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H7: Symmetries and the Quark Model
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Symmetries in this handout

Symmetries play a central role in particle physics; one aim of particle physics is to
discover the fundamental symmetries of our universe.

In this handout will apply the idea of symmetry
to the quark model with the aim of:

deriving hadron wave-functions,

providing an introduction to the more
abstract ideas of colour and QCD
(Handout 8), and

ultimately explaining why hadrons only exist
as q̄q (mesons) qqq (baryons) or q̄q̄q̄
(anti-baryons).

En route we will see some early usage of SU(2)
and SU(3) symmetry groups which play a role
both hear and later on (e.g. see Handout 13).
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Symmetries and Conservation Laws

Suppose physics is invariant under the transformation

 !  0 = Û e.g. rotation of the coordinate axes

If U is a symmettry which preserves state normalisations then for all | > we require:

h |  i =
⌦
 0 |  0↵ = hÛ | Û i =

D
 
���Û†Û

��� 
E

=) Û†Û = 1 i.e. Û has to be unitary. (120)

For physical predictions to be unchanged by the symmetry transformation, we also
require (for all | >) that

h |Ĥ| i =
D
 0|Ĥ| 0

E
.

Since
D
 0|Ĥ| 0

E
=

D
 
���Û†ĤÛ

��� 
E
we need Û†ĤÛ = Ĥ which (using (120)) says:

[Ĥ, Û] = 0 i.e. Û commutes with the Hamiltonian.

If the symmetry can be small (i.e. almost the identity) then an infinitesimal
transformation could be wrtten (in terms of "⌧ 1) as:

Û = 1 + i"Ĝ .

Ĝ is called the generator of the transformation.
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For Û to be unitary

ÛÛ† = (1 + i"Ĝ)
⇣
1� i"Ĝ †

⌘
= 1 + i"

⇣
Ĝ � Ĝ †

⌘
+ O

⇣
"2
⌘

neglecting terms in "2 UU† = 1 ) Ĝ = Ĝ † i.e. Ĝ is Hermitian and therefore
corresponds to an observable quantity G !

Furthermore, [Ĥ, Û] = 0 ) [Ĥ, 1 + i"Ĝ ] = 0 ) [Ĥ, Ĝ ] = 0.
But from Ehrenfest Theorem in QM:

d
dt
hĜi = ih[Ĥ, Ĝ ]i = 0

i.e. G is a conserved quantity.

Symmetry () Conservation Law

Each such symmetry of nature therefore has an observable conserved quantity.
Example: Infinitesimal spatial translation x ! x + " i.e. expect physics to be invariant
under  (x)!  0 =  (x + "):

 0(x) =  (x + ") =  (x) +
@ 
@x

" =

✓
1 + "

@
@x

◆
 (x)

but

p̂x = �i @
@x
)  0(x) = (1 + i"p̂x) (x).

The generator of the symmetry transformation is p̂x and so px is conserved.

Translational invariance of physics implies momentum conservation!
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In general the symmetry operation may depend on more than one parameter:

Û = 1 + i~" · ~G

For example for an infinitesimal 3D linear translation: ~r �! ~r + ~" with
~p = (p̂x , p̂y , p̂z) we have

Û = 1 + i~" · ~p.

So far have only considered an infinitesimal transformation. Fortunately, finite
transformations can be expressed as a series of infinitesimal transformations:

Û(~") = lim
n!1

✓
1 + i

~"
n
· ~G

◆
n

= e i~"·
~G .

Example: Finite spatial translation in 1D: x ! x + x0 with Û (x0) = e ix0 p̂x

 0(x) =  (x + x0) = Û (x) = exp

✓
x0

d
dx

◆
 (x)

✓
px = �i @

@x

◆

=

✓
1 + x0

d
dx

+
x2

0

2!
d2

dx2
+ . . .

◆
 (x)

=  (x) + x0
d 
dx

+
x2

0

2
d2 
dx2

+ . . .

confirming that one obtains the expected Taylor expansion for a translated field.
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Symmetries in Particle Physics : Isospin

The proton and neutron have very similar masses and the nuclear force is found to be
approximately charge-independent, i.e.

Vpp ⇡ Vnp ⇡ Vnn.

To reflect this symmetry, Heisenberg (1932) proposed that:

If you could ”switch o↵” the electric charge of the proton there would be no
way to distinguish between a proton and neutron.

More specifically he proposed that the neutron and proton should be considered as
two states of a single entity; the nucleon:

p =

✓
1
0

◆
n =

✓
0
1

◆
.

Symmetry ended up being called isospin since maths is very similar that of
spin-up/spin-down states of spin- 1

2 particles.

Expect physics to be invariant under continuous (ahem) ‘rotations’ in isospin space
just as the axis against which ordinary spin is measured can be continuously varied.

The neutron and proton form an isospin doublet with total isospin I = 1
2 and third

component I3 = ± 1
2 .
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Flavour Symmetry of the Strong Interaction

We can extend this idea to the quarks: we can assume that assume the strong interaction
treats all quark flavours equally (which it does!).

Because mu ⇡ md the strong interaction possesses an approximate flavour symmetry
i.e. from the point of view of the strong interaction nothing changes if all up quarks
are replaced by down quarks and vice versa.

Choose the basis

u =

✓
1
0

◆
d =

✓
0
1

◆
.

Express the invariance of the strong interaction under u $ d as invariance under
“rotations” in an abstract isospin space:

✓
u0

d 0

◆
= Û

✓
u
d

◆
=

✓
U11 U12

U21 U22

◆✓
u
d

◆
.

In general a 2⇥ 2 complex matrix has 4 complex (i.e. 8 real) degrees of freedom.
However, when such a matrix is unitary it has only 4 real degrees of freedom as Û†Û = 1
imposes 4 real constraints (since no matter what Û is, Û†Û is always Hermitian).

=) 4 independent matrices

In the language of group theory, the four matrices form the U(2) group.
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Generators for SU(2)-flavour a.k.a. ‘isospin’

One of the four available degrees of freedom (d.o.f.)
corresponds to multiplying by a phase factor. This is not a
flavour transformation and so is not relevant.

Û1 =

✓
1 0
0 1

◆
e i�

The remaining three d.o.f. parameterise the SU(2) group of ‘special’ (i.e. detU = 1)
unitary matrices. For infinitessimal transformations, place these d.o.f. in "i and write:

Û(~") = 1 + i
3X

i=1

"i Ĝi

where the three Ĝi are called the generators of the symmetry. [ ~G ⌘ (Ĝ1, Ĝ2, Ĝ3)]

EXERCISE: check that (detU = 1) () (Tr(Ĝi ) = 0) for infinitessimal tfms.

EXERCISE: (re)check that (Û†Û = 1) () (Ĝ †
i
= Ĝi ) for infinitessimal tfms.

The Pauli Matrices are three linearly independent traceless and Hermitian matrices:

�1 =

✓
0 1
1 0

◆
�2 =

✓
0 �i
i 0

◆
�3 =

✓
1 0
0 �1

◆
.

The three generators Ĝi of SU(2)-flavour (a.k.a. isospin) symmetry are traditionally

denoted T̂i and are defined by T̂i =
1
2
�i making the general tfm.: U(~") = e i~"·

~T .

(The 1
2 does not stop these T̂i being traceless, Hermitian and linearly independent!)
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Aside: a check that isospin has claimed properties

For any SU(2)-flavour (i.e. isospin) transformation U(") we have:

Û(") = 1 +
1
2
i~" · ~� + O("2)

= 1 +
i
2
("1�1 + "2�2 + "3�3) + O("2)

=

✓
1 + 1

2 i"3
1
2 i ("1 � i"2)

1
2 i ("1 + i"2) 1� 1

2 i"3

◆
+ O("2).

Û(~") is evidently unitary (at least for infinitessimal transformations) because:

U†U =

✓
1� 1

2 i"3 � 1
2 i ("1 � i"2)

� 1
2 i ("1 + i"2) 1 + 1

2 i"3

◆✓
1 + 1

2 i"3
1
2 i ("1 � i"2)

1
2 i ("1 + i"2) 1� 1

2 i"3

◆
+ O("2)

= I + O("2) (multiply the terms above to see why!).

Û(~") also has determinant 1 (at least for infinitessimal transformations) because:

detU =

����

✓
1 + 1

2 i"3
1
2 i ("1 � i"2)

1
2 i ("1 + i"2) 1� 1

2 i"3

◆
+ O("2)

����

= (1 +
1
2
i"3)(1�

1
2
i"3)� O("2)

= 1 + O("2).
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Mathematical similarities between Isopin and Spin

Isospin generators have exactly the same properties as those of spin:

[T1,T2] = iT3, [T2,T3] = iT1, . [T3,T1] = iT2
h
T 2,T3

i
= 0, T 2 = T 2

1 + T 2
2 + T 2

3 .

As in the case of spin, have three non-commuting Hermitian operators, T1,T2,T3, so even
though all three correspond to observables, we can’t measure them simultaneously.

So label states in terms of total isospin I and the third component of isospin I3.
These eigenstates are exact analogues of the eigenstates of ordinary angular
momentum |s,mi ! |I , I3i:

T 2 |I , I3i = I (I + 1) |I , I3i T3 |I , I3i = I3 |I , I3i

In terms of isospin:

u =

✓
1
0

◆
=

����
1
2
,+

1
2

�
, d =

✓
0
1

◆
=

����
1
2
,�1

2

�
.

I =
1
2
, I3 = ±1

2

In general I3 = 1
2 (Nu � Nd).
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Can define isospin ladder operators - analogous to spin ladder operators

T� ⌘ T1 � iT2

u ! d

T+ ⌘ T1 + iT2

d ! u

T+ |I , I3i =
p

I (I + 1)� I3 (I3 + 1) |I , I3 + 1i

T� |I , I3i =
p

I (I + 1)� I3 (I3 � 1) |I , I3 � 1i

These ops step up/down in I3 until reach end of multiplet: T+|I ,+I i = 0 T�|I ,�I i = 0.

T+u = 0, T+d = u, T�u = d , T�d = 0

What is isospin of a sytemt of two quarks?

Combining/adding isospin works same as combining/adding angular momentum:
���I (1), I (1)

3

E ���I (2), I (2)
3

E
! |I , I3i .

I3 additive : I3 = I (1)
3 + I (2)

3 ,

I in integer steps from
���I (1) � I (2)

��� to
���I (1) + I (2)

���.

In strong interactions I3 and I are conserved, analogous to conservation of Jz and J
for angular momentum.
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Combining Quarks

Isospin starts to become useful in defining states of more than one quark.
Two quarks states could use a {uu, ud , du, dd} basis:

This is not a good basis, though, becayse two of these states are not eigenstates of total
isospin. Here (and on next slide) we will derive a better basis whose elements have well
defined I .

We can immediately identify the extremes since I3 is additive:

uu ⌘
����
1
2
,
1
2

� ����
1
2
,
1
2

�
= |1,+1i dd ⌘

����
1
2
,�1

2

� ����
1
2
,�1

2

�
= |1,�1i.

To obtain the |1, 0i state use ladder operators

T�|1,+1i =
p
2|1, 0i = T�(uu) = ud + du

=) |1, 0i = 1p
2
(ud + du)

The final (fourth) basis state, |0, 0i, can be found from orthogonality with |1, 0i

=) |0, 0i = 1p
2
(ud � du).
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From four possible combinations of isospin doublets obtain a triplet of isospin 1 states
and a singlet isospin 0 state 2⌦ 2 = 3� 1

Can move around within multiplets using ladder operators.
As anticipated I3 = 1

2 (Nu � Nd).
States with di↵erent total isospin are physically di↵erent — the isospin 1 triplet is
symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric.

Now add an additional up or down quark:
From each of the above 4 states get two new isospin states with I 03 = I3 ± 1

2 :

As for two quark case, the extremal states of a given multiplet have well defined
isospin, but we must use ladder operators and orthogonality find the states which
shares (or have di↵erent) properties to the extremal states. E.g. to obtain the I = 3

2
states, step up from ddd (or down from uuu) within the sextet. (See next page!)
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Four states that are symmetric under exchange of first two quarks

Derive the I = 3
2 states from ddd ⌘

�� 3
2 ,�

3
2

↵
:

�� 3
2 ,�

3
2

↵
= ddd

=) T+

�� 3
2 ,�

3
2

↵
= T+(ddd) = (T+d) dd + d (T+d) d + dd (T+d)

=)
p
3
�� 3

2 ,�
1
2

↵
= udd + dud + ddu

=)
�� 3

2 ,�
1
2

↵
= 1p

3
(udd + dud + ddu)

=) T+

�� 3
2 ,�

1
2

↵
= 1p

3
T+(udd + dud + ddu)

=) 2
�� 3

2 ,+
1
2

↵
= 1p

3
(uud + udu + uud + duu + udu + duu)

=)
�� 3

2 ,+
1
2

↵
= 1p

3
(uud + udu + duu)

=) T+

�� 3
2 ,+

1
2

↵
= 1p

3
T+(uud + udu + duu)

=)
p
3
�� 3

2 ,+
3
2

↵
= 1p

3
( uuu + uuu + uuu )

=)
�� 3

2 ,+
3
2

↵
= uuu .
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Two more states that are symmetric under exchange of first two quarks

The sextet (above) contained six states.
All were symmetric under exchange of the first two quarks, q1 $ q2.

On last page we found four states with the same q1 $ q2 symmetry (but with well
defined isopin). There must therefore be two more states which are orthogonal to the
four just found, and which are symmetric under q1 $ q2 but which have well defined
isospin.

The two missing orthogonal states hidden within the sextet are:
�� 1

2 ,�
1
2

↵
= � 1p

6
(2ddu � udd � dud), and

�� 1
2 ,+

1
2

↵
= + 1p

6
(2uud � udu � duu).

[EXERCISE: Check that these states are mapped to each other by T±, that they have
I = 1/2, and that they are orthogonal to each other and to the other states.]
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Flavour basis for states containing three quarks

We still have the two doublet states from page 265 – which are (conveniently) already
an iso-doublet. Thus, we have managed to replace the 8-dimensional basis
{uuu, uud , udu, udd , duu, dud , ddu, ddd} with one formed from
one iso-quadruplet and two iso-doublets:

2⌦ 2⌦ 2 = 2⌦ (3� 1) = (2⌦ 3)� (2⌦ 1) = 4� 2� 2

Each multiplet has its own distinct symmetry:
�� 3

2 ,+
3
2

↵
= uuu

�� 3
2 ,+

1
2

↵
= 1p

3
(uud + udu + duu)

�� 3
2 ,�

1
2

↵
= 1p

3
(ddu + dud + udd)

�� 3
2 ,�

3
2

↵
= ddd

9
>>>>=

>>>>;

S ; S =

A quadruplet of states
which are Symmetric under
the interchange of any two
quarks.

�� 1
2 ,+

1
2

↵
= + 1p

6
(2uud � udu � duu)

�� 1
2 ,�

1
2

↵
= � 1p

6
(2ddu � udd � dud)

)
MS ; MS =

Mixed, Symmetric under in-
terchange of quarks 1$ 2.

�� 1
2 ,+

1
2

↵
= 1p

2
(udu � duu)

�� 1
2 ,�

1
2

↵
= 1p

2
(udd � dud)

)
MA; MA =

Mixed, Antisymmetric un-
der interchange of quarks
1$ 2.

The states in MS and MA have no definite symmetry under interchange of the third quark
with either of the others. This will change when we add spin later.
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Spin basis for states containing three spin-half particles

Since the maths for spin is the same as the maths for isospin, we can replace the
8-dimensional basis {""", ""#, "#", "##, #"", #"#, ##", ###} with one formed from
one iso-quadruplet and two iso-doublets:

2⌦ 2⌦ 2 = 2⌦ (3� 1) = (2⌦ 3)� (2⌦ 1) = 4� 2� 2

Each multiplet has its own distinct symmetry:
�� 3

2 ,+
3
2

↵
="""

�� 3
2 ,+

1
2

↵
= 1p

3
(""# + "#" + #"")

�� 3
2 ,�

1
2

↵
= 1p

3
(##" + #"# + "##)

�� 3
2 ,�

3
2

↵
=###

9
>>>>=

>>>>;

S ; S =

A quadruplet of states
which are Symmetric under
the interchange of any two
quarks.

�� 1
2 ,+

1
2

↵
= + 1p

6
(2 ""# � "#" � #"")

�� 1
2 ,�

1
2

↵
= � 1p

6
(2 ##" � "## � #"#)

)
MS ; MS =

Mixed, Symmetric under in-
terchange of quarks 1$ 2.

�� 1
2 ,+

1
2

↵
= 1p

2
("#" � #"")

�� 1
2 ,�

1
2

↵
= 1p

2
("## � #"#)

)
MA; MA =

Mixed, Antisymmetric un-
der interchange of quarks
1$ 2.

As was the case for the flavour basis, the states in MS and MA have no definite symmetry
under interchange of the third quark with either of the others.
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Baryon Wave-functions

Quarks are fermions so the total wave-function must be anti-symmetric under the
interchange of any two quarks.

The total wave-function can be factorised into:

 = �flavour �spin ⇠colour ⌘space

⇠colour is anti-symmetric as it is a bound qqq states (see Handout 8).
⌘space is symmetric (for us) as we will only consider the lowest mass, ground state
baryons (L = 0). [Symmetry is (�1)L in general.]

Thus:

�flavour�spin must be symmetric under
the interchange of any two quarks

Two ways to form a totally symmetric wave-function from spin and isospin states:
(1) combine totally symmetric spin and isospin wave-functions �(S)�(S)
ddd 1p

3
(ddu + dud + udd) 1p

3
(uud + udu + duu) uuu
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(2) combine mixed symmetry spin and mixed symmetry isospin states:

Both � (MS)� (MS) and � (MA)� (MA) are sym. under inter-change of quarks 1$ 2

Not su�cient, these combinations have no definite symmetry under 1$ 3, . . .

However, it is not di�cult to show that the (normalised) linear combination:

1p
2
� (MS)� (MS) +

1p
2
� (MA)� (MA)

is totally symmetric (i.e. symmetric under q1 $ q2; q1 $ q3; q2 $ q3).

The spin-up proton wave-function is therefore:

|p "i = 1
6
p

2
(2uud � udu � duu)(2 ""# � "#" � #"") + 1

2
p

2
(udu � duu)("#" � #"")

=) |p "i =

8
<

:

1p
18
( 2u " u " d # �u " u # d " �u # u " d "

+2u " d # u " �u " d " u # �u # d " u "
+2d # u " u " �d " u # u " �d " u " u # )

9
=

; .

NOTE: it is not always necessary to use the fully symmetrised proton wave-function.
E.g. the first three terms are su�cient for calculating the proton magnetic moment.
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Anti-quarks and Mesons (u and d)

? The u, d quarks and u, d anti-quarks are represented as isospin doublets

ū =

✓
0
1

◆

d̄ = �
✓
1
0

◆

The ordering and the minus sign in the anti-quark doublet ensures that anti-quarks
and quarks transform in the same way (see Appendix VIII). This is necessary if we
want physical predictions to be invariant under u $ d ; ū $ d̄

For anti-quarks the ladder operators introduce an extra minus sign not seen for
quarks. E.g.:

T+ū = T+

✓
0
1

◆
=

✓
0 1
0 0

◆✓
0
1

◆
=

✓
1
0

◆
= �d̄

The e↵ect of the ladder operators on all isospin states are:

anti-quarks : T+ū = �d̄ , T+d̄ = 0, T�ū = 0, T�d̄ = �ū, and
quarks : T+d = +u, T+u = 0, T�d = 0, T�u = +d .
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Light ud Mesons

Can now construct meson states from combinations of up/down quarks

Consider the qq̄ combinations in terms of isospin

|1,+1i =
�� 1

2 ,+
1
2

↵ �� 1
2 ,+

1
2

↵
= �ud̄

|1,�1i =
�� 1

2 ,�
1
2

↵ �� 1
2 ,�

1
2

↵
= dū

(The bar indicates this is the isospin representation of an anti-quark.)

To obtain the I3 = 0 states use ladder operators and orthogonality:

T�|1,+1i = T�[�ud̄ ]

=)
p
2|1, 0i = �T�[u]d̄ � uT�[d̄ ]

= �dd̄ + uū

=) |1, 0i = 1p
2
(uū � dd̄) .

Orthogonality gives: |0, 0i = 1p
2
(uū + dd̄) .
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To summarise:

decomposes into a triplet of I = 1 states and a singlet I = 0 state:

You will see this written as 2⌦ 2̄ = 3� 1
with 2 being the quark doublet and 2̄ being the anti-quark doublet.

To show the state obtained from orthogonality with |1, 0i is a singlet use ladder
operators

T+|0, 0i = T+
1p
2
(uū + dd̄) =

1p
2
(�ud̄ + ud̄) = 0.

Silimiarly
T�|0, 0i = 0.

A singlet state is a ‘dead end’ from the point of view of ladder operators.
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SU(3)-flavour: the extension to the strange quark

Since ms > mu,md have only an approximate symmetry. Nonetheless, ms is not
‘very’ di↵erent from mu,md , and so the strong interaction acts as if its states were
approximately symmetric under u $ d $ s.

The assumed uds flavour symmetry can timesbe expressed as
0

@
u0

d 0

s 0

1

A = Û

0

@
u
d
s

1

A =

0

@
U11 U12 U13

U21 U22 U23

U31 U32 U33

1

A

0

@
u
d
s

1

A

The 3⇥ 3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters
There are 9 constraints from Û†Û = 1 so the U(3) group is 18� 9 = 9-dimesional.

As before, one d.o.f. simply allows for matrices in U(3) to be multiplied by a complex
phase and is of no interest in the context of flavour symmetry.

The remaining 8 d.o.f. control variation between matrices with the ‘special’ property
detU = 1. The group which these d.o.f. parameterise is therefore called SU(3).

The eight traceless and Hermitian generators Gi for SU(3)-flavour are denoted:

~G = 1
2
~� making a general element of the group: Û(~") = e i~"·

~G = e i
1
2 ~"·~� .
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In SU(3) flavour, the three quark states are represented by:

u =

0

@
1
0
0

1

A d =

0

@
0
1
0

1

A s =

0

@
0
0
1

1

A

In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows us
to write the first three matrices:

i.e. u$ d �1 =

0

@
0 1 0
1 0 0
0 0 0

1

A �2 =

0

@
0 �i 0
i 0 0
0 0 0

1

A �3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A

The third component of isospin is now written I3 = 1
2�3 (instead of 1

2�3) thus

I3u = + 1
2u, I3d = � 1

2d , and I3s = 0.

I3 counts the number of up quarks minus number of down quarks in a state.

As before, ladder operators T± = 1
2 (�1 ± i�2) achieve d  � T± �! u .
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Now consider the matrices corresponding to the u$ s and d$ s

Hence in addition to �3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A have two other traceless diagonal matrices.

However, these three diagonal matrices are not independent, so define the eighth
matrix, �8, as the following linear combination:

�8 = 1p
3

0

@

0

@
0 0 0
0 1 0
0 0 �1

1

A+

0

@
1 0 0
0 0 0
0 0 �1

1

A

1

A =
1p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A

which specifies the ‘vertical position’ in the 2D plane.

Only need two axes (quantum numbers) to specify a
state in the 2D plane: (I3,Y ), i.e. third component
of isospin and hypercharge, Y .
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There are now six ladder operators (built from
Gell-Mann matrices �i ) which step between the states:

T± =
1
2
(�1 ± i�2)

V± =
1
2
(�4 ± i�5)

U± =
1
2
(�6 ± i�7)

I3 = 1
2�3

Y = 1p
3
�8

u$ d �1 =

0

@
0 1 0
1 0 0
0 0 0

1

A �2 =

0

@
0 �i 0
i 0 0
0 0 0

1

A �3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A

u$ s �4 =

0

@
0 0 1
0 0 0
1 0 0

1

A �5 =

0

@
0 0 �i
0 0 0
i 0 0

1

A

d$ s �6 =

0

@
0 0 0
0 0 1
0 1 0

1

A �7 =

0

@
0 0 0
0 0 �i
0 i 0

1

A �8 =
1p
3

0

@
1 0 0
0 1 0
0 0 �2

1

A
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Quarks and anti-quarks in SU(3) Flavour

Quarks

I3u = + 1
2u; I3d = � 1

2d ; I3s = 0

Yu = + 1
3u; Yd = + 1

3d ; Ys = � 2
3 s

The anti-quarks have opposite SU(3) flavour quantum numbers

Anti-Quarks

I3ū = � 1
2 ū; I3d̄ = + 1

2 d̄ ; I3s̄ = 0

Y ū = � 1
3 ū; Y d̄ = � 1

3 d̄ ; Y s̄ = + 2
3 s̄
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SU(3) Ladder Operators

The uds SU(3)-flavour symmetry contains ud , us and ds
SU(2)-flavour symmetries.
Consider the u $ s symmetry ‘V -spin’ which has the associated
s ! u ladder operator

V+ = 1
2 (�4 + i�5) = 1

2

0

@
0 0 1
0 0 0
1 0 0

1

A+ i

2

0

@
0 0 �i
0 0 0
i 0 0

1

A =

0

@
0 0 1
0 0 0
0 0 0

1

A

so V+s =

0

@
0 0 1
0 0 0
0 0 0

1

A

0

@
0
0
1

1

A =

0

@
1
0
0

1

A = +u.

The actions of all six ladder operators are:

T+d = u; T�u = d ; T+ū = �d̄ ; T�d̄ = �ū
V+s = u; V�u = s; V+ū = �s̄; V�s̄ = �ū
U+s = d ; U�d = s; U+d̄ = �s̄; U�s̄ = �d̄

and all other unlisted actions give zero.
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Light (uds) Mesons

Use ladder operators to construct uds mesons from the nine possible qq̄ states

The central states with Y = I3 = 0 can be obtained using the ladder operators and
orthogonality. Starting from the outer states can reach the centre in six ways:

T+|dūi = |uūi � |dd̄i T�|ud̄i = |dd̄i � |uūi
V+|sūi = |uūi � |ss̄i V�|us̄i = |ss̄i � |uūi
U+|sd̄i = |dd̄i � |ss̄i U�|ds̄i = |ss̄i � |dd̄i

Only two of these six states are linearly independent,

but there are three original states with Y = I3 = 0.

Therefore one state is not part of this first multiplet,
which is therefore an octet. The ninth state cannot
be reached with ladder ops as it is orthogonal.
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First form two linearly independent orthogonal states from:

|uūi � |dd̄i |uūi � |ss̄i |dd̄i � |ss̄i.
If the SU(3) flavour symmetry were exact, the choice of states wouldn’t matter.
However, mS > mu,d and the symmetry is only approximate.
Experimentally observe three light mesons with m 140 MeV: ⇡+,⇡0,⇡�

Identify one central octet state (the ⇡0) with the isospin triplet derived previously:

 1 =
1p
2
(uū � dd̄)

The second central octet state can be obtained as a linear combination of the other
two states which is orthogonal to the ⇡0:

 2 = ↵(|uūi � |ss̄i) + �(|dd̄i � |ss̄i)
with orthonormality: h 1 |  2i = 0; h 2 |  2i = 1

=)  2 =
1p
6
(uū + dd̄ � 2ss̄)

The remaining central state (which is not part of the octet!) is then whatever is
orthogonal to  1 and  2:

=)  3 =
1p
3
(uū + dd̄ + ss̄) is the singlet!
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It is easy to check that

T+ 3 = T� 3 = U+ 3 = U� 3 = V+ 3 = V� 3 = 0

thereby confirming that  3 = 1p
3
(uū + dd̄ + ss̄) is a ‘flavourless’ singlet.

Therefore the combination of a quark and anti-quark yields nine states which
breakdown into an octet and a singlet:

In the language of group theory: 3⌦ 3 = 8� 1

Compare with combination of two spin-half particles 2⌦ 2 = 3� 1

spin-1 triplet: states: |1,�1i, |1, 0i, |1,+1i,
spin-0 singlet: state: |0, 0i.

These spin triplet states are connected by ladder operators just as the meson uds
octet states are connected by SU(3) flavour ladder operators.

The singlet state carries no angular momentum — in this sense the SU(3) flavour
singlet is flavourless.
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Meson summary
PSEUDOSCALAR MESONS (L=0, S=0, J=0, P= –1 )

VECTOR MESONS (L=0, S=1, J=1, P= –1 )

•Because SU(3) flavour is only approximate
the physical states with                         can be
mixtures of the octet and singlet states. 
Empirically find:

•For the vector mesons the physical states
are found to be approximately “ideally mixed”:

MASSES

singlet

243 / 557
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Combining uds quarks to form Baryons

Have already seen that constructing Baryon states is a fairly tedious process when we
derived the proton wave-function. Concentrate on multiplet structure rather than
deriving all the wave-functions.
Everything we do here is relevant to the treatment of colour
First combine two quarks:

Yields a symmetric sextet and anti-symmetric triplet:
3⌦ 3 = 6� 3:
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Now add the third quark:

Best considered in two parts, building on the sextet and triplet. Again concentrate on
the multiplet structure (for the wave-functions refer to the discussion of proton
wave-function).

(1) Building on the sextet: 6⌦ 3 = 10� 8:
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(2) Building on the triplet: 3̄⌦ 3 = 8� 1:

« In summary, the combination of three uds quarks decomposes into

Totally
Anti-symmetric

Singlet

•Just as in the case of uds mesons we are combining              and again
obtain an octet and a singlet

� Building on the triplet:

Mixed 
Symmetry 

Octet

• Can verify the wave-function
is a singlet by using ladder operators, e.g.  

Very Important for
following discussion
of COLOUR

246 / 557

We also saw 3̄⌦ 3 = 8� 1 when we combind quarks with antiquarks to get mesons.

Can verify the wave-function  singlet = 1p
6
(uds � usd + dsu � dus + sud � sdu) is a

singlet by using ladder operators, e.g.

T+ singlet =
1p
6
(uus � usu + usu � uus + suu � suu) = 0.

In summary, the combination of three uds quarks decomposes into

3⌦ 3⌦ 3 = 3⌦ (6� 3) = 10� 8� 8� 1.
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Baryon Decuplet (L = 0, S = 3/2, J = 3/2,P = +1)

The spin- 3
2 decuplet is formed from symmetric flavour and symmetric spin

wave-functions �flavour(S)�spin(S):

Mass in MeV

�(1232)

⌃(1318)

⌅(1384)

⌦(1672)

If SU(3)-flavour were an exact symmetry then all the masses would be the same.
They are not, so SU(3)-flavour is a broken symmetry.
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Baryon Octet (L = 0, S = 1/2, J = 1/2,P = +1)

The spin 1/2 octet is formed from mixed symmetry flavour and mixed symmetry spin
wave-functions

↵� (MS)� (MS) + �� (MA)� (MA) .

Adapt previous discussion concerning proton to obtain wave-functions for all these:
Mass in MeV

n/p(939)

⌃(1193)

⇤(1116)

⌅(1318)

Cannot form a totally symmetric wave-function based on the anti-symmetric flavour
singlet as there no totally anti-symmetric spin wave-function for three quarks.
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Summary

We considered SU(2) ud and SU(3) uds flavour symmetries.

Although these flavour symmetries are only approximate, they can still be used to
explain observed multiplet structure for mesons/baryons.

SU(3) flavour symmetry results, e.g. predicted wave-functions, should be treated with
a pinch of salt as ms 6= mu/d .

We introduced the idea of singlet states being ‘spinless’ and/or ‘flavourless’

In the next handout apply these ideas to colour and QCD ...

290 / 563



Not examinable

Not examinable

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

Appendix VIII: the SU(2) anti-quark representation

Define an anti-quark doublet

q̄ =

✓
�d̄
ū

◆
=

✓
�d⇤

u⇤

◆

from which it follows that
✓

0 1
�1 0

◆
q̄ =

✓
u⇤

d⇤

◆
. (121)

The quark doublet q =

✓
u
d

◆
transforms as

✓
u0

d 0

◆
= U

✓
u
d

◆
which complex conjugates to

✓
u0⇤

d 0⇤

◆
= U⇤

✓
u⇤

d⇤

◆

which using (121) can be re-written as
✓

0 1
�1 0

◆
q̄0 = U⇤

✓
0 1
�1 0

◆
q̄.

Therefore, multiplying both sides of the last equation by the inverse of its left-most
matrix, we see that q̄ transforms as follows:

q̄0 =

✓
0 �1
1 0

◆
U⇤

✓
0 1
�1 0

◆
q̄. (122)
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An arbitrary 2⇥ 2 unitary matrix with unit determinant can always be written in the form

U =

✓
c11 c12

�c⇤12 c⇤11

◆

provided that one chooses c11 and c12 such that |c11|2 + |c12|2 = 1. Therefore, (122) can
be re-written to express an arbitrary SU(2) trasformation of q̄ as:

q̄0 =

✓
0 1
�1 0

◆✓
c⇤11 c⇤12

�c12 c11

◆✓
0 �1
1 0

◆
q̄

=

✓
c11 c12

�c⇤12 c⇤11

◆
q̄

= Uq̄

which proves that the anti-quark doublet q̄ =

✓
�d̄
ū

◆
transforms in the same way as the

quark doublet q =

✓
u
d

◆
– thus allowing us to use the same ladder operators on q and q̄.

This is a special property of SU(2). For SU(3) there is no analogous representation of the
anti-quarks.
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