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In a d-dimensional spacetime there will always be d gamma matrices, as one is associated
with each spacetime derivative in the Hamiltonian. That is why in 4-dimensional
spacetime we have four gamma matrices: 7o, y1, 72 and 3.

But why does d = 4 force those matrices to be (4 x 4)-matrices ?

Rather than answer the above question, we instead state (and later prove) the more
general result (47) linking the (n X n) size of gamma matrices to the number d of
spacetime dimension with which they are associated:

The result (47) is a direct consequence of the gamma matrices having to satisfy (as we
already saw in (27)) the defining property of a (so called) ‘Clifford Algebra’, namely that:

Y+ = 28" Lo (48)

Warning: the proof we provide for the above statement relies on Schur's Lemma. This may be a source of
dissatisfaction for some persons taking the course because Schur’s Lemma, although stated in the Groups and
Representations section of the Part IB Mathematics course within Natural Sciences Tripos, was stated in that

coure without proof. If you find that annoying, you will have to find an alternative proof.

111/563



H2

Appendix Ill: Dimensions of the Dirac Matrices Il

Aside on size of Pauli matrices:

Although we are mainly interested in proving (47) to substantiate the claim that each *
is a (4 X 4)-matrix, we note that the same result can be used to explain why the Pauli
matrices are (2 X 2)-matrices. The reason is that the three (d = 3) Pauli matrices satisfy
their own equivalent of (48), namely: o;0; 4 0jo; = 20;;. Hence n = 213/2) = 2! =2,

We wish to prove the result stated in (47) is the relationship between the dimension d of
spacetime and the dimension n of the (irreducible) (n x n) irreducible matrices v,
satisfying (48) with u,v =0,1,--- ,d — 1. Conveniently, the relationship (47) between n
and d which we seek to prove does not depend on the signature of the metric since it is
possible to convert a representation designed for one signature (say

guv = diag(+, —, —, —)) to another (say g, = diag(+, +, +, +)) without changing n by
multiplying appropriate y-matrices by i = /—1.

Therefore, without loss of generality, we actually take as our start point the simplest
possibility, namely:

YuYv + YoV = 2(;;1,1/ . 1n><n~ (49)

We nonetheless demand that the ~-matrices are irreducible — i.e. that there is not a
similarity transformation that would reduce them all to a (non-trivial) block diagonal form.
We start by noting that with those assumptions:
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e Every +* is invertible. [To prove this simply set u = v in (49) and take the
determinant of both sides.]

o For the matrix v* = 7%+!...~9~! we have
Yt = (1) T (50)

[Proof: When v* commutes with v* it must pass d — 1 dissimilar y-matrices and a
single ‘identical’ y-matrix. Given (49) there are therefore d — 1 anti-commutations
and a single commutation. [J]

o The matrix v* = 1%+ ... 497! squares to either +1 or -1 depending on d. [Proof:
it takes (d — 1)d flips of adjacent pairs to reverse the order of d objects, and since
all the y-matrices in v* are dissimilar and thus anti-commute we can deduce that

Nt = 7071 » .,yd—l _ (_1)%(d—1)d . ,yd—l o ,ylfyO
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and so

in which s(d) = (—1)2(~19 is a d-dependent sign in {+1,—1}]

e If d > 1 then n must be even. [To prove this, consider p # v (which requires
d > 1) in (49). In this case (49) becomes v#~" = —~"~" which implies that
det{y*}det{y"} = (—1)" det{~"} det{+*} which (since every v* is invertible)
implies that 1 = (—1)" and thus that n is even. |
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@ Theorem A: Any product of any number of y-matrices may (up to a sign) be
written as a product of at most d gamma matrices in strictly ascending order of
their indices. [This is because (49) states that dissimilar y-matrices anti-commute,
and that individual ~-matrices square to 1'. Therefore, an arbitrary product of
~-matrices can always have its y-matrices permuted into numerical order (with a sign
change if an odd number of permutations is required) leaving at most one copy of
each ~-matrix as repeats will disappear (up to a sign) on account of the squaring
property.]

The last result above motivates the following definition.

Definition

If A'is any integer whose binary representation modulo 29is A i.e. if (A
mod 27) = S %' A; - 2 with each A; € {0,1}, then define I'a by

d—1 oA
rA:H{Z’ 'fA’_l}. (52)

e otherwise

For example, this definition would make 13 = o723 since
13=1-240-2+1-2241-2%
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On account of the modulo 27 part of the definition, any continuous range of indices of
length 27 would suffice to include every such M-matrix. Without loss of generality will
always take indices A to be in the set

A:{1727 72d}7

and mapped into that range, if necessary, by an implicit modulo 29 operation. We
therefore define a complete list, L, of -matrices as follows:

L:(r1,r2,...,r2d):(rA|A€.A). (53)

Note that although we have defined 2d quantities I4 in the list L we have not shown that
they are all unique. In other words, we cannot assume ‘(A # B) = (Fa #g)’ or
‘(TA=Tg) = (A= B)' unless later proved.

We now state and prove two important properties of the -matrices:
The most general form of this Lemma is

n if A=0 mod 2"
Tr[Fa] =<0 if (A#0 mod 2") and (d is even or 27:1 Ai is even) (54)
Tr[la] otherwise.
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Alternatively, a narrower form could be stated as follows

n ifA=0 mod?2"

. (55)
0 otherwise.

When d is even: Tr[la] = {

The trace of Iy is always trivially n as g = 1,xn,. Every other I'4 is the product of one or
more dissimilar y-matrices. We split the remainder of the proof into two parts: part (i)
shows that traces of products are zero where the remaining products contain an even
number of vy-matrices, while part (ii) shows the same for products containing any odd
number of ~-matrices. Note the subtle differences between these two parts of of the proof:
the first needs to assume that the multiplied gammas are distinct but does not need to
worry about whether d is even or odd. In contrast the second does not care about
distinctness in the gammas but needs to assume that d is even. If k is an integer
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greater than zero, and if a1, as, ..., ax are k distinct integers in [0,d — 1] and if
T=Tr [781732 Tt ’yak—l’yak] then
T="Tr [’731732 T 'Yak,l'yak]
= (=1 Tr[va Yo Voo -+ Vo)
(after k — 1 anti-commutations using (49) and k > 0)
G A 1 N R A (trace cyclicity)
(-1 T

therefore:

“The trace of the product of an even number of distinct y-matrices ...

...is zero provided the even number is greater than or equal to two". (56)
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If k is an integer greater than zero, and if a1, a2, ..., ax are k integers in [0,d — 1] and
if T=Tr [fyal'yaQ = ~fyak71’yak] then

T="Tr [’731782 o 'ryak—lfyak]

= s(d)- T =Tr[(v'Y e Ve - Vo1V (by (51))
= s(d)- T=Tr[Y"va % Yo YoV (trace cyclicity)
= S(d) T=(-1)" T [V Y Yok Var Va2 -+ * Yax1) (after k uses of (50))
== = (-1 Ty [Yax Vo1 Vaz -+ * Va1 ) (by (51) again)
= = ()T
therefore:

“when d is even, the trace of the product of an odd number of y-matrices is zero”. (57)
This concludes our proof of Lemma 1. [J

FAI'B = S(A, B) . I'A@B (58)

119/ 563



H2

Appendix Ill: Dimensions of the Dirac Matrices X

in which ‘@' represents ‘BITWISE EXCLUSIVE OR’ and s(A, B) is a function mapping pairs
of indices to the set {+1,—1}.

d—1 . d—1 .
vi ifA =1 vi ifBi=1
Malg =
Ae H {1 otherwise} H {1 otherwise

i=0 i=0

d—1 . .
:Sl(A,B)H vi ifA =1 vi ifBi=1
P 1 otherwise 1 otherwise
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where s1(A, B) € {+1, —1} is a sign which will depend on how many anti-commutations
deriving from (49) were needed to re-order the matrices, and so
a1 [(v)? ifA=B=1
Fars=s(AB)[[{v ifAeB=1
=011 otherwise

i1 [gi (nosumi) ifA =B =1

= s(A,B) i if Ai@B; =1 p (by (49))
i=0 11 otherwise
o1 [1 ifA=B=1

:S(A,B) Yi ifA®B =1

1 otherwise

Il
<}
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where s(A, B) is a new sign function that accounts for our having replaced g with 1, and
so

d—1 .
; ifA®B =1
rale =s(A,B) [] {Z TAD }

P otherwise

= S(A, B)FA@B .

A corollary of (58) is that every I-matrix is invertible. [Proof: setting B equal to A in (58)
tells us that (I'4)*> = s(A, A) - To = s(A, A) - 1yxn = £1sx, and so

(Fa)~"is either T4 or —T 4. (59)

]

Perhaps we can do better. Suppose A has a ones in its binary representation

(ie. a= 272_01 A; so that 4 is a product of a gamma matrices in ascending order of
index). If we then square ['4 we could attempt to permute adjacent gamma matrices
within the product so as to annihilate every identical pairing, leaving behind only a sign.
This process would require a — 1 anticommutations to annihilate the first pair, a — 2 the
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second, etc, and none for the last. This is a total of (a — 1)a anticommutations, and so
we can make the very specific claim that

(Fa)? = (—1)2622 (60)
or equivalently
(Fa)H = (-1 T (61)

Indeed, we see that the already derived result (51) could be viewed with hindsight as a
simple corollary of (60).
Knowing that the -matrices are all invertible we may define a matrix S as follows:

S = Z(rx)—l CY Ty (62)

XeA
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where Y is an arbitrary (n x n)-matrix whose value we will fix later. It is follows that for
any integer A (not summed) in the usual range A:

(Fa) 1 S-Ta= Y (TxMa) - Y- (TxTa)
XeA

= Z(erA@x)71 -Y - (SXFA@X) (using (58))
XecA

= (Maex)™" Y- (Taax)

XeA

= > (M) y-(x)

XEABA
:Z(rx)71~y-(rx) (since A A={A® B,Bec A} = A)
XA

=S5

and thus S-Ta=T4-S.

Having found a matrix S which commutes with every element 4 of a list L of matrices,
one might hope to use Schur’s Lemma to claim that S is some multiple of 1,x,. However,
a precondition of the only version of Schur’'s Lemma which | understand and which also
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allows that conclusion to be drawn requires the elements of L to form an irreducible
representation of some group G. Not only have we not yet shown that this precondition is
satisfied, it actually looks likely to be false! For example, for the usual y-matrices in d = 4
dimensions we would have 12 = 172 = — 7271 = —I2['1 and so for L to be closed under
multiplication it would need to contain both +I>; and —I2[1. This seems unlikely as we
did not set up L to contain negated copies of every element. It therefore seems unlikely
that L is closed under multiplication and so it seems unlikely that L represents a group.

It could be argued that the source of the problem is the annoying sign s(A, B) in (58). If
that pesky sign were not there and the constant ‘41" were always in its place, products of
[-matrices would be closed. We cannot arbitrarily dispose of that pesky sign, but it does
suggest a resolution: we could double the length of our list L by adding to it another copy
of itself but with the sign of every matrix reversed in the second half. The elements of this
list will then be closed under multiplication, which is would be a requirement for them to
be any kind of representation. We shall call the set containing all those elements G:

G={4Ta|Ac A} U{-Ta|Ac A} (63)

This set of matrices is: (i) closed under multiplication, (ii) contains the identit [ya = 1nxn,
(iii) contains an inverse for every element (see proof in (59)). Finally (iv) matrix
multiplication is associative. Therefore G together with the operation of matrix
multiplication forms a group. As it is a finite matrix group it is also representation of
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itself. This representation must be irreducible since the representation contains elements
which are copies of the original v-matrices (e.g. 1 =0, T2 =71, ... ¢ = 4), and those
original y-matrices were taken to be be irreducible at the outset by assumption (see
paragraph containing (49)). Although we have increased the number of elements in G
relative to L, we can be sure that our old S will commute with every element of the new G
because

([S,+Ta]l =0) < ([S,-Ta] =0).

We have thus established all the preconditions necessary to allow us to use Schur's Lemma
to state that S is a multiple of the identity, or more specifically:

A loxn = Z(FA)_l <Y rA (64)

XeA
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for some scalar A that will depend on Y. Taking the trace of both sides of (64) and using
the cyclicity of the trace gives us:

A= T[T YT

XecA

=Y Ty rara)

XecA

:ZTrY

XeA
=2¢.Try

and thus
A= - TrY. (65)

Putting this value for A back into (64) yields
od

-1
7~TrY-1,,X,,:Z(FA) Y -Ta. (66)
XeA
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We now exercise our remaining freedom to choose Y to be any (n x n)-matrix we wish,
deciding to let
[Y15 = disdje

where s and t are integers in [1, n] which we may choose to fix later. With that choice in
mind, and with i and j being other arbitrary integers also in [1, n], (66) can be expanded
as:

29 _
|:n-TI’Y'1n><n:|ij: [Z(FA) Loy T,

XeA

i

or equivalently

24 _
7 . (6ms5mt) . 51] - Z ((rA) 1)im : (6m56nt) . (rA)nj
XeA
which simplifies to
24 1
O Oy = D ((Ta)™is - (Ta)y- (67)
XeA
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Since (67) is true for any i,j,s,t in [1, n], let us set s — i and t — j and then sum over |
and j. Making use of the summation convention over i/ and j we find that:

2¢ -
00 = D)™ (Ta);
AcA
which simplifies to

% o= Te[(Ta) ] T4

AcA

or

27 = 3" Te[(ra) ] TrAlL (68)

AcA
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For the case that d is even we may now use (55) to simplify (68) to
29 = Te[(Fo) ] - TrIro]

= Te[ (L) ] L]
= Tr[lnxn] - Tr[1nxn]
2
=n-n=n
= n =292 (but only for d even!). (69)
This is a bit of a trick. One may always generate an irreducible representation of the

gamma matrices for an odd spacetime dimension d + 1 from an irreducible representation
valid for an even number of spacetime dimensions d. The way to do this is surprisingly

simple: if
o1 d—1
{'Y A AEEERE }
is an irrep of (49) for an even number of spacetime dimensions d, and if we define

* _ 0.1 d—1
Y=
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and if we recall the definition of s(d) from (51), then

{0 T U@ ) (70)

will be an irrep of (49) valid for dimension d + 1 spacetime dimensions. That (70) is the
irrep it is claimed to be is a consequence of three things: (i) v* was proved in (50) to
anticommute with all the other gamma matrices when d is even and this
anti-commutation is the property enforced/required by (49) whenever p # v, (ii) that
v/s(d)y* squares to 1 was proved in (51), and this is the property enforced/required by
(49) whenever = v, and (iii) the representation (70) is an irrep as the first d gammas
formed an irrep by themselves (i.e. as there was no transformation which could ‘reduce’
them, there cannot be an irrep that could ‘reduce’ both then and v*). It may be observed
that this argument cannot be used to grow irreps without limit, since once an irrep for
even d is grown to an irrep for odd d, the ‘next’ v* would fail to anticommute as desired.
Nonetheless, the clear message is that the dimension of the gamma matrices for odd
spacetime dimension d is always the same as the even dimension d — 1, and so (69) now
informs us that

n=2"Y/2 " (but only when d is odd!). (71)
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There result (69) for even d can be merged with the result (71) for odd d into a single
expression valid for any d:

24/2 (when d is even)
n=
20d=D/2 (when d is odd)

= n = 2L/ (for any d). (72)

This concludes the proof of (47) which is also a proof of the lesser claim that Dirac
Spinors have four components in the usual 4-dimensional spacetime.
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@ In the part Il Relativity and Electrodynamics course it was shown that the motion of a

-

charged particle in an electromagnetic field A* = (¢, A) can be obtained by making

the minimal substitution p— g —qgA;, E — E —q¢
@ Applying this to the equations in (??)

(3.5 —q3.Aus = (E—m—qo)ua

(75— qFAua = (E+m—qd)us
Multiplying (73) by (E + m — q¢)

(3.6 —qi.Aug = (E—m—qd)ua

(75— qFAua = (E+m—qd)us

where kinetic energy T = E — m

@ In the non-relativistic limit T < m (74) becomes

—_~
Qu
i
I
Q
Q
LB
B
Ty
I
Q
Qu
>
N
=
>
2

Q

(5.6 — a(7.4)(3.5) — 4(5.5)(7.A) + ¢ (7.A) | ua

2m(T — q¢)ua
2m(T — q¢)ua (75)

(73)

(74)
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> ([ A A-iA\ .z ([ B B, —iB,\ _
o Now 7.A = iA, A, > ; d.B= (BX +iB, B, ) ; which leads
B+ ig.(AAB)

to (7.A)(¢.B)
and (7.A)? = |A]?
@ The operator on the LHS of (75):

I
—~
<

|
Q9

>
=
N
|
)
Qi

(F— qA)* — q3.B (since B=V

Substituting back into (75) gives the Schrédinger-Pauli equation for the motion of a
non-relativisitic spin 3 particle in an EM field:

1 . - L=
%(p — qA)2 — %O‘.B + qo| ua = Tua.
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1 . - L=
[ﬂ(p — gAY - SL5.B+ q¢] ua = Tug

—

@ Since the energy of a magnetic moment in a field is we can identify the intrinsic
magnetic moment of a spin 3 particle to be:

S 9
r= 2m’
In terms of the spin: S = ic

L gz
=—=S5

H=m

o Classically, for a charged particle current loop
q —
=—1L

’ 2m

@ The intrinsic magnetic moment of a spin half Dirac particle is twice that expected
from classical physics. This is often expressed in terms of the gyromagnetic ratio is
g=2.
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It will shortly be seen that the quantities
(MQ’B)W =g’ —g"g"” (76)
or the equivalent (but less symmetric) quantities
(MY, = g"*5) — 57" (77)
are generators of Lorentz Transformations. The indices o choose between generators

M8 while #, in (M®P)*, are there to act on vector indices. Evident antisymmetry in the
af of (76) means that there are only six independent non-zero generators. Suppressing
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the vector indices (taken to be #,) and taking g"¥ = diag(+, —, —, —) the six independent
generators are:

0100
a0l a0 |1 0 0 0
Ki=M"==M"=15 0 0 o
00 00
00 10
a2 a0 |0 0 00
Ko=M"==M"=11 0 0 o0
0000
000 1
a0 a0 |0 0 0 0
K3—M—M—0000
1 000
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and
0 0 O 0
B _ _a32_ |0 0 0 0
h=M"==M"=10 0 0o -1
0 0 +1
0O 0 0 O
a3t a3 |00 0 +1
Lh=M"==M"=14s o o o
0 -1 0 O
0 O 0 O
o 12 pg21 0 0 —1 0
S=MT==M"=14s 11 0o o
0 O 0 O
or, for short:
J,‘—%E,'jkl\/ljk
Ki = MY,
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[Aside: The generators obey commutation relations
Ui, 4] = €k, Ui, Ki] = €Ki, [Ki, Kj] = —€ijk k.

The first of these says that the J's generate rotations in three-dimensional space and fixes
the overall sign of the Js. The second says the K's transform as a vector under rotations.
End of aside]

With above definition® one could represent and arbitrary Lorentz transformation (boost,
rotation or both) as

!
X" = A XY

with
N = (e [gww(wﬁ)'.])”y (78)
= 8+ Jwas(M)", + O(?) (79)

using a set of parameters w,g which may as well be antisymmetric in af (since any
symmetric part would not participate in (79) on account of the (a <+ (3)-antisymmetry of
M"‘B) and so contain six independent degrees of freedom (controlling three boosts and
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three rotations) as required. In most of the proofs which follow we use the infinitesimal
transformations to first order in w since if some properties can be proved for infinitesimal
transformations then it is always be possible to generalise that result to the exponential
form for a finite transformation.

LCompare to similar but slightly different sign/index conventions in
http://www.phys.ufl.edu/~fry/6607/lorentz.pdf.
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Lorentz transformations should be continuously connected to the identity (which (79) is,
when wqs = 0) and should preserve inner products. The transformation in Eq. (79)
preserves inner products because:

w Iv

x' y = 8uwX' Yy
:gw(/\ oX )(AVTyT)

1 1 ;
= 8guv(ds + Ewaﬁ(Maﬁ)“a)(& + *waB(M"B)"T)X”yT +O(w)?

1

Gor + 5 (waﬂ(MaB)Ta +ws3(M ) y'+ O(wz)
1 e aﬁ o T 2 H
Zor + > (waﬁ(/\/] Yro + was(M ) x7y" + O(w) relabelling

x7y" + O(w?) antisymmetry of M

1 o o
= g07+§(wo¢6(M B) _UJBMBTU

gJTXoyT + O(w2)
x -y + O(W?).
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If the above argument seems too abstract, a more concrete way of checking that we have
generators of Lorentz transformations might instead be to compute

coshn sinhp 0 O
sinh cosh 0 O
expf{mk)}r = |07 T 1 . (80)

0 0 01

as this will be recognised by some as a boost in the positive x-direction with rapidity n
(that is with coshn =~ and sinhn = 8~) while

0 0 0
1 0 0
0 cosf —sinf
0 sinf cosf

exp{(04)} = (81)

O OO

will be recognised by most as a rotation by an angle 6 about the x-axis.
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If the Dirac Equation:
iy Ou = my (82)

is to be Lorentz covariant, there would have to exist a matrix S(A) such that ¢’ = S(A)y
is the solution of the Lorentz transformed Dirac Equation

Ol = m. (83)
Equation (83) implies
70" = (84)
and so
i\, 8" S(N)Y = mS(A)y (85)

and so since S(A) is independent of position
TuS(NN*, 0" = S(A\)mip (86)
which using (82) becomes
Y S(NN', 0" = S(N)iv" O
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and hence
iV S(N)N,"Bu1p = S(N)in” B,
or
i [V S(NA,” = S(A)"] 8up = 0. (87)
Therefore, if we can show that there exists a matrix S(A) satisfying
SN, = S(A)Y” (88)

we will have found a solution to (87) and thus will have found that the Dirac Equation is
Lorentz covariant as desired. Thought it would be entirely possible to work directly with
(88) it is perhaps nicer to bring both S matrices to the left hand side

STHAW SN, ="
and then use the identity

NN, =67 (89)
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so that (88) ends up being written in the more common and (perhaps) more suggestive
and useful form:

STHAYTS(A) = A7, (90)
[Aside: Here is (for infinitesimal Lorentz transformations) a proof of the identity (89):
NN = (27 4 naM), ) (& + Jeas(M™)7, ) + 0()
= 67+ 3 [was (M), + wag(M™)7,] + O(?)
=4, + % [o.)ag(l\ﬂ&ﬁ)ﬂcr —|—wa5(Ma6)GM] + 0(w?) (relabelling)

o 1 (o3 o «@ o ..
=0+ SWap [(M )7+ (M) ,L] + 0(w?) (factorising)

o 1 (e TO « oT . .
= 07 + Swas [(M*)7 4+ (M**)77| gur + O(?)  (tidying)

=60+ %wag [(Mo‘ﬁ)”’ — (MD‘B)W} gur + O(w?) (antisymmetry of M)
= &7 + O(w?).
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End of aside]

A valid choice of S(A) (for an infinitesimal Lorentz transformation) is given by:

1
S(A) =1+ Zwa[g’ya’y + O(w?). (91)
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_ - 1 o & 1 a B
YAy = (1- Zwasr™y’ |7 ZwagY™ Y w?
STHMYTS(N = (1-4 g 1+ 7) + o)

a B o

o 1 o a_f
=7 +Z(w5¢67 757’ — wapr vy )+O(w2)

o 1 g _ o « o
=7 +Zwaa(vvvﬁ—7 v57)+0(w2)
_ o l o _« a_oy\_ B ar o B o O 2
=77+ qwas (77" £ 0" =77 (777" +9797) ) + O(w)

o 1 o «@ o H v 14
=77+ JWas (2g v’ -2 B) +0(w?)  since {y",7"} = 28"
{ed 1 feged @ (eg 4
= (6u+7wa5 (g o8 —scg ﬂ))v + 0(w?)
2
= (65 + %walg(M“ﬁ)”V) 7" + O(w?) using (77)

=N 7 + O(wz) using (79).

=y
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[Aside: Since v*7” = 1{+*,7"} + 1[v*,7"] we can also rewrite (91) in the more
frequently seen (conventional) form:

1 a
S(N) =1+ gwasly™,7"] + O(w”). (92)
End of aside]
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Each of the expressions ¢1, ¢y*“1p and ¢y v 1) is of the form ¢y y” ---~y71). To
understand how any of them is affected by a Lorentz transformation it is therefore
interesting to consider the following set of manipulations:?

G AT = (SN - ATI(S (M)

=¢'ST (MY S(N)STHAWS(A) - - STHAWIS(N)Y

= 6'STMYS(N(ST (MY S(N)(STHAWS(A)) -+ (ST (AT S(A))es

= ¢'ST (MY SN )N 577) - (N A7) using (90)
which itself suggests that if we can show that

ST (MA°S(N) =" (93)
then we will have proved that
G AT = SN )N YT (N A )Y

which will itself have showed that each of the expressions under consideration transforms
like a tensor of the appropriate rank.
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We must therefore prove (93). To do so is a two-stage process. First we compute ST(A).
Then we combine it with v°S(A). Starting with (91):

sl =[1+ iwam“vﬁr +0(?)
=14 J0as(1°7") + 0(?)  (wap are real)
= 1+ w0s(1") (1) + 0(?)
=1+ %waﬁ(vovﬁvo)(vovavo) + O(w?)

1 o
=1+ Zwamovﬁw 7’ + O(w?) (94)
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from which we can deduce (using (91)) that
1 « 1 a_p
ST (A'S(A) = (1 + was?™ "y 7°> 7’ (1 + JWap 75) +O(w?)

a 0.0

1 -
="+ (wamov 7Y + wa 57’y 73) + O(w?)

=7 [1+0]¢ + O(«?) (wap = —wpa)
=1+ 0(w?)
verifying (93) as required. This completes our proof that:
@ ¢ is Lorentz invariant scalar,

o ¢y*1p transforms as a Lorentz vector, and

o ¢y 4 1 transforms as a second-rank tensor, etc.

2These manipulations may look complex but they really only consist of inserting lots of ‘ones’ in form
‘S(A)STY(A)" at the right places, using ¢ = ¢T~° and using (90) many times.
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