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H9: The Weak Interaction and V � A
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Parity (again/reminder)

The parity operator performs spatial inversion through the origin:

 0(~x , t) = P̂ (~x , t) =  (�~x , t).

Doing this twice gets us back to the start, so P̂�1 = P̂.

To preserve the normalisation of the wave-function

h |  i =
⌦
 0�� 0↵ =

D
 
���P̂†P̂

��� 
E

so P̂†P̂ = I and thus P̂ is unitary, i.e. P̂�1 = P̂†.

The last two bullet points taken together mean that P̂† = P̂, i.e. that P̂ is Hermitian,
which implies that parity is an observable quantity. Furthermore, if the interaction
Hamiltonian commutes with P̂, then parity is a conserved quantity.

If  (~x , t) is an eigenfunction of the parity operator with eigenvalue P P̂P̂ = I forces
observable parity values (eigenvalues) to be ±1.
[(P̂~x = �~x) =) (P̂P̂~x = �2~x) =) (~x = �2~x) =) (� = ±1).]

We will see later (page 355) that QED and QCD are invariant under parity, but that

the weak interactions does not conserve parity.
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Intrinsic Parities of fundamental particles

Spin-1 Bosons

From Gauge Field Theory can show that the gauge bosons have P = �1

P� = Pg = PW+ = PW� = PZ = �1.

Spin- 1
2 Fermions

From the Dirac equation showed (Handout 2):
Spin- 1

2 particles have opposite parity to spin- 1
2 anti-particles. Conventional choice is:

Particles: Pe� = Pµ� = P⌧� = P⌫ = Pq = +1,

Anti-particles: Pe+ = Pµ+ = P⌧+ = P⌫̄ = Pq̄ = �1.

For Dirac spinors it was shown (in Handout 2) that the parity operator is:

P̂ = �0 =

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA .
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Parity transformation for adjoint spinors

The transformation we already know for ordinary spinors is:

u
P̂�! u0 ⌘ P̂u = �0u. (123)

The transformation for adjoint spinors must therefore be:

ū
P̂�! ū0 ⌘ P̂u = ūP̂ = ū�0. (124)

Above result follows from invariance of ūu given (P̂)2 = 1, or (if you prefer) because:

ū0 ⌘ P̂u (by definition of u0)

= (P̂u)†�0 (by definition pf adjoint operation)

= (�0u)†P̂ (since P̂ = �0)

= u†�0†P̂ (by (AB)† = B†A†)

= u†�0P̂ (since �0 is Hermitiarn)

= ūP̂ (by definition of ū).
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Parity transformations for currents jµ = �̄�µ :

Appendix V already proved that all currents transform as Lorentz four-vectors. However,
that proof relied on Lorentz transformations being continuously connected to the identity.

Parity transformations are not continuously connected to the identity, so we need to
consider how currents transform under parity separately.

From (123) and (124) we deduce the following transformations under Parity:

jµ = �̄�µ 
P̂�! (j 0)µ = (�̄�0)�µ(�0 ) = �̄(�0�µ�0) 

and so time: j0 �! �̄�0�0�0 = �̄�0(�0�0) = �̄�0 = j0, and

space: j i �! �̄�0� i�0 = ��̄� i (�0�0) = ��̄� i = �j i .

Thus, even under parity currents still behave like bona fide four-vectors:
the time part is unchanged and the space part changes sign:

⇣
j0,+~j

⌘
P̂�!

⇣
j0,�~j

⌘
(125)

thus scalar products between currents (or any four-vectors) are invariant under parity:

je · jq = j0e j
0
q � ~je · ~jq P̂�! j0e j

0
q �

⇣
�~je

⌘
·
⇣
�~jq

⌘
= je · jq. (126)
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Parity Conservation in QED and QCD

Consider the QED process e�q ! e�q:

The Feynman rules give:

�iM / [ūe (p3) ie�
µue (p1)]

�igµv

q2
[ūq (p4) ie�

vuq (p2)]

which can be re-cast in terms of the electron and quark currents as

M / � e2

q2
gµv j

µ
e j

v

q = � e2

q2
je · jq.

with: jµe = ūe (p3) �
µue (p1) and jµq = ūq (p4) �

µuq (p2) .

We saw in (125) and (126) that such currents are bona fide four-vectors and that their
dot products (and thus M above) are therefore invariant under parity.
The QCD vertex has the same spinor structure as that of QED, and the result is also valid
for higher order matrix elements in QED and QCD, therefore:

QED and QCD conserve parity, and the predictions of these theories do not change when
and experiment is parity-inverted (i.e. when it is mirrored).
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Vectors vs Axial-Vectors

Under a parity transformation vectors and axial-vectors transform di↵erently:

Vectors change sign

8
<

:
~r

P̂�! �~r
~p

P̂�! �~p
�
px = @

@x , etc.
�

Axial-Vectors are unchanged

8
<

:
~L

P̂�! +~L (~L = ~r ^ ~p)
~µ

P̂�! +~µ (~µ / ~L)
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Parity Violation in �-Decay

In 1957 C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:

60Co ! 60Ni⇤ + e� + v̄e .

and observed that electrons were emitted preferentially in direction opposite to
applied B-field !

Having such a preference (irrespective of whether it favours ‘opposite to’ or ‘in the

same direction as’ ~B) is incompatible with parity being a symmetry of nature because

parity transforms vector ~p and axial-vector ~B di↵erently:

If parity were a symmetry of nature we would expect equal rate for producing e�in
directions along and opposite to the nuclear spin.

Conclusion: parity is somehow violated by the weak interaction.

=) The weak interaction vertex is not of the form ūe�µuv !
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Bilinear Covariants

The requirement of Lorentz invariance of the matrix element severely restricts the
form of the interaction vertex.

QED and QCD are called vector interactions because their currents:

jµ =  ̄�µ�

transform as non-axial four-vectors (Appendix V and (125)).

In general, there are only 5 possible combinations of two spinors and the gamma
matrices that form Lorentz covariant currents. They are the so-called “bilinear
covariants”:

Type Form Components Boson Spin
Scalar  ̄� 1 0
Pseudoscalar  ̄�5� 1 0
Vector  ̄�µ� 4 1
Axial Vector  ̄�µ�5� 4 1
Tensor  ̄ (�µ�⌫ � �v�µ)� 6 2

Note that in total the sixteen components correspond to the 16 elements of a general
4x4 matrix: “decomposition into Lorentz covariant combinations”.
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‘V � A’-structure of the Weak Interaction

The most general form for the interaction between a fermion and a boson is a linear
combination of bilinear covariants.

For an interaction corresponding to the exchange of a spin-1 boson the most general
form is a linear combination of vector and axial-vector currents.

Experimentally, the weak interaction’s current is determined vector minus axial
vector — called ‘V � A’ for short:

? Can this account for parity violation?
? First consider parity transformation of a pure AXIAL-VECTOR current

jA =  ̄�µ�5� with �5 = i�0�1�2�3; �5�0 = ��0�5

jA =  ̄�µ�5�
P̂�!  ̄�0�µ�5�0� = � ̄�0�µ�0�5�

j0A =
P̂�! � ̄�0�0�0�5� = � ̄�0�5� = �j0A

jkA =
P̂�! � ̄�0�k�0�5� = + ̄�k�5� = +jkA k = 1, 2, 3.
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The space-like components remain unchanged and the time-like components change
sign (the opposite to the parity properties of a vector-current):

Vector :
⇣
j0,~j

⌘
P̂�!

⇣
j0,�~j

⌘
versus Axial :

⇣
j0,~j

⌘
P̂�!

⇣
�j0,~j

⌘

Now consider the matrix element:

M / gµv j
µ
1 j

v

2 = j01 j
0
2 � ~j1 · ~j2.

An M containing a combination of a two axial-vector currents is invariant under
parity because:

jA1 · jA2
P̂�!

⇣⇣
�j0A1

⌘⇣
�j0A2

⌘
�

⇣
~jA1

⌘
·
⇣
~jA2

⌘⌘
= jA1 · jA2

Consequently parity is conserved for both a pure vector and pure axial-vector
interactions.

However, a scalar product between a vector current and an axial vector current:

jV 1 · jA2
P̂�!

⇣⇣
j0V 1

⌘⇣
�j0A2

⌘
�

⇣
�~jV 1

⌘
·
⇣
~jA2

⌘⌘
= �jV 1 · jA2

changes sign under parity. This can interfere with parity invariant terms in an M
having both, to give parity violating cross sections!
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Consider a general linear combination of VECTOR and AXIAL-VECTOR
(note this is relevant for the Z-boson vertex)

Mfi / j1 · j2 = g 2
V jV1 · jV2 + g 2

A jA1 · jA2 + gV gA
⇣
jV1 · jA2 + jA1 · jV2

⌘
.

Consider the parity transformation of this scalar product

j1 · j2 P̂�! g 2
V jV1 · jV2 + g 2

A jA1 · jA2 � gV gA
⇣
jV1 · jA2 + jA1 · jV2

⌘
.

If either gA or gV is zero, parity is conserved. (Theories with pure vector or pure
axial-vector interactions have parity symmetric cross sections.)

Relative strength of parity violating part is proportional to:

gV gA
g 2
V
+ g 2

A

.
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Chiral Structure of QED (reminder of material from Handout 4)

Chiral projections operators are: PR = 1
2

�
1 + �5

�
; PL = 1

2

�
1� �5

�
.

In the ultra-relativistic limit, chiral states correspond to helicity states.

Any spinor can be expressed as:

 ⌘ 1
2

⇣
1 + �5

⌘
 + 1

2

⇣
1� �5

⌘
 ⌘ PR + PL ⌘  R +  L.

The QED current  ̄�µ� could be written (see page 190) in
terms of chiral states as:

 ̄�µ� ⌘  ̄R�
µ�R +  ̄L�

µ�L.

since  ̄R�
µ�L ⌘ 0 and  ̄L�

µ�R ⌘ 0.
A consequence of the above is that in the ultra-relativistic limit only two helicity
combinations are non-zero:
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Chiral and Helicity Structure of the Weak Interaction

? The charged current
�
W±� weak vertex is:

�igwp
2

1
2
�µ

⇣
1� �5

⌘
.

? Since 1
2

�
1� �5

�
projects out left-handed chiral particle states:

 ̄
1
2
�µ

⇣
1� �5

⌘
� =  ̄�µ�L.

? Writing  ̄ =  ̄R +  ̄L and from discussion of QED,  ̄R�
µ�L = 0 gives

 ̄
1
2
�µ

⇣
1� �5

⌘
� =  ̄L�

µ�L.

Only the left-handed chiral components of particle spinors and right-handed chiral
components of anti-particle spinors participate in charged current weak interactions.

At very high energy (E � m), the left-handed chiral components are helicity eigenstates,
so:

In the ultra-relativistic limit only left-handed particles and right-handed antiparticles
participate in charged current weak interactions.
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E.g.: in the relativistic limit, the only possible electron-neutrino interactions are:

Example of parity violating consequence:

Annihilation of the form: e.g. v̄e + e� ! W� is spin-dependent:

364 / 606



H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

Helicity in Pion Decay

Pion decay demonstrates importance of helicity in the weak interaction.

Might expect the decay to electrons to dominate due to increased phase space, but
the opposite happens. The electron decay is helicity suppressed.

Experimentally see something very di↵erent:
�(⇡�!e

�⌫̄e)
�(⇡�!µ�⌫̄µ)

= 1.23⇥ 10�4.

Consider decay in pion rest frame.

Pion is spin zero: so the spins of the ⌫̄ and µ are opposite.

Weak interaction only couples to RH chiral anti-particle states. Since neutrinos are
(almost) massless, neutrino must be in RH Helicity state.

Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state:

... but only left-handed CHIRAL particle states participate in weak interaction!
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Helicity in pion decay (cont)

The general right-handed helicity solution to the Dirac equation is u" = N

0

BB@

c
e i�s
|~p|

E+m
c

|~p|
E+m

e i�s

1

CCA.

Project out the left-handed chiral part of the wave-function using

PL =
1
2

⇣
1� �5

⌘
=

1
2

0

BB@

1 0 �1 0
0 1 0 �1
�1 0 1 0
0 �1 0 1

1

CCA

giving

PLu" =
1
2
N

✓
1� |~p|

E +m

◆
0

BB@

c
e i�S
�c

�e i�S

1

CCA =
1
2

✓
1� |~p|

E +m

◆
uL.

In the limit m ⌧ E we see that PLu" tends to zero. Similarly:

PRu" =
1
2
N

✓
1 +

|~p|
E +m

◆
0

BB@

c
e i�S
c

e i�S

1

CCA =
1
2

✓
1 +

|~p|
E +m

◆
uR .

In the limit m ⌧ E , PRu" ! uR
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Helicity in pion decay (cont)

Hence

u" = PRu" + PLu" =
1
2

✓
1 +

|~p|
E +m

◆
uR +

1
2

✓
1� |~p|

E +m

◆
uL.

In the limit E � m, as expected, the RH chiral and helicity states are identical.

Although only LH chiral particles participate in the weak interaction, the contribution from
RH Helicity states is not necessarily zero:

Expect matrix element to be proportional to LH chiral component of RH Helicity
electron/muon spinor so (using special case of Ex.Sheet Q3):

Mfi / 1
2

✓
1� |~p|

E +m

◆
=

mµ

m⇡ +mµ
.

Hence because the electron mass is much smaller than the pion and muon masses the
decay ⇡� ! e�⌫̄e is heavily suppressed relative to ⇡� ! µ�⌫̄µ.
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Examples of evidence for V-A

Charged pion decay (Ex.Sheet Q17)

Experimentally measure:
�(⇡�!e

�⌫̄e)
�(⇡�!µ�⌫̄µ)

= (1.230± 0.004)⇥ 10�4.

Theoretical predictions depend on Lorentz Structure of the interaction:

V-A and V+A ( ̄�µ(1⌥ �5)�) predict . . . . . . . . . . . . . . . . .
�(⇡�!e

�⌫̄e)
�(⇡�!µ�⌫̄µ)

⇡ 1.3⇥ 10�4.

Scalar ( ̄�) and Pseudo-Scalar
�
 ̄�5�

�
predict . . . . . . . .

�(⇡�!e
�⌫̄e)

�(⇡�!µ�⌫̄µ)
⇡ 5.5.

Muon decay

Measure electron energy and angular distributions
relative to muon spin direction. Results expressed
in terms of general S+P+V+A+T form in
‘Michel Parameters’.

Measurement of TWIST expt (6⇥ 109µ decays,
Phys. Rev. Lett. 95 (2005) 101805) was . . . . . . . . . . . . . . . . . . . . . . . ⇢ = 0.75080± 0.00105.
V-A prediction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⇢ = 0.75.
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Weak Charged Current Propagator

The charged-current weak interaction is di↵erent from QED and QCD in that it is
mediated by massive W -bosons (MW ⇡ 80.3 GeV). The W propagator is thus di↵erent:

As seen in Handout 4 denominator changes: 1
q2 �! 1

q2�m2 .

In addition the sum over W boson polarization states modifies the numerator.

Resulting W -boson propagator is:
�i

⇥
gµ⌫ � qµq⌫/m2

W

⇤

q2 �m2
W

.

However in the limit where q2 is small compared with mW = 80.3 GeV the interaction
takes a simpler form:

W -boson propagator in the limit
�
q2 ⌧ m2

W

�
:

igµ⌫
m2

W

.

The interaction appears point-like (i.e. no q2 dependence).
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Connection to Fermi Theory
In 1934, before the discovery of parity violation, Fermi proposed, in analogy
with QED, that the invariant matrix element for �-decay was of the form:

Mfi = GF · gµ⌫
⇥
 ̄�µ 

⇤ ⇥
 ̄�⌫ 

⇤

where GF = 1.166⇥ 10�5 GeV�2.
Note the absence of a propagator: this represents an interaction at a point!

Connection to Fermi Theory
«In 1934, before the discovery of parity violation, Fermi proposed, in analogy 

with QED, that the invariant matrix element for b-decay was of the form: 

«After the discovery of parity violation in 1957 this was modified to

(the factor of √2 was included so the numerical value of GF did not need to be changed) 
«Compare to the prediction for W-boson exchange

which for                       becomes:

•Note the absence of a propagator : i.e. this represents an interaction at a point
where 

Still usually use        to express strength
of weak interaction as the is the quantity
that is precisely determined in muon decay
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After the discovery of parity violation in 1957 this was modified to

Mfi =
GFp
2
gµ⌫

h
 ̄�µ

⇣
1� �5

⌘
 
i h
 ̄�⌫

⇣
1� �5

⌘
 
i

(the factor of
p
2 was included so the numerical value of GF did not need to be changed).

Compare to the prediction for W -boson exchange:

Mfi =


gWp
2
 ̄
1
2
�µ

⇣
1� �5

⌘
 

�
gµ⌫ � qµq⌫/m2

W

q2 �m2
W


gWp
2
 ̄
1
2
�⌫

⇣
1� �5

⌘
 

�

which for q2 ⌧ m2
W becomes: Mfi =

g 2
W

8m2
W

gµ⌫
h
 ̄�µ

⇣
1� �5

⌘
 
i h
 ̄�⌫

⇣
1� �5

⌘
 
i

and so consistency requires
GFp
2
=

g 2
W

8m2
W

.
Still often use GF to express strength of
weak interaction as the is the quantity that
is precisely determined in muon decay.
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Strength of Weak Interaction as measured in muon decay

Here q2 < mµ ⇠ 0.106 GeV.

To a very good approximation the W-boson propagator
can be written: �i

⇥
gµ⌫ � qµqv/m2

W

⇤

q2 �m2
W

⇡ igµv
m2

W

.

In muon decay measure g 2
W /m2

W .

Convert to GF measurement using
GFp
2
=

g 2
W

8m2
W

.

Muon decay measurements find GF = 1.16639(1)⇥ 10�5 GeV�2

To obtain the intrinsic strength of weak interaction need to know mass of W-boson:
mW = 80.403± 0.029GeV

) ↵W =
g 2
W

4⇡
=

8m2
WGF

4
p
2⇡

⇡ 1
30

.

The intrinsic strength of the weak interaction is similar to, but greater than, the EM
interaction! It is the massive W-boson in the propagator which makes it appear weak. For
q2 � m2

W weak interactions are more likely than EM.
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Summary

Weak interaction vertex has ‘vector minus axial-vector’ parts and so is termed a
‘V � A’-interaction:

(weak vertex factor) =
�igwp

2

1
2
�µ

⇣
1� �5

⌘
.

Consequently only left-handed chiral particle states and right-handed chiral
anti-particle states participate in the weak interaction.

V � A is therefore also a form of ‘Maximal Parity Violation’.

The Weak interaction also violates charge conjugation symmetry.

At low q2 the weak interaction is only weak because of the large W -boson mass:

GFp
2
=

g 2
W

8m2
W

.

Intrinsic strength of weak interaction is similar to that of QED.
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