

2 t

����
2

= e��S t + |"|2e��Lt + 2Re

⇢
e�imS t�

�
S

2 t · "⇤e+imLt�
�
L

2 t

�

-Writing " = |"|e i�

|✓S + "✓L|2 = e��S t + |"|2e��Lt + 2|"|e�(�S+�L)t/2 Re
n
e i(mL�mS )t��

o

= e��S t + |"|2e��Lt + 2|"|e�(�S+�L)t/2 cos(�m.t � �)
-Putting this together we obtain:

�
⇣
K 0

t=0 ! ⇡⇡
⌘
=

1
2
(1� 2Re{"})N⇡⇡

h
e��S t + |"|2e��Lt + 2|"|e�(�S+�L)t/2 cos(�m.t � �)

i

Short lifetime

component

KS ! ⇡⇡

CP violating long lifetime component KL¦p
Interference term
-In exactly the same manner obtain for a beam which was produced as K̄ 0

�
⇣
K̄ 0

t=0 ! ⇡⇡
⌘
=

1
2
(1+2Re{"})N⇡⇡

h
e��S t + |"|2e��Lt � 2|"|e�(�S+�L)t/2 cos(�m.t � �)

i

Interference term changes sign
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�
⇣
K 0

t=0 ! ⇡⇡
⌘
! 1

2
(1� 2Re{"})N⇡⇡ · |"|2e��Lt

i.e. CP violating KL ! ⇡⇡ decays
? Since CPLEAR can identify whether a K 0 or K̄ 0 was produced, able to measure
�
�
K 0

t=0 ! ⇡⇡
�
and �

�
K̄ 0

t=0 ! ⇡⇡
�
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? The CPLEAR data shown previously can be used to measure " = |"|e i� -Define the

asymmetry: A+� =
�(K̄0

t=0!⇡⇡)��(K0
t=0!⇡⇡)

�(K̄0
t=0!⇡⇡)+�(K0

t=0!⇡⇡)
-Using expressions on page 443

A+� =
4R{"}[e��

S
t+|"|2e��

L
t ]�4|"|e�(�L+�

S )t/2 cos(�m.t��)

2[e��
S
t+|"|2e��

L
t ]� 8R{"}|"|e�(�L+�S )t/2 cos(�m.t � �)| {z }
/ |"|R{"} i.e. two small quantities

can safely be neglected

A+� ⇡
2R{"}[e��

S
t+|"|2e��

L
t ]�2|"|e�(�L+�

S )t/2 cos(�m.t��)

e
��

S
t+|"|2e��

L
t

= 2R{"}� 2|"|e�(�L+�S )t/2 cos(�m.t � �)
e��S t + |"|2e��Lt

= 2R{"}� 2|"|e(�S��L)t/2 cos(�m.t � �)
1 + |"|2e(�S��L)t
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Best fit to the data:
|"| = (2.264± 0.035)⇥ 10�3

� = (43.19± 0.73)�
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Appendix XXI: CP Violation via Mixing

A full description of the SM origin of CP violation in the kaon system is beyond the
level of this course, nevertheless, the relation to the box diagrams is illustrated below

? The K-long and K-short wave-functions depend on ⌘

|KLi =
1p

1 + |⌘|2
⇣���K 0

E
+ ⌘

���K̄ 0
E⌘

||KS

+
=

1p
1 + |⌘|2

⇣���K 0
E
� ⌘

���K̄ 0
E⌘

with ⌘ =

s
M⇤

12 � 1
2 i�

⇤
12

M12 � 1
2 i�12

? If M⇤
12 = M12; �⇤

12 = �12 then the K-long and K-short correspond to the CP
eigenstates K1 and K2

-CP violation is therefore associated with imaginary o↵-diagonal mass and decay elements
for the neutral kaon system
-Experimentally, CP violation is small and ⌘ ⇡ 1
-Define: " = 1�⌘

1+⌘ ) ⌘ = 1�"
1+"
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- Consider the mixing term M12 which arises from the sum over all possible intermediate
states in the mixing box diagrams
e.g.

In the Standard Model, CP violation is associated

with the imaginary components of the CKM matrix, and it can be shown that mixing leads
to CP violation with

|"| / I {M12}
-The di↵erences in masses of the mass eigenstates can be shown to be:

�mK = mKL
�mKS

⇡
X

q,q0

G 2
F

3⇡2
f 2
KmK

��VqdV
⇤
qsVq0dV

⇤
q0s

��mqmq0

where q and q0 are the quarks in the loops and fK is a constant
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- In terms of the small parameter "

|KLi =
1

2
p

1 + |"|2
h
(1 + ")

���K 0
E
+ (1� ")

���K̄ 0
Ei

|KSi =
1

2
p

1 + |"|2
h
(1� ")

���K 0
E
+ (1 + ")

���K̄ 0
Ei

If epsilon is non-zero we have CP violation in the neutral kaon system

Writing ⌘ =

r
M⇤

12�
1
2 i�

⇤
12

M12� 1
2 i�12

=
q

z⇤
z

and z = ae i�

gives ⌘ = e�i�

From which we can find an expression for "

" · "⇤ =
1� e�i�

1 + e�i�
· 1� e+i�

1 + e i�
=

2� cos�
2 + cos�

= tan2 �
2

|"| =
����tan

�
2

����

Experimentally we know " is small, hence � is small

|"| ⇡ 1
2
� =

1
2
arg z ⇡ 1

2

I
�
M12 � 1

2 i�12

 
��M12 � 1

2 i�12

��
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Appendix XXII: Time Reversal Violation

-Previously in equations (142) and (143) we obtained expressions for strangeness
oscillations in the absence of CP violation, e.g.:

�
⇣
K 0

t=0 ! K 0
⌘
=

1
4

h
e��S t + e��Lt + 2e�(�S+�L)t/2 cos�mt

i

-This analysis can be extended to include the e↵ects of CP violation to give the following
rates (see Question 24):

�
⇣
K 0

t=0 ! K 0
⌘
/ 1

4

h
e��S t + e��Lt + 2e�(�S+�L)t/2 cos�mt

i

�
⇣
K̄ 0

t=0 ! K̄ 0
⌘
/ 1

4

h
e��S t + e��Lt + 2e�(�S+�L)t/2 cos�mt

i

�
⇣
K̄ 0

t=0 ! K 0
⌘
/ 1

4
(1 + 4Re{"})

h
e��S t + e��Lt � 2e�(�S+�L)t/2 cos�mt

i

�
⇣
K 0

t=0 ! K̄ 0
⌘
/ 1

4
(1� 4Re{"})

h
e��S t + e��Lt � 2e�(�S+�L)t/2 cos�mt

i

? Including the e↵ects of CP violation find that

�
⇣
K̄ 0

t=0 ! K 0
⌘
6= �

⇣
K 0

t=0 ! K̄ 0
⌘

Violation of time reversal symmetry !

No surprise, as CPT is conserved, CP violation implies T violation
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Appendix XXIII: Non-relativistic Breit-Wigner

For energies close to the peak of the resonance, can write
p
s = mZ +�

s = m2
Z + 2mZ�+�2 ⇡ m2

Z + 2mZ� for �⌧ mZ

and with this approximation

⇣
s �m2

Z

⌘2
+m2

Z�
2
Z ⇡ (2mZ�)2 +m2

Z�
2
Z = 4m2

Z

✓
�+

1
4
�2
Z

◆
= 4m2

Z

�p
s �mZ

�2
+

1
4
�2
Z

�

so that the relativistic Breith-Wigner formula of (165) can be approximated
�
�
e+e� ! Z ! f f̄

�
⇡ 3⇡

m4
Z

s

(
p

s�mZ )
2
+ 1

4 �2
Z

�e�f which can be written:

�(E) =
g�2

e

4⇡
�i�f

(E � E0)
2 + 1

4�
2
.

�i and �f are the partial decay widths of the initial and final state particles.
E and E0 are the centre-of-mass energy and the energy of the resonance.
g = (2JZ+1)

(2Se+1)(2Se+1) is the spin counting factor g = 3
2⇥2 .

�e = 2⇡
E

is the Compton wavelength (natural units) in the C.o.M of either initial particle.
The boxed equation is the non-relativistic form of the Breit-Wigner distribution first
encountered in the Part II Particle and Nuclear Physics course (e.g. page 36 in Handout 2,
”Kinematics, Decays and Recations”, of the Part II course given in 2023).
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Appendix XXIV: Left-Right Asymmetry, ALR

At an e+e� linear collider it is possible to produce polarized electron beams.
E.g. Stanford Linear Collider (SLC; California), 1989-2000.
At such a collider one could measure cross section for any process for LH and RH
electrons separately

At LEP one usually measured the total cross section: a sum of 4 helicity
combinations:

In contrast, at the SLC, tuning the polarization of the electron beams made it possble
to measure cross sections separately for LH / RH electrons
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Define cross section asymmetry:

ALR =
�L � �R

�L + �R

where �L = �LL + �LR and where �R = �RL + �RR using the notation of page 456.

Integrating the expressions for the di↵erential cross sections on the same page gives:

�LL / (ceL)
2 (cµ

L
)2 �LR / (ceL)

2 (cµ
R
)2 �RL / (ceR)

2 (cµ
L
)2 �RR / (ceR)

2 (cµ
R
)2

and so
�L / (ceL)

2
h
(cµ

L
)2 + (cµ

R
)2
i

�R / (ceR)
2
h
(cµ

L
)2 + (cµ

R
)2
i

and

ALR =
(ceL)

2 � (ceR)
2

(ce
L
)2 + (ce

R
)2

= Ae

Hence the Left-Right asymmetry for any cross section depends only on the couplings
of the initial state electrons.

Compare this to the Forward Backward asymmetry (see page 469) which depends on
the couplings of the initial state electrons and the final state particles (muons, etc).
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