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H3: Interaction by Particle Exchange and QED
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Reminder, and plan for this handout

We are working towards a proper
calculation of decay and scattering
processes Initially concentrate on:

e+e� ! µ+µ�

e�q ! e�q

This handout concentrates on the Lorentz Invariant Matrix Element Mfi .

Considerably more has to be taken on trust in this handout than in the previous
handouts. All motivational information has the status of plausibility arguments, at
best. It is not a substitute for the QFT course which is lectured in parallel.

The main areas which will be covered in this handout are:

the meaning of the phrases ‘interaction by particle exchange’ and ‘virtual particle’;

a take-it-on-trust introduction to Feynman diagrams;

a description of the Feynman rules for tree-level QED; and

use of those rules to work out scattering cross sections for processes like those shown
above.
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Interaction by Particle Exchange

We previously noted that we calculate transition rates from Fermi’s Golden Rule

�fi = 2⇡ |Tfi |2 ⇢ (Ef )

where Tfi is perturbation expansion for the Transition Matrix Element

Tfi = hf |V |ii+
X

j 6=i

hf |V |jihj |V |ii
Ei � Ej

+ . . . .

A relativistic normalisation of states was defined on page 36:  0 =
p
2E

p
V .

On page 37 a Lorentz Invariant matrix element Mfi was defined in terms of the
non-Lorentz Inviariabnt matrix element Tfi needed by Fermi’s Golden Rule:

Mfi =
1
V

D
 0

1 
0
2 . . .

���Ĥint

���. . . 0
N�1 

0
N

E

We provide some (non-examinable) evidence in https://www.hep.phy.cam.ac.uk/

~lester/teaching/partIIIparticles/Propagators.pdf as to why the above
ingredients tends to result in Mfi containing terms resembling

Mfi ⇠ gagb

q2 �m2
X

when the scattering between two particles a and b is caused by the ‘exchange’ of a
virtual particle whose non-virtual mass (i.e. if it were it on shell) is mX , and if qµ is
the four-momentum of the virtual particle.
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Summary: the sum of all time-ordered momentum-non-conserving
‘exchanged’ real particles looks like one momentum-conserving ‘virtual’
particle.

The sum over all possible time-orderings is represented by a Feynman diagram

Momentum is not conserved at any vertex in the time-ordered diagram (FGR did
not ask for this in its sums over states!), but the exchanged particles there all have
their ‘real’ masses, (E 2

X � p
2
X = m

2
X or ‘on mass shell’) but . . .

. . . the virtual particles in the Feynman Diagrams have ended up conserving
momentum at each vertex, albeit at the cost of having the ‘wrong’ masses
(E 2

X � p
2
X = q

2 6= m
2
X or“o↵ mass shell”).

A ‘propagator’, i.e. a factor like 1
q2�m2

x

arises naturally in association with each virtual

particle in a Feynman diagram.
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Sign of q2

A matrix element like Mfi = gagb

q2�m2
x

depends on the four-momentum, q, carried by the

(virtual) particle which is determined from energy/momentum conservation at the vertices.
Note that q2 can be either positive or negative:

Here q
2 = (p1 � p3)

2 = (p4 � p2)
2 = t.

For elastic scattering: p1 = (E , ~p1) and
p3 = (E , ~p3) so
q
2 = (E � E)2 � (~p1 � ~p3)

2 < 0 and so this
is termed ‘space-like’ t-channel scattering.

Here q
2 = (p1 + p2)

2 = (p3 + p4)
2 = s.

In C.o.M. p1 = (E , ~p) and p2 = (E ,�~p) so
q
2 = (E + E)2 � (~p � ~p)2 = 4E 2 > 0 and so

this is termed ‘time-like’ s-channel
annihilation.
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Aside: V(r) from Particle Exchange

One can view the scattering of an electron by a proton at rest in two ways:

(1) As an interaction by particle
exchange in 2nd order perturbation
theory.

Mfi =
gagb

q2 �m2
x

.

(2) As a process in first order
perturbation theory treating proton
as a fixed source of a field which
gives rise to a potential V(r).

Mfi = h f |V (r)| i i .

One obtains the same expression for Mfi in both cases if one uses a ‘Yukawa Potential’:

V (r) = gagb
e
�mr

r
.

In this way, one can relate potential and forces to the particle exchange picture. However,
scattering from a fixed potential V (r) is not a relativistic invariant view!
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Quantum Electrodynamics (QED) from semi-classical / historical
perspective

The basic interaction between a photon and a charged particle may have been introduced
by making the minimal substitution mentioned earlier (see Part II Electrodynamics) i.e. via:

i@µ ! i@µ � qAµ

where Aµ = (�,�~A). As we saw ealier, this leads to the Dirac equation changing from

�µ@µ + im = 0

to
�µ@µ + iq�µ

Aµ + im = 0

or equivalently

i�0 @ 
@t

+ i~� · ~r � q�µ
Aµ �m = 0

thus

i�0 @ 
@t

= �i~� · ~r + q�µ
Aµ +m 

and so (⇥�0)

i
@ 
@t

= �i�0~� · ~r +m�0 .+ q�0�µ
Aµ . (95)
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We recognise

i
@ 
@t

= �i�0~� · ~r +m�0 .+ q�0�µ
Aµ (95)

as the Schroedinger Equation:

i
@ 
@t

= Ĥ 

with
Ĥ =

⇣
�0
m � i�0~� · ~r

⌘

| {z }
Combined rest
mass + K.E.

+ q�0�µ
Aµ| {z }

Potential or
interaction energy

i.e. we can infer that the operator associated with the interaction/potential energy of a
charged spin-half particle in an electromagnetic field, Ĥint, might resemble:

Ĥint ⇠ q�0�µ
Aµ.

i.e. we expect the
D
i

���Ĥint

���j
E
terms in F.G.R. to contain expressions like:

D
 i

���q�0�µ
Aµ

��� j

E

or, using the definition of the adjoint spinor  ̄ =  †�0:

Aµ

⌦
 ̄i

��q�µ
�� j

↵
.
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Alas, there are many complications concerning Aµ that are beyond this course (but which
relate to the fact that Aµ is able/needed to encode photon polarisations, but can also
encode unphysical things on account of gauge invariance). E.g. for a real photon
propagating in the z direction

Aµ = "(�)µ e
i(pz z�Et)

we have two orthogonal transverse polarization states in some ‘gauges’ (see Appendix XI
much later) :

"(1) =

0

BB@

0
1
0
0

1

CCA "(2) =

0

BB@

0
0
1
0

1

CCA .

The area concerning photon polarisation spin-sums
P

� "
�
µ

�
"�v

�⇤
is very complicated and

needs an entire course on Gauge Field Theories. (Consider reading around eq (4.66) in
Michio Kaku’s “Quantum Field Theory: a modern introduction” if you want an inkling of
what is involved ... )

Su�ce it to say that after the dust has settled, terms like those shown on the next slide
are those which appear in expansions of the Mfi terms needed by Fermi’s Golden Rule ...
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That which schematically was like this:

becomes like this for the case of electron-tau scattering via a photon:

M = [ūe (p3) qe�
µ
ue (p1)]| {z }

Interaction of e with photon

�gµ⌫

q2 � 02
[ū⌧ (p4) q⌧�

⌫
u⌧ (p2)]| {z }

Interaction of ⌧ with photon
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Our claimed first-order Matrix Element for electron-tau scattering:

M = [ūe (p3) qe�
µ
ue (p1)]

�gµ⌫

q2 � 02
[ū⌧ (p4) q⌧�

⌫
u⌧ (p2)]

is a remarkably simple expression! It was shown in Appendix V that ū1�
µ
u2 transforms as

a four vector, so writing
j
µ
e = ūe (p3) �

µ
ue (p1)

and
j
⌫
⌧ = ū⌧ (p4) �

⌫
u⌧ (p2)

we have

M = �qeq⌧
je · j⌧
q2

making the Lorentz Invariance of M more easily visible.
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Old Fashioned Time-Ordered Perturbation Theory vs Feynman Rules

Even though we did not deduce the following leading-order expression very
rigourously:

M = [ūe (p3) qe�
µ
ue (p1)]

�gµv

q2
[ū⌧ (p4) q⌧�

⌫
u⌧ (p2)]

we made attempts to illuatrate how it was obtained as a sum over all possible time
orderings of the virtual photon – and as a sum over the photon polarisations (though
these were discussed even less!). Calculations of that sort (but done rigorously) are
now called calcuations in ‘old fashioned time ordered perturbation theory’.

Fortunately, an amazing result, first intuited by Feynman, then later proved by
Schwinger and Dyson, is that there is a much simpler way that is provably equivalent
albeit mysterious. We can just write down any matrix element by using a set of
simple rules, so called ‘Feynman Rules’ – see next page!
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Basic Feynman Rules for QEDBasic Rules for QED

outgoing particle

outgoing antiparticle
incoming antiparticle

incoming particle

spin 1/2

spin 1 outgoing photon
incoming photon

External Lines

Internal Lines (propagators)
µ n

spin 1          photon

spin 1/2       fermion

Vertex Factors
spin 1/2       fermion (charge -|e|)

Matrix Element              =  product of all factors
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as we obtained previously. Or, we could look at an entirely di↵erent process,

NOTE:

Each fermion line is traversed ‘backwards’ (i.e. against the arrows) from adjoint
spinor to ordinary spinor via any vertices inbetween in the order they are encountered!
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Summary

Interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix
Element of the form

Mfi =
gagb

q2 �m2
x

Derived the basic interaction in QED taking into account the spins of the fermions
and polarization of the virtual photons:

�iM = [ū (p3) ie�
µ
u (p1)]

�igµ⌫

q2
[ū (p4) ie�

v
u (p2)]

We now have all the elements to perform proper calculations in QED!
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