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H4: Electron-Positron Annihilation
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QED Calculations I

To calculate a cross section using QED (e.g. e+e� ! µ+µ�):
1 Draw all possible Feynman Diagrams

For e+e� ! µ+µ� there is just one lowest order diagram

M / e
2 / ↵em

There are many second order diagrams ...

M / e
4 / ↵2

em

2 For each diagram calculate the matrix element using Feynman rules derived in the
previous handout.
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QED Calculations II

3 Sum the individual matrix elements (i.e. sum the amplitudes)

Mfi = M1 +M2 +M3 + . . .

Note: in this sum of amplitudes (every term of which has the same initial and the
same final state) interference can be both constructive or destructive! On account of
this interference one can no more ask ‘Which virtual particle was involved?’ than one
can ask ‘Through which of Young’s slits did the photon pass?’

4 Find the square of the modulus:
|Mfi |2 = (M1 +M2 +M3 + . . . .) (M⇤

1 +M⇤
2 +M⇤

3 + . . . .)
! this gives the full perturbation expansion in ↵em.

For QED ↵em ⇠ 1/137 the lowest order diagram dominates and for most purposes it is
su�cient to neglect higher order diagrams.
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QED Calculations III

5 Calculate decay rate/cross section using formulae from Handout 1. E.g.:
For a decay

� =
p
⇤

32⇡2m2
a

Z
|Mfi |2 d⌦.

For scattering in the centre-of-mass frame

d�

d⌦⇤ =
1

64⇡2s

��~p⇤
f

��
��~p⇤

i

�� |Mfi |2 .

For scattering in lab. frame (neglecting mass of scattered particle)

d�

d⌦
=

1

64⇡2

✓
E3

ME1

◆2

|Mfi |2 .
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Electron Positron Annihilation
Consider the process: e+e� ! µ+µ�

Work in C.o.M. frame (this is appropriate for
most e+e�colliders).

p1 = (E , 0, 0, p) p2 = (E , 0, 0,�p)
p3 = (E , ~pf ) p4 = (E ,�~pf )

Only consider the lowest order Feynman diagram:

Feynman rules give: �iM = [v̄ (p2) ie�µ
u (p1)]

�igµv

q2
[ū (p3) ie�v

v (p4)]

NOTE:
Incoming anti-particle v̄
Incoming particle u
Adjoint spinor written first

In the C.o.M. frame have

d�
d⌦

=
1

64⇡2s
|~pf |
|~pi |

|Mfi |2 with s = (p1 + p2)
2 = (E + E)2 = 4E 2
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Electron and Muon Currents

Here q2 = (p1 + p2)
2 = s and matrix element

�iM = [v̄ (p2) ie�
µu (p1)]

�igµv
q2

[ū (p3) ie�
vv (p4)]

) M = �e2

s
gµv [v̄ (p2) �

µu (p1)] [ū (p3) �
vv (p4)]

In Handout 2 we introduced the four-vector current:

jµ =  ̄�µ 

which has same form as the two terms in [ ] in the matrix element

The matrix element can be written in terms of the electron and muon currents

(je)
µ = v̄ (p2) �

µu (p1) and (jµ)
v = ū (p3) �

vv (p4)

) M = �e2

s
gµv (je)

µ (jµ)
v

M = �e2

s
je · jµ

Matrix element is a four-vector scalar product - confirming it is Lorentz Invariant
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Spin in e+e�Annihilation

In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states

There are four possible combinations of spins in the initial state:

RL RR LL LR
Similarly there are four possible helicity combinations in the final state

In total there are 16 combinations e.g. RL ! RR,RL ! RL, . . .

To account for these states we need to sum over all 16 possible helicity combinations
and then average over the number of initial helicity states:

D
|M|2

E
=

1
4

X

spins

|Mi |2 =
1
4

⇣
|MLL!LL|2 + |MLL!LR |2 + . . .

⌘

i.e. need to evaluate:

M = �e2

s
je · jµ

for all 16 helicity combinations !

Fortunately, in the limit E � mµ only 4 helicity combinations give non-zero matrix
elements - we will see that this is an important feature of QED/QCD.
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In the C.o.M. frame in the limit E � m

p1 = (E , 0, 0,E); p2 = (E , 0, 0,�E)

p3 = (E ,E sin ✓, 0,E cos ✓);

p4 = (E ,�E sin ✓, 0,�E cos ✓)

Left- and right-handed helicity spinors (Handout 2) for particles/anti-particles are:

u" = N

0

BB@

c
e i�s
|~p|

E+m
c

|~p|
E+m

e i�s

1

CCA u# = N

0

BB@

�s
e i�c
|~p|

E+m
s

� |~p|
E+m

e i�c

1

CCA v" = N

0

BB@

|~p|
E+m

s

� ~p|
E+m

e i�c
�s
e i�c

1

CCA v# = N

0

BB@

|~p|
E+m

c
|~p|

E+m
e i�s
c

e i�s

1

CCA

where s = sin ✓
2 ; c = cos ✓

2 and N =
p
E +m

In the limit E � m these become:

u" =
p
E

0

BB@

c
se i�

c
se i�

1

CCA ; u# =
p
E

0

BB@

�S
ce i�

s
�ce i�

1

CCA ; v" =
p
E

0

BB@

s
�ce i�

�s
ce i�

1

CCA ; v# =
p
E

0

BB@

c
se i�

c
se i�

1

CCA

The initial-state electron can either be in a left- or right-handed helicity state

u" (p1) =
p
E

0

BB@

1
0
1
0

1

CCA ; u# (p1) =
p
E

0

BB@

0
1
0
�1

1

CCA ;
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For the initial state positron (✓ = ⇡) can have either:

v" (p2) =
p
E

0

BB@

1
0
�1
0

1

CCA ; v# (p2) =
p
E

0

BB@

0
1
0
1

1

CCA

Similarly for the final state µ�which has polar angle ✓ and choosing � = 0

u" (p3) =
p
E

0

BB@

c
s
c
s

1

CCA ; u# (p3) =
p
E

0

BB@

�s
c
s

�c

1

CCA

And for the final state µ+replacing ✓ ! ⇡ � ✓; �! ⇡ obtain

v" (p4) =
p
E

0

BB@

c
s
�c
�s

1

CCA ; v# (p4) =
p
E

0

BB@

s
�c
s
�c

1

CCA ; using

8
><

>:

sin
�
⇡�✓
2

�
= cos ✓

2

cos
�
⇡�✓
2

�
= sin ✓

2

e i⇡ = �1

We wish to calculate the matrix element M = � e
2

s
je · jµ

first consider the muon current jµ for 4 possible helicity combinations
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The Muon Current

We want to evaluate (jµ)
v = ū (p3) �vv (p4) for all four helicity combinations.

For arbitrary spinors  ,� one may show that the components of  ̄�µ� are:

 ̄�0� =  †�0�0� =  ⇤
1�1 +  ⇤

2�2 +  ⇤
3�3 +  ⇤

4�4

 ̄�1� =  †�0�1� =  ⇤
1�4 +  ⇤

2�3 +  ⇤
3�2 +  ⇤

4�1

 ̄�2� =  †�0�2� = �i ( ⇤
1�4 �  ⇤

2�3 +  ⇤
3�2 �  ⇤

4�1)

 ̄�3� =  †�0�3� =  ⇤
1�3 �  ⇤

2�4 +  ⇤
3�1 �  ⇤

4�2

Consider the µ�
R
µ+
L
combination using  = u" and � = v# with

v# =
p
E

0

BB@

s
�c
s
�c

1

CCA ; u" =
p
E

0

BB@

c
s
c
s

1

CCA. From these we can compute:

ū" (p3) �
0v# (p4) = E(cs � sc + cs � sc) = 0,

ū" (p3) �
1v# (p4) = E

⇣
�c2 + s2 � c2 + s2

⌘
= 2E

⇣
s2 � c2

⌘
= �2E cos ✓,

ū" (p3) �
2v# (p4) = �iE

⇣
�c2 � s2 � c2 � s2

⌘
= 2iE , and

ū" (p3) �
3v# (p4) = E(cs + sc + cs + sc) = 4Esc = 2E sin ✓.
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Hence the four-vector muon current for the RL combination is

ū" (p3) �
⌫v# (p4) = 2E(0,� cos ✓, i , sin ✓).

The results for the 4 helicity combinations (obtained in the same manner) are:

ū" (p3) �
⌫v# (p4) = 2E(0,� cos ✓, i , sin ✓)

ū" (p3) �
⌫v" (p4) = (0, 0, 0, 0)

ū# (p3) �
⌫v# (p4) = (0, 0, 0, 0)

ū# (p3) �
⌫v" (p4) = 2E(0,� cos ✓,�i , sin ✓).

... in the limit E � m which was used above only two helicity combinations are non-zero!

This is an important feature of QED. It applies equally to QCD.

In the Weak interaction only one helicity combination contributes.

The origin of this will be discussed later.

As a consequence: of the 16 possible helicity combinations only 4 give non-zero
matrix elements ((2 initial) ⇥ (2 final)).
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Electron Positron Annihilation cont.

For e+e� ! µ+µ� now only have to consider the 4 matrix elements:

Previously we derived the muon currents for the allowed helicities:

Now need to consider the electron current
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The Electron Current

The incoming electron and positron spinors (L and R helicities) are:

u" =
p
E

0

BB@

1
0
1
0

1

CCA ; u# =
p
E

0

BB@

0
1
0
�1

1

CCA ; v" =
p
E

0

BB@

1
0
�1
0

1

CCA ; v# =
p
E

0

BB@

0
1
0
1

1

CCA

The electron current can either be obtained from equations (3)-(6) as before or it can
be obtained directly from the expressions for the muon current.

(je)
µ = v̄ (p2) �

µu (p1) (jµ)
µ = ū (p3) �

µv (p4)

Taking the Hermitian conjugate of the muon current gives

[ū (p3) �µv (p4)]
† =

h
u (p3)

† �0�µv (p4)
i†

= v (p4)
† �µ†�0†u (p3) (AB)† = B†A†

= v (p4)
† �µ†�0u (p3) �0† = �0

= v (p4)
† �0�µu (p3) �µ†�0 = �0�µ

= v̄ (p4) �
µu (p3)
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Taking the complex conjugate of the muon currents for the two non-zero helicity
configurations:

v̄# (p4) �
µu" (p3) = [ū" (p3) �

vv# (p4)]
⇤ = 2E(0,� cos ✓,�i , sin ✓)

v̄" (p4) �
µu# (p3) = [ū# (p3) �

⌫v" (p4)]
⇤ = 2E(0,� cos ✓, i , sin ✓)

To obtain the electron currents we simply need to set ✓ = 0
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Matrix Element Calculation

We can now calculate M = � e
2

s
je · jµ for the four possible

helicity combinations MRR , MRL, MLR and MLL.

In the above matrix element names, the first subscript
refers to the helicity of the e�and the second to the
helicity of the µ�. We don’t need to specify other
helicities due to ‘helicity conservation’, only certain chiral
combinations are non-zero.

E.g. the matrix element for e�
R
e+
L
! µ�

R
µ+
L
will be

denoted by MRR

Using:
e�
R
e+L : (je)

µ = v̄# (p2) �
µu" (p1) = 2E(0,�1,�i , 0)

µ�
R
µ+
L : (jµ)

v = ū" (p3) �
vv# (p4) = 2E(0,� cos ✓, i , sin ✓)

gives

MRR = �e2

s
[2E(0,�1,�i , 0)] · [2E(0,� cos ✓, i , sin ✓)]

= e2(1 + cos ✓)

= 4⇡↵(1 + cos ✓)

where ↵ = e2/4⇡ ⇡ 1/137.
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Assuming that the incoming electrons and positrons are unpolarized, all 4 possible
initial helicity states are equally likely.
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Di↵erential Cross Section

The cross section is obtained by
averaging over the initial spin states and
summing over the final spin states:

d�
d⌦

=
1
4
⇥ 1

64⇡2s

⇣
|MRR |2 + |MRL|2 + |MLR |2 +

���M2
LL

���
⌘

=
(4⇡↵)2

256⇡2s

⇣
2(1 + cos ✓)2 + 2(1� cos ✓)2

⌘

) d�
d⌦

=
↵2

4s

⇣
1 + cos2 ✓

⌘

Example: e+e� ! µ+µ� p
s = 29GeV

dashed line = pure QED

solid line = QED plus Z contribution

Angular distribution becomes slightly
asymmetric in higher order QED or
when Z contribution is included
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The total cross section is obtained by integrating over ✓,� using

Z ⇣
1 + cos2 ✓

⌘
d⌦ = 2⇡

Z +1

�1

⇣
1 + cos2 ✓

⌘
d cos ✓ =

16⇡
3

giving the QED total cross-section for the process e+e� ! µ+µ�

� =
4⇡↵2

3s
This is an impressive result. From first principles we have arrived at an expression for
the electron-positron annihilation cross section which is good to 1%
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Spin Considerations (E � m)

The angular dependence of the QED electron-positron matrix elements can be
understood in terms of angular momentum

Because of the allowed helicity states, the electron and positron interact in a spin
state with Sz = ±1, i.e. in a total spin 1 state aligned along the z axis: |1,+1i or
|1,�1i
Similarly the muon and anti-muon are produced in a total spin 1 state aligned along
an axis with polar angle ✓

Hence MRR / h | 1, 1i where  corresponds to the spin state, |1, 1i✓, of the muon
pair.

To evaluate this need to express |1, 1i✓ in terms of eigenstates of Sz

In Appendix VII (and also in IB QM) it is shown that:

|1, 1i✓ =
1
2
(1� cos ✓)|1,�1i+ 1p

2
sin ✓|1, 0i+ 1

2
(1 + cos ✓)|1,+1i
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Using the wave-function for a spin 1 state along an axis at angle ✓

 = |1, 1i✓ =
1
2
(1� cos ✓)|1,�1i+ 1p

2
sin ✓|1, 0i+ 1

2
(1 + cos ✓)|1,+1i

can immediately understand the angular dependence

|MRR|2 / |h | 1,+1i|2 = 1
4
(1 + cos ✓)2

|MLR|2 / |h | 1,�1i|2 = 1
4
(1� cos ✓)2
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Lorentz Invariant form of Matrix Element

Before concluding this discussion, note that the spin-averaged Matrix Element derived
above is written in terms of the muon angle in the C.o.M. frame.

D
|Mfi |2

E
=

1
4
⇥

⇣
|MRR |2 + |MRL|2 + |MLR |2 +

���M2
LL

���
⌘

=
1
4
e4

⇣
2(1 + cos ✓)2 + 2(1� cos ✓)2

⌘

= e4
⇣
1 + cos2 ✓

⌘

The matrix element is Lorentz Invariant (scalar product of 4-vector currents) and it is
desirable to write it in a frame-independent form, i.e. express in terms of Lorentz
Invariant 4-vector scalar products

In the C.o.M. p1 = (E , 0, 0,E) p2 = (E , 0, 0,�E)

p3 = (E ,E sin ✓, 0,E cos ✓) and p4 = (E ,�E sin ✓, 0,�E cos ✓)

giving: p1 · p2 = 2E 2; p1 · p3 = E 2(1� cos ✓); p1 · p4 = E 2(1 + cos ✓)

Hence we can write
D
|Mfi |2

E
= 2e4

(p1 · p3)2 + (p1 · p4)2

(p1 · p2)2
⌘ 2e4

✓
t2 + u2

s2

◆

? Valid in any frame!
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CHIRALITY
The helicity eigenstates for a particle/anti-particle for E � m (using s = sin ✓

2 and
c = cos ✓

2 ) are:

u" =
p
E

0

BB@

c
se i�

c
se i�

1

CCA ; u# =
p
E

0

BB@

�s
ce i�

s
�ce i�

1

CCA ; v" =
p
E

0

BB@

s
�ce i�

�s
ce i�

1

CCA ; v# =
p
E

0

BB@

c
se i�

c
se i�

1

CCA

Define the matrix

�5 ⌘ i�0�1�2�3 =

0

BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1

CCA =

✓
0 I
I 0

◆

Note that in the limit E � m the helicity states are also eigenstates of �5

�5u" = +u"; �5u# = �u#; �5v" = �v"; �5v# = +v#

For E of any size define uR , uL, vR and vL to be the ‘LEFT AND RIGHT CHIRAL
EIGENSTATES OF �5’ by requiring that they satisfy:

�5uR = +uR ; �5uL = �uL; �5vR = �vR ; �5vL = +vL

together with:
(uR , uL, vR , vL) = lim

E!1
(u", u#, v", v#) .
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In general the HELICITY and CHIRAL eigenstates are not the same. It is only in the
ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates.

Chirality is an import concept in the structure of QED, and any interaction of the
form ū�vu

Since the eigenstates of the chirality operator are:

�5uR = +uR ; �5uL = �uL; �5vR = �vR ; �5vL = +vL

define the projection operators:

PR =
1
2

⇣
1 + �5

⌘
; PL =

1
2

⇣
1� �5

⌘
.

The projection operators, project out the chiral eigenstates

PRuR = uR ; PRuL = 0; PLuR = 0; PLuL = uL
PRvR = 0; PRvL = vL; PLvR = vR ; PLvL = 0

Note PR projects out right-handed particle states and left-handed anti-particle states

We can then write any spinor in terms of it left and right-handed chiral components:

 =
1
2

⇣
1 + �5

⌘
 +

1
2

⇣
1� �5

⌘
 = PR + PL =  R +  L
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Chirality in QED

In QED the basic interaction between a fermion and photon is:

ie ̄�µ�

We can decompose the spinors in terms of Left and Right-handed chiral components:

ie ̄�µ� = ie
�
 ̄L +  ̄R

�
�µ (�R + �L)

= ie
�
 ̄R�

µ�R +  ̄R�
µ�L +  ̄L�

µ�R +  ̄L�
µ�L

�
.

Using the properties of �5

⇣
�5
⌘2

= 1; �5† = �5; �5�µ = ��µ�5

it is straightforward to show (ex. sheet Q9) that  ̄R�
µ�L = 0 and  ̄L�

µ�R = 0 so

ie ̄�µ� = ie
�
 ̄R�

µ�R +  ̄L�
µ�L

�
.

Hence only certain combinations of chiral eigenstates contribute to the interaction.
This statement is ALWAYS true.

For E � m, the chiral and helicity eigenstates are equivalent. This implies that for
E � m only certain helicity combinations contribute to the QED vertex! This is why
previously we found that for two of the four helicity combinations for the muon
current were zero.
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Allowed QED Helicity Combinations

In the ultra-relativistic limit the helicity eigenstates ⌘ chiral eigenstates

In this limit, the only non-zero helicity combinations in QED are:

”Helicity conservation”

Scattering:

Annihilation:
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Summary

In the centre-of-mass frame the e+e� ! µ+µ�di↵erential cross-section is

d�
d⌦

=
↵2

4s

⇣
1 + cos2 ✓

⌘

NOTE: neglected masses of the muons, i.e. assumed E � mµ

In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL states
give non-zero matrix elements

CHIRAL states defined by chiral projection operators

PR =
1
2

⇣
1 + �5

⌘
; PL =

1
2

⇣
1� �5

⌘

In limit E � m the chiral eigenstates correspond to the HELICITY eigenstates and
only certain HELICITY combinations give non-zero matrix elements
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Appendix VI: Spin-1 Rotation Matrices I

Consider the spin-1 state with spin +1 along the axis defined by unit vector

~n = (sin ✓, 0, cos ✓)

Spin state is an eigenstate of ~n · ~S with eigenvalue +1

(~n.~S)| i = +1| i (96)

Express in terms of linear combination of spin 1 states which are eigenstates of Sz

| i = ↵|1, 1i+ �|1, 0i+ �|1,�1i

with
↵2 + �2 + �2 = 1
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Appendix VI: Spin-1 Rotation Matrices II

(96) becomes:

(sin ✓Sx + cos ✓Sz) (↵|1, 1i+ �|1, 0i+ �|1,�1i) = ↵|1, 1i+ �|1, 0i+ �|1,�1i (97)

Write Sx in terms of ladder operators Sx = 1
2 (S+ + S�) where

S+|1, 1i = 0 S+|1, 0i =
p
2|1, 1i S+|1,�1i =

p
2|1, 0i

S�|1, 1i =
p
2|1, 0i S�|1, 0i =

p
2|1,�1i S�|1,�1i = 0

from which we find Sx |1, 1i = 1p
2
|1, 0i

(97) becomes

Sx |1, 0i =
1p
2
(|1, 1i+ |1,�1i)

Sx |1,�1i = 1p
2
|1, 0i

sin ✓


↵p
2
|1, 0i+ �p

2
|1,�1i+ �p

2
|1, 1i+ �p

2
|1, 0i

�
+

↵ cos ✓|1, 1i � � cos ✓|1,�1i = ↵|1, 1i+ �|1, 0i+ �|1,�1i
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Appendix VI: Spin-1 Rotation Matrices III

which gives
� sin ✓p

2
+ ↵ cos ✓ = ↵

(↵+ �) sin ✓p
2
= �

� sin ✓p
2
� � cos ✓ = �

9
>=

>;
.

Using ↵2 + �2 + �2 = 1 the above equations yield

↵ =
1p
2
(1 + cos ✓) � =

1p
2
sin ✓ � =

1p
2
(1� cos ✓)

hence

 =
1
2
(1� cos ✓)|1,�1i+ 1p

2
sin ✓|1, 0i+ 1

2
(1 + cos ✓)|1,+1i.

The coe�cients ↵,�, � are examples of what are known as quantum mechanical
rotation matrices. The express how angular momentum eigenstate in a particular
direction is expressed in terms of the eigenstates defined in a di↵erent direction
d j

m0,m(✓).

For spin-1 (j = 1) we have just shown that

d1
1,1(✓) =

1
2
(1 + cos ✓) d1

0,1(✓) =
1p
2
sin ✓ d1

�1,1(✓) =
1
2
(1� cos ✓).
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Appendix VI: Spin-1 Rotation Matrices IV

For spin-1/2 it is straightforward to show

d
1
2
1
2 ,

1
2
(✓) = cos

✓
2

d
1
2

� 1
2 ,

1
2
(✓) = sin

✓
2
.
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