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H5: Electron-Proton Elastic Scattering
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Electron-Proton Scattering

In this handout aiming towards a study
of electron-proton scattering as a probe
of the structure of the proton
Two main topics:

e
�
p ! e

�
p elastic scattering (this

handout)
e
�
p ! e

�
X deep inelastic scattering

(Handout 6)

But first consider scattering from a
point-like particle e.g. e�µ� ! e�µ�

i.e. the QED part of e�q� ! e�q�.

Two ways to proceed:

perform QED calculation from scratch (example sheet Q10)

h|Mfi |2i =
8e4

(p1 � p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)]

or take results from e+e� ! µ+µ� and use “Crossing Symmetry” to obtain the
matrix element for e�µ� ! e�µ� (Appendix VII).
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h|Mfi |2i = 2e4 (p1.p4)2 + (p1.p2)2

(p1.p3)2
⌘ 2e4

✓
s2 + u2

t2

◆

Work in the C.o.M.:

p1 = (E , 0, 0,E)

p2 = (E , 0, 0,�E)

p3 = (E ,E sin ✓, 0,E cos ✓)

p4 = (E ,�E sin ✓, 0,�E cos ✓)
giving p1.p2 = 2E 2; p1.p3 = E 2(1� cos ✓); p1.p4 = E 2(1 + cos ✓) so

h|Mfi |2i = 2e4 E
4(1 + cos ✓)2 + 4E 4

E 4(1� cos ✓)2

d�
d⌦

=
1

64⇡2s
h|Mfi |2i =

e4

8⇡2s

⇥
1 + 1

4 (1 + cos ✓)2
⇤

(1� cos ✓)2

The denominator arises from the propagator �igµ⌫/q2

here q2 = (p1 � p3)2 = E 2(1� cos ✓). As q2 ! 0 the cross
section tends to infinity.
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What about the angular dependence of the numerator ?

d�
d⌦

=
e4

8⇡2s

⇥
1 + 1

4 (1 + cos ✓)2
⇤

(1� cos ✓)2

The factor 1 + 1
4 (1 + cos ✓)2 reflects helicity (really chiral) structure of QED

Of the 16 possible helicity combinations only 4 are non-zero:
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The cross section calculated above is appropriate for the scattering of two spin-half
Dirac (i.e. point-like) particles in the ultra-relativistic limit (where both electron and
muon masses can be neglected). In this case:

h|Mfi |2i = 2e4 (p1.p4)
2 + (p1.p2)

2

(p1.p3)2
.

We will use this again in the discussion of “Deep Inelastic Scattering” of electrons
from the quarks within a proton (Handout 6).

Before doing so we will consider the scattering of electrons from protons – the results
of which will show us that the proton is not a fundamental “point-like” particle!

When doing so we will not be able to
use the relativistic limit (because the
proton is too heavy!) and so we require
the general expression for the matrix
element (derived in the optional part of
Question 10 in the examples sheet):

m

M

h|Mfi |2i =
8e4

(p1 � p3)4

h
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)� (p1.p3)M

2 � (p1.p4)m
2 + 2m2M2

i

(98)
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Probing the Structure of the Proton

In e�p ! e�p scattering the nature of the interaction of the virtual photon with the
proton depends strongly on wavelength:

At very low electron energies �� rp :
the scattering is equivalent to that from
a “point-like” spin-less object.

At low electron energies � ⇠ rp : the
scattering is equivalent to that from a
extended charged object.

At high electron energies � < rp : the
wavelength is su�ciently short to
resolve sub-structure. Scattering from
constituent quarks.

At very high electron energies �⌧ rp :
the proton appears to be a sea of quarks
and gluons.
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Rutherford Scattering Revisited

Rutherford scattering is the low energy limit where
the recoil of the proton can be neglected and the
electron is non-relativistic.
Start from RH and LH Helicity particle spinors

u" = N

0

BB@

c
e i�s
p

E+m
c

p

E+m
e i�s

1

CCA ; u# = N

0

BB@

�s
e i�c
p

E+m
s

� p

E+m
e i�c

1

CCA
with N =

p
E +m,

s = sin(✓/2), and

c = cos(✓/2).

In terms of ↵ = |~p|
E+me

(
Non-relativistic limit: ↵! 0

Ultra-relativistic limit: ↵! 1

)
we could write:

u" = N

0

BB@

c
e i�s
↵c
↵e i�s

1

CCA ; u# = N

0

BB@

�s
e i�c
↵s

�↵e i�c

1

CCA

and the possible initial and final state electron spinors are:

u"(p1) = Ne

0

BB@

1
0
↵
0

1

CCA ; u#(p1) = Ne

0

BB@

0
1
0
�↵

1

CCA ; u"(p3) = Ne

0

BB@

c
s
↵c
↵s

1

CCA ; u#(p3) = Ne

0

BB@

�s
c
↵s
�↵c

1

CCA .
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Consider all four possible electron currents: helicities R ! R, L ! L, L ! R, R ! L:

u"(p3)�
µu"(p1) = (E +me)

h
(↵2 + 1)c, 2↵s,�2i↵s, 2↵c

i
, (99)

u#(p3)�
µu#(p1) = (E +me)

h
(↵2 + 1)c, 2↵s,�2i↵s, 2↵c

i
, (100)

u"(p3)�
µu#(p1) = (E +me)

h
(1� ↵2)s, 0, 0, 0

i
, (101)

u#(p3)�
µu"(p1) = (E +me)

h
(↵2 � 1)s, 0, 0, 0

i
. (102)

In the relativistic limit E � m (i.e. ↵ = 1) the expressions in (101) and (102) are
identically zero; only R ! R and L ! L combinations are non-zero.

In the non-relativistic limit, |~p| ⌧ E , we have ↵ = 0 so:

u"(p3)�
µu"(p1) = +u#(p3)�

µu#(p1) = (2me) [c, 0, 0, 0] ,

u"(p3)�
µu#(p1) = �u#(p3)�

µu"(p1) = (2me) [s, 0, 0, 0] .

All four electron helicity combinations have non-zero Matrix Element ,

i.e. Helicity eigenstates 6= Chirality eigenstates!
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The initial and final state proton spinors (assuming no recoil, so at rest in both

places) are: u"(0) =
p

2Mp

0

BB@

1
0
0
0

1

CCA u#(0) =
p

2Mp

0

BB@

0
1
0
0

1

CCA giving the proton currents:

jp"" = jp## = 2Mp (1, 0, 0, 0)

jp"# = jp#" = 0

The spin-averaged ME summing over the 8 allowed helicity

h|M2
fi |i =

1
4
e4

q4
(16M2

pm
2
e)(4c

2 + 4s2) =
16M2

pm
2
ee

4

q4

where q2 = (p1 � p3)2 = (0, ~p1 � ~p3)2 = �4|~p|2 sin2 (✓/2)

h|M2
fi |i =

M2
pm

2
ee

4

|~p|4 sin4(✓/2)

where ~p = ~p1 � ~p3. (Note: in this limit all angular dependence is in the propagator!)

The formula for the di↵erential cross-section in the lab. frame was derived in
Handout 1:

d�
d⌦

=
1

64⇡2

✓
1

M + E1 � E1 cos ✓

◆2

|Mfi |2 (103)
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Here the electron is non-relativistic so E ⇠ me ⌧ Mp and we can neglect E1 in the
denominator of equation (103)

d�
d⌦

=
1

64⇡2M2
p

|Mfi |2 =
m2

ee
4

64⇡2|~p|4 sin4(✓/2)

Writing e2 = 4⇡↵ and the kinetic energy of the electron as EK = p
2

2me
:

�
d�
d⌦

�
Rutherford

= ↵2

16E2
K

sin4 ✓
2

(104)

This is the normal expression for the Rutherford cross section. It could have been
derived by considering the scattering of a non-relativistic particle in the static
Coulomb potential of the proton V (~r), without any consideration of the

interaction due to the intrinsic magnetic moments of the electron or proton. From
this we can conclude that in this non-relativistic limit only the interaction between
the electric charges of the particles matters.
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The Mott Scattering Cross Section

For Rutherford scattering we were in the limit where the target recoil was neglected
and the scattered particle was non-relativistic EK ⌧ me .

The limit where the target recoil is neglected and the scattered particle is relativistic
(i.e. just neglect the electron mass) is called Mott Scattering .

In this limit (↵! 1) the electron currents, equations (99) and (101) become:
u"(p3)�

µu"(p1) = 2E [c, s,�is, c] u"(p3)�
µu#(p1) = E [0, 0, 0, 0]

Relativistic Electron =) “helicity conserved”

It is then straightforward to obtain the result:

�
d�
d⌦

�
Mott

=
↵2

4E 2 sin4 ✓/2| {z }
Rutherford formula with

EK = E (E � me)

· cos2
✓
2| {z }

Overlap between initial/final-state

electron wave-function (spin- 1
2 )

(105)

NOTE: we could have derived this expression from scattering of electrons in a static
potential from a fixed point in space V (~r) The interaction is ELECTRIC rather than
magnetic (spin-spin) in nature.

Still haven’t taken into account the charge distribution of the proton ...
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Form Factors
Consider the scattering of an electron in the static potential due to an
extended charge distribution. The potential at ~r from the center is
given by:

V (~r) =

Z
Q⇢(~r 0)

4⇡|~r � ~r 0|d
3~r 0 with

Z
⇢(~r)d3~r = 1

In first order perturbation theory, the matrix element is given by:

Mfi = h f |V (~r)| i i =
Z

e�i~p3·~rV (~r)e i~p1·~rd3~r (defining ~q = ~p1 � ~p3)

=

ZZ
e i~q·~r

Q⇢(~r 0)
4⇡|~r � ~r 0|d

3~r 0d3~r =

ZZ
e i~q·(~r�~r 0)e i~q·~r

0 Q⇢(~r 0)
4⇡|~r � ~r 0|d

3~r 0d3~r

Fix ~r 0 and integrate over d3~r with substitution ~R = ~r � ~r 0:

Mfi =

Z
e i~q·

~R Q

4⇡|~R|
d3 ~R

Z
⇢(~r 0)e i~q·~r

0
d3~r 0 = (Mfi)pointF (~q

2)

The resulting matrix element is equivalent to the matrix element for scattering from a
point source multiplied by the form factor:

F (~q2) =

Z
⇢(~r)e i~q·~rd3~r
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✓
d�
d⌦

◆

Mott

! ↵2

4E 2 sin4 ✓/2
cos2

✓
2
|F (~q2)|2

There is nothing mysterious about form factors –
similar to di↵raction of plane waves in optics.

The finite size of the scattering centre introduces
a phase di↵erence between plane waves
“scattered from di↵erent points in space”. If
wavelength is long compared to size all waves in
phase and F (~q2) = 1.

Note that the form factor for a point charge is unity.
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Point-like Electron-Proton Elastic Scattering

So far have only considered the case we the proton does not recoil... For E1 � me

the general case is:

p1 = (E1, 0, 0,E1)

p2 = (M, 0, 0, 0)

p3 = (E3, 0,E3 sin ✓,E3 cos ✓)

p4 = (E4, ~p4)

From Eqn. (98) with m = me = 0 the matrix element for this process is:

h|Mfi |2i =
8e4

(p1 � p3)4

h
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)� (p1.p3)M

2
i

(106)

Experimentally observe scattered electron so eliminate p4. The scalar products not
involving p4 are:

p1.p2 = E1M, p1.p3 = E1E3(1� cos ✓), p2.p3 = E3M.

Can eliminate p4 using momentum conservation: p4 = p1 + p2 � p3

p3.p4 = p3.p1 + p3.p2 �⇠⇠⇠:0p3.p3 = E1E3(1� cos ✓) + E3M

p1.p4 =⇠⇠⇠:0p1.p1 + p1.p2 � p1.p3 = E1M � E1E3(1� cos ✓)

210 / 563



H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

Substituting these scalar products into equation (106) gives

h|Mfi |2i =
8e4

(p1 � p3)4
ME1E3 [(E1 � E3)(1� cos ✓) +M(1 + cos ✓)]

=
8e4

(p1 � p3)4
2ME1E3

h
(E1 � E3) sin

2(✓/2) +M cos2(✓/2)
i

(107)

Now obtain expressions for q4 = (q2)2 = (p1 � p3)4 and (E1 � E3).

q2 = (p1 � p3)
2 = p2

1 + p2
3 � 2p1.p3 = �2E1E3(1� cos ✓) (108)

= �4E1E3 sin
2 ✓/2 (109)

NOTE: q2 < 0 (space-like!).

To get (E1 � E3) note that

q.p2 = (p1 � p3).p2 = M(E1 � E3)

and so it su�ces to find q · p2. And q · p2 may be found from:

(q + p2)
2 = p2

4 =)
q2 + p2

2 + 2q.p2 = p2
4 =)

q2 +M2 + 2q.p2 = M2 =)
q.p2 = �q2/2
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... hence the energy transferred to the proton, E1 � E3, is:

E1 � E3 = � q2

2M
(110)

Because q2 is always negative E1 � E3 > 0 and the scattered electron is always lower
in energy than the incoming electron

Combining equations (106), (108) and (109):

h|Mfi |2i =
8e4

16E 2
1E

2
3 sin4 ✓/2

2ME1E3


M cos2 ✓/2� q2

2M
sin2 ✓/2

�

=
M2e4

E1E3 sin4 ✓/2


cos2 ✓/2� q2

2M2
sin2 ✓/2

�

For E � me we have (see Handout 1)

d�
d⌦

=
1

64⇡2

✓
E3

ME1

◆2

|Mfi |2, or

d�
d⌦

=
↵2

4E 2
1 sin4 ✓/2

E3

E1

✓
cos2 ✓/2� q2

2M2
sin2 ✓/2

◆
. (111)

(↵ = e
2

4⇡ ⇡ 1
137 )
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Interpretation

So far have derived the di↵erential cross-section for e�p �! e�p elastic scattering
assuming point-like Dirac spin ½ particles. How should we interpret the equation?

d�
d⌦

=
↵2

4E 2
1 sin4 ✓/2

E3

E1

✓
cos2 ✓/2� q2

2M2
sin2 ✓/2

◆

Compare with ✓
d�
d⌦

◆

Mott

=
↵2

4E 2 sin4 ✓/2
cos2

✓
2

the important thing to note about the Mott cross-section is that it is equivalent to
scattering of spin ½ electrons in a fixed electro-static potential. Here the term E3/E1

is due to the proton recoil.

d�
d⌦

=
↵2

4E 2
1 sin4 ✓/2

E3

E1

✓
cos2 ✓/2� q2

2M2
sin2 ✓/2

◆

the new term: / sin2 ✓
2 , Magnetic interaction : due to the spin-spin interaction
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The above di↵erential cross-section depends on a single parameter. For an electron
scattering angle ✓ , both q2 and the energy, E3 , are fixed by kinematics
Equating (108) and (110): �2M(E1 � E3) = �2E1E3(1� cos ✓) so

E3

E1
=

M
M + E1(1� cos ✓)

.

Substituting back into (108):

q2 = � 2ME 2
1 (1� cos ✓)

M + E1(1� cos ✓)

e.g. for e�p �! e�p with Ebeam = 529.5 MeV and electron detector at ✓ = 75� then
for elastic scattering expect:

E3 =
ME1

M + E1(1� cos ✓)

=
938⇥ 529

938 + 529(1� cos 75�)
= 373 MeV.

The energy identifies the scatter as elastic. Also
know squared four-momentum transfer

|q2| = 2⇥ 938⇥ 5292(1� cos 75�)
938 + 529(1� cos 75�)

= 294MeV2.
E.B.Hughes et al., Phys. Rev. 139 (1965)
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Elastic Scattering from a Finite Size Proton

In general the finite size of the proton can be accounted for by introducing two
structure functions. One related to the charge distribution in the proton, GE (q

2) and
the other related to the distribution of the magnetic moment of the proton,GM(q2)
It can be shown that equation (111) generalizes to the ROSENBLUTH FORMULA.

d�
d⌦

=
↵2

4E 2
1 sin4 ✓/2

E3

E1

✓
G 2

E + ⌧G 2
M

(1 + ⌧)
cos2

✓
2
+ 2⌧G 2

M sin2 ✓
2

◆

with the Lorentz Invariant quantity:

⌧ = � q2

4M2
> 0 .

Unlike our previous discussion of form factors, here the form factors are a function of
q2 rather than ~q2 and cannot simply be considered in terms of the FT of the charge
and magnetic moment distributions. But

q2 = (E1 � E3)
2 � ~q2

and from eq (110) obtain

�~q2 = q2


1�

⇣ q
2M

⌘2
�

so for q
2

4M2 ⌧ 1 we have q2 ⇡ �~q2 and G(q2) ⇡ G(~q2).
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Hence in the limit q2/4M2 ⌧ 1 we can interpret the structure functions in terms of
the Fourier transforms of the charge and magnetic moment distributions:

GE (q
2) ⇡ GE (~q

2) =

Z
e i~q·~r⇢(~r) d3~r

GM(q2) ⇡ GM(~q2) =

Z
e i~q·~rµ(~r) d3~r

The derivation of the Rosenbluth formula assumes that the proton is a spin-half Dirac
particle, i.e.

~µ =
e
M
~S .

However, the experimentally measured value of the proton magnetic moment is larger
than expected for a point-like Dirac particle:

~µ = 2.79
e
M
~S

So for the proton we expect

GE (0) =

Z
⇢(~r) d3~r = 1

GM(0) =

Z
µ(~r) d3~r = µp = +2.79

Of course, the anomalous magnetic moment of the proton is already evidence that it
is not point-like!

216 / 563



H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 References

Measuring GE (q2) and GM(q2)

Express the Rosenbluth formula as :

d�
d⌦

=

✓
d�
d⌦

◆

0

✓
G 2

E + ⌧G 2
M

(1 + ⌧)
+ 2⌧G 2

M tan2 ✓
2

◆

where

✓
d�
d⌦

◆

0

=
↵2

4E 2
1 sin4 ✓/2

E3

E1
cos2

✓
2

(which is the Mott cross-
section including the proton
recoil. It corresponds to scat-
tering from a spin-0 proton).

At very low q2, ⌧ = �q2/4M2 ⇡ 0 and so

d�
d⌦

�✓
d�
d⌦

◆

0

⇡ G 2
E (q

2)

At high q2: ⌧ � 1

d�
d⌦

�✓
d�
d⌦

◆

0

⇡
✓
1 + 2⌧ tan2 ✓

2

◆
G 2

M(q2)

In general we are sensitive to both structure functions! These can be resolved from
the angular dependence of the cross section at FIXED q2
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EXAMPLE: e�p �! e�p at Ebeam = 529.5 MeV Electron beam energies chosen to
give certain values of q2 Cross sections measured to 2-3%.

NOTE Experimentally find GM(q2) = 2.79GE (q2), i.e. the electric and and magnetic
form factors have same distribution.

Dr Lester 170

EXAMPLE: e-p ® e-p at  Ebeam= 529.5 MeV 
E.

B
.H

ug
he

s 
et

 a
l.,

 P
hy

s.
 R

ev
. 1

39
 (1

96
5)

 B
45

8 q2 = 293 MeV2

•Electron beam energies chosen to give certain values of 
•Cross sections measured to 2-3 %

NOTE
Experimentally find
GM(q2) = 2.79GE(q2), 
i.e. the electric and
and magnetic form
factors have same 
distribution  
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Higher Energy Electron-Proton Scattering

Use electron beam from SLAC LINAC: 5 GeV < Ebeam < 20 GeV

Detect scattered electrons using the “8 GeV Spectrometer”

P.N.Kirk et al., Phys Rev D8 (1973) 63

High q2 �! Measure GM(q2)
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High q2 Results

R.C.Walker et al., Phys. Rev. D49 (1994) 5671 A.F.Sill

et al., Phys. Rev. D48 (1993) 29

Form factor falls rapidly with
Proton is not point-like
Good fit to the data with “dipole
form”:

G
p

E
(q2) ⇡

G
p

M

2.79
⇡

1

(1 + q2/0.71GeV2)2

Taking FT find spatial charge and
magnetic moment distribution

⇢(r) ⇡ ⇢0e
�r/a

with a ⇡ 0.24 fm

Corresponds to a rms charge radius
rrms ⇡ 0.8 fm.

Although suggestive, does not imply
proton is composite !

Note: so far have only considered
ELASTIC scattering; Inelastic scattering
is the subject of next handout. (Now try
Question 11!)
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Summary: Elastic Scattering

For elastic scattering of relativistic electrons from a point-like Dirac proton:

d�
d⌦

=
↵2

4E 2
1 sin4(✓/2)

E3

E1

✓
cos2(✓/2)� q2

2M2
sin2(✓/2)

◆

Rutherford Proton recoil Electric/ Magnetic scattering Magnetic term due to spin.

For elastic scattering of relativistic electrons from an extended proton:

d�
d⌦

=
↵2

4E 2
1 sin4 ✓/2

E3

E1

✓
G 2

E + ⌧G 2
M

(1 + ⌧)
cos2

✓
2
+ 2⌧G 2

M sin2 ✓
2

◆

(Rosenbluth Formula).

Electron elastic scattering from protons demonstrates that the proton is an extended
object with rms charge radius of 0.8 fm.
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Appendix VII: Crossing Symmetry

Having derived the Lorentz invariant matrix element for e�e+ �! µ�µ+ ‘rotate’ the
diagram to correspond to e�µ� �! e�µ� and apply the principle of crossing
symmetry to write down the matrix element !

rotates to

The transformation: p1 ! p0
1; p2 ! �p0

3; p3 ! p0
4; p4 ! �p0

2 changes the spin
averaged matrix element (see page 187) for

e�e+ ! µ�µ+ to that for e�µ� ! e�µ� :

h|Mfi |2i = 2e4 (p1.p3)2 + (p1.p4)2

(p1.p2)2
! h|Mfi |2i = 2e4 (p

0
1.p

0
4)

2 + (p0
1.p

0
2)

2

(p0
1.p

0
3)

2
.
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