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Appendix IX: Electromagnetism

? In Heaviside-Lorentz units "0 = µ0 = c = 1 Maxwell’s equations in the vacuum become

~r · ~E = ⇢; ~r^ ~E = �@
~B
@t

; ~r · ~B = 0; ~r^ ~B = ~J +
@ ~E
@t

? The electric and magnetic fields can be expressed in terms of scalar and vector potentials

~E = �@
~A
@t

� ~r�; ~B = ~r^ ~A

? In terms of the 4-vector potential Aµ = (�, ~A) and the 4-vector current jµ = (⇢, ~J)
Maxwell’s equations can be expressed in the covariant form:

@µF
µv = jv (123)

where Fµv is the anti-symmetric field strength tensor

Fµ⌫ = @µAv � @vAµ =

0

BB@

0 �Ex �Ey �Ez

Ex 0 �Bz By

Ey Bz 0 �Bx

Ez �By Bx 0

1

CCA (124)

-Combining (123) and (124)
@µ (@µAv � @vAµ) = jv
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which can be written

⇤2Aµ � @µ (@⌫A
v ) = jµ (125)

where the D’Alembertian operator

⇤2 = @⌫@
v =

@2

@t2
� ~r2

-Acting on (125) with @V gives

@v j
v = @⌫@µ@

µAv � @µ@⌫@
vAµ = 0

) @⇢
@t

+ ~r · ~J = 0 Conservation of Electric Charge
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Appendix X: Gauge Invariance

Conservation laws are associated with symmetries. Here the symmetry is the GAUGE
INVARIANCE of electro-magnetism

? The electric and magnetic fields are unchanged for the gauge transformation:

~A ! ~A0 = ~A+ ~r�; �! �0 = �� @�
@t

where � = �(t, ~x) is any finite di↵erentiable function of position and time
? In 4-vector notation the gauge transformation can be expressed as:

Aµ ! A0
µ = Aµ + @µ�
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Using the fact that the physical fields are gauge invariant, choose � to be a solution of
? In this case we have

@µA0
µ = @µ (Aµ + @µ�) = @µAµ +⇤2� = 0

? Dropping the prime we have a chosen a gauge in which

@µA
µ = 0 The Lorentz Condition

With the Lorentz condition, equation (125) becomes:

⇤2Aµ = jµ . (126)

Having imposed the Lorentz condition we still have freedom to make a further gauge
transformation, i.e.

Aµ ! A0
µ = Aµ + @µ⇤

where ⇤(t, ~x) is any function that satisfies

⇤2⇤ = 0 (127)

? Clearly (126) remains unchanged, in addition the Lorentz condition still holds:

@µA0
µ = @µ (Aµ + @µ⇤) = @µAµ +⇤2⇤ = @µAµ = 0
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Appendix XI: Photon Polarization

For a free photon (i.e. jµ = 0 ) equation (126) becomes

⇤2Aµ = 0 (128)

(note have chosen a gauge where the Lorentz condition is satisfied)
Equation (127) has solutions (i.e. the wave-function for a free photon)

Aµ = "µ(q)e�iq·x

where "µ is the four-component polarization vector and q is the photon four-momentum

0 = ⇤2Aµ = �q2"µe�iq·x

) q2 = 0

Hence equation (128) describes a massless particle.
But the solution has four components - might ask how it can describe a spin-1
particle which has three polarization states?
But for (127) to hold we must satisfy the Lorentz condition:

0 = @µA
µ = @µ

⇣
"µe�iq·x

⌘
= "µ@⌫

⇣
e�iq·x

⌘
= �i"µqµe

�iq·x

Hence the Lorentz condition gives

qµ"
µ = 0 (129)

i.e. only 3 independent components. 335 / 604
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? However, in addition to the Lorentz condition still have the addional gauge freedom of
Aµ ! A0

µ = Aµ + @µ⇤ with (127) ⇤2⇤ = 0
-Choosing ⇤ = iae�iq·x which has ⇤2⇤ = q2⇤ = 0

Aµ ! A0
µ = Aµ + @µ⇤ = "µe

�iq·x + ia@µe
�iq·x

= "µe
�iq·x + ia (�iqµ) e

�iq·x

= ("µ + aqµ) e
�iq·x

? Hence the electromagnetic field is left unchanged by

"µ ! "0µ = "µ + aqµ

? Hence the two polarization vectors which di↵er by a mulitple of the photon
four-momentum describe the same photon. Choose a such that the time-like component
of "µ is zero, i.e. "0 ⌘ 0
? With this choice of gauge, which is known as the COULOMB GAUGE, the Lorentz
condition (129) gives

~" · ~q = 0

i.e. only 2 independent components, both transverse to the photons momentum
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? A massless photon has two transverse polarisation states. For a photon travelling in the
z direction these can be expressed as the transversly polarized states:

"µ1 = (0, 1, 0, 0); "µ2 = (0, 0, 1, 0)

? Alternatively take linear combinations to get the circularly polarized states

"µ� =
1p
2
(0, 1,�i , 0); "µ+ = � 1p

2
(0, 1, i , 0)

It can be shown that the "+state corresponds the state in which the photon spin is
directed in the +z direction, i.e. Sz = +1
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Appendix XII: Massive Spin-1 particles

For a massless photon we had (before imposing the Lorentz condition) we had from
equation (125):

⇤2Aµ � @µ (@vA
v ) = jµ

? The Klein-Gordon equation for a spin-0 particle of mass m is
⇣
⇤2 +m2

⌘
� = 0

suggestive that the appropriate equations for a massive spin-1 particle can be obtained by
replacing ⇤2 ! ⇤2 +m2

This is indeed the case, and from QFT it can be shown that for a massive spin 1
particle equation (125): becomes

⇣
⇤2 +m2

⌘
Bµ � @µ (@vB

v ) = jµ

Therefore a free particle must satisfy

⇣
⇤2 +m2

⌘
Bµ � @µ (@⌫B

⌫) = 0 (130)
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Acting on equation (130) with @v gives

⇣
⇤2 +m2

⌘
@µB

µ � @µ@
µ (@vB

v ) = 0
⇣
⇤2 +m2

⌘
@µB

µ �⇤2 (@vB
v ) = 0

m2@µB
µ = 0 (131)

Hence, for a massive spin-1 particle, unavoidably have @µBµ = 0; note this is not a
relation that reflects to choice of gauge.

-Equation (130) becomes

⇣
⇤2 +m2

⌘
Bµ = 0 : (132)

? For a free spin-1 particle with 4-momentum, pµ, equation (132): admits solutions

Bµ = "µe
�ip.x

Substituting into equation (131) gives

pµ"
µ = 0

? The four degrees of freedom in "µ are reduced to three, but for a massive particle,
equation (132) does not allow a choice of gauge and we can not reduce the number of
degrees of freedom any further.

339 / 604



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

? Hence we need to find three orthogonal polarisation states satisfying

pµ"
µ = 0 (133)

? For a particle travelling in the z direction, can still admit the circularly polarized states.

"µ� =
1p
2
(0, 1,�i , 0); "µ+ = � 1p

2
(0, 1, i , 0)

? Writing the third state as

"µ
L
=

1p
↵2 + �2

(↵, 0, 0,�)

equation (133) gives ↵E � �pz = 0

) "µ
L
=

1
m

(pz , 0, 0,E)

This longitudinal polarisation state is only present for massive spin-1 particles, i.e.
there is no analogous state for a free on-shell photon.
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Appendix XIII: Local Gauge Invariance

? The Dirac equation for a charged particle in an electro-magnetic field can be obtained
from the free particle wave-equation by making the minimal substitution

~p ! ~p � q ~A; E ! E � q� (q = charge )

In QM: i@µ ! i@µ � qAµ and the Dirac equation becomes

�µ (i@µ � qAµ) �m = 0

In Appendix X: saw that the physical EM fields where invariant under the gauge
transformation

Aµ ! A0
µ = Aµ � @µ�

? Under this transformation the Dirac equation becomes

�µ (i@µ � qAµ + q@µ�) �m = 0

which is not the same as the original equation. If we require that the Dirac equation is
invariant under the Gauge transformation then under the gauge transformation we need to
modify the wave-functions

 !  0 =  e iq�

341 / 604



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

? To prove this, applying the gauge transformation :

Aµ ! A0
µ = Aµ � @µ�  !  0 =  e iq�

to the original Dirac equation gives

�µ (i@µ � qAµ + q@µ�) e
iq� �m e iq� = 0 (134)

? But
i@µ

⇣
 e iq�

⌘
= ie iq�@µ � q (@µ�) e

iq� 

? Equation (134) becomes

�µe iq� (i@µ � qAµ + q@µ�� q@µ�) �m e iq� = 0

) �µe iq� (i@µ � qAµ) �m e iq� = 0

=)
�µ (i@µ � qAµ) �m = 0

which is the original form of the Dirac equation
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Appendix XIV : Local Gauge Invariance 2

? Reverse the argument of Appendix XIII. Suppose there is a fundamental symmetry of
the universe under local phase transformations

 (x) !  0(x) =  (x)e iq�(x)

Note that the local nature of these transformations: the phase transformation
depends on the space-time coordinate x = (t, ~x)

? Under this transformation the free particle Dirac equation

i�µ@µ �m = 0

becomes i�µ@µ
�
 e iq�

�
�m e iq� = 0

ie iq��µ (@µ + iq @µ�)�m e iq� = 0

i�µ (@µ + iq@µ�) �m = 0

Local phase invariance is not possible for a free theory, i.e. one without interactions
To restore invariance under local phase transformations have to introduce a massless
”gauge boson” Aµ which transforms as

Aµ ! A0
µ = Aµ � @µ�

and make the substitution

@µ ! Dµ = @µ + iqAµ
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Appendix XV: Alternative evaluation of colour factors

? The colour factors can be obtained (more intuitively) as follows :
-Write C(ik ! jl) = 1

2c1c2

-Where the colour coe�cients at the two vertices depend on
the quark and gluon colours

-Sum over all possible exchanged gluons conserving colour at
both vertices
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� Configurations involving a single colour

rr

r r

rr

r r

e.g.                  : two possible exchanged gluons

bb

b b

e.g.                  : only one possible exchanged gluon
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� Configurations where quarks swap colours 

� Other configurations where quarks don’t change colour 
rr

b b

gr

g r
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Appendix XVI: Colour Potentials

-Previously argued that gluon self-interactions lead to a +�r long-range potential and that
this is likely to explain colour confinement

Have yet to consider the short range potential - i.e. for quarks in mesons and baryons
does QCD lead to an attractive potential?

-Analogy with QED: (NOTE this is very far from a formal proof)

Repulsive Potential
Attractive Potential

? by analogy with QED expect potentials of form

? Whether it is a attractive or repulsive potential depends on sign of colour factor
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? Consider the colour factor for a q q̄ system in the colour singlet state:

 =
1p
3
(r r̄ + gḡ + bb̄)

with colour potential hVqq̄i = h |VQCD| i

-Have 3 terms like r r̄ ! r r̄ , bb̄ ! bb̄, . . . and 6 like r r̄ ! gḡ , r r̄ ! bb̄, . . .

hVqq̄i = � 1
3
↵S

r
[3⇥ C(r r̄ ! r r̄) + 6⇥ C(r r̄ ! gḡ)] = � 1

3
↵S

r

⇥
3⇥ 1

3 + 6⇥ 1
2

⇤

�! hVqq̄i = � 4
3
↵S

r
NEGATIVE ) ATTRACTIVE

-The same calculation for a q q̄ colour octet state, e.g. r ḡ gives a positive repulsive
potential: C(r ḡ �! r ḡ) = � 1

6
? Whilst not a formal proof, it is comforting to see that in the colour singlet qq̄ state the
QCD potential is indeed attractive.
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* Combining the short-range QCD potential with the linear long-range term discussed
previously:

VQCD = �4
3
↵s

r
+ �r

? This potential is found to give a good description of the observed charmonium (cc) and
bottomonium (bb) bound states

NOTE:
·c, b are heavy quarks -approx.
non-relativistic - orbit close together
- probe 1/r part of VQCD

Agreement of data with prediction provides strong evidence that VQCD has the Expected
form 349 / 604
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