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H12: The CKM Matrix and CP Violation




CP Violation in the Early Universe

@ Today the universe is matter dominated. There is no evidence for anti-galaxies, etc.
The matter/anti-matter asymmetry is estimated to be
ng — ng n

e="5""8B "B ~107°
N~ N~

i.e. for every baryon in the universe today there are 10° photons and no anti-baryons.

@ One possible explanation is that for every 10° anti-baryons in the early universe there
were 10° + 1 baryons, and that these annihilated to 1 baryon + ~ 10° photons + no
anti-baryons.

@ To generate such an asymmetry from a symmetric precursor state, three conditions
must be met (Sakharov, 1967) [7]:

© Baryon number violation: i.e. ng — ng is not constant,

@ C and CP violation: if CP is conserved for a reaction which generates a net number of
baryons over anti-baryons there would be a CP conjugate reaction generating a net
number of anti-baryons.

© Departure from thermal equilibrium: In thermal equilibrium any baryon number
violating process will be balanced by the inverse reaction.

@ [Aside: Your lecturer is not entirely convinced by the arguments that the early
universe should be symmetric, but he is in a minority!]
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We would like to know if the Standard Model of particle physics provides

enough CP violation to generate the observed matter antimatter asymmetry
of the unvierse from a symmetric starting point.

@ There are two places in the SM where CP violation enters: complex phases in the
PMNS matrix (neutrinos) and the CKM matrix (quarks).

To date CP violation has been confirmed only in the quark sector.

We will approach quark-sector oscillations it in two stages first without and then with
CP violation.

@ We will see many features in common with neutrino oscillations — except that the
oscillating particles (mesons) will have finite rather than infinte lifetimes (neutrinos).
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The Weak Interaction of Quarks

o A slightly different values of Gr is measured in p decay and nuclear 8 decay:

Vu u
Ve Ve
u d
e e
G} = (1.16632 £ 0.00002) x 107° GeV 2 Gf = (1.136 £ 0.003) x 107° GeV 2

@ In addition, certain hadronic decay modes are observed to be suppressed,
e.g. compare K~ — p~ v, and 7~ — p~ v,. Kaon decay rate suppressed factor 20
compared to the expectation assuming a universal weak interaction for quarks.

d Vu S Vu
" M K- D\/\/\/\<
u no i v
@ Both observations explained by Cabibbo hypothesis (1963) [8]: weak eigenstates are

different from mass eigenstates, i.e. weak interactions of quarks have same strength
as for leptons but a u-quark couples to a linear combination of s and d.

d \ [ cosf. sinf. d
s’ ) 7\ —sinf. cosf. s
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GIM Mechanism

@ In the weak interaction have couplings between both ud and us which implies that
neutral mesons can decay via box diagrams, e.g.

cosf., W~ B
A W ‘Ml o gy cos O sin 0. |.
0
K 2 V \ Vu Historically, the observed branching was
S < < + much smaller than predicted.
sinf, w+ H

@ Led Glashow, llliopoulos and Maiani to postulate existence of an extra quark - before
discovery of charm quark in 1974. Weak interaction couplings become:

u u c c
COS;M%<01 sinﬂj:\;‘z<s —sir:/;‘:‘"éid cosG(.H;%<s

o Gives another box diagram for K — p*p~ with ‘ M, o —giy cos O sin 6,

7 —sinGS,V\‘;V\;\‘ o Same final state so sum amplitudes:
KO o \/ V“ ‘|M|2:|M1+M2‘2%0‘
S e hrn—e ut _
cosf, Wt o Cancellation not exact because m, # m..
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u u
= -
5oONg cos 8, g—\/“% d sin @, % 5

Can explain the observations on the previous pages with . = 13.1°.
Kaon decay is suppressed by a factor of tan? 6. ~ 0.05 relative to pion decay.

s Va
D\A/\/v< K-
u -

M (7~ = V) o< [MJ* o cos® Oc in® 0.

Hence expect G = G cos O,

w < Gr.G

473 /604



H12

Cabibbo—Kobayashi-Maskawa (CKM) Matrix

o Extend ideas to three quark flavours (analogue of three flavour neutrino treatment)

Vud Vus Vub
= Vcd Vcs Vcb
Vie Vis Vi

, CKM Matrix ,
(Cabibbo, Kobayashi, Maskawa )
e.g. Weak eigenstate d’ is produced in weak decay of an up quark:

% d Va5 __d Vsl S Vs b
wt wt wt W+

@ The CKM matrix elements Vj; are complex constants.
@ The CKM matrix is unitary.
@ The Vj are not predicted by the SM — have to be determined from experiment.
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Depending on the order of the interaction u — d or d — u, the CKM

matrix enters as either V4 or V.

[Spoiler: the happy quark index on V always comes first, and no conjugation is needed if a
walk backwards up the fermion line also encounters the happy quark first. See below!] J

e For d’ — u the weak current is:
sw u

V2 . T 1 ,
d/—)—q Jdluzu{f/%v“i(lff)] d
W

.. . _ .8w 1 5
the d — k t | o = —7“7(1— ) Vid |
giving the u weak current: | jg u{ lﬁ’y > ¥ d

o For u — d’ the weak current is:
&w !
% d =/ 8w 1 5
U —>— Juar = d |:_,‘7ny, (1—7):| u.
2 2
wt v

This time d’ = d'T7° = (Vugd)"4° = Vi5dT° = vid

giving the u — d weak current: | jg = d V. [71'77 5 (1 - 75)} ul.
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Examples showing use of what was explained on the last slide:

1
_i&w Va7 5 (1 - 75> is the vertex factor the following diagrams:

V2

i e sl WW:<3
u
W~ w—  d u

. o il . . .
_i&w Vg > (1 - A,'5> is the vertex factor for the following diagrams:

V2

T e
W+ W+ u d

476 / 604



CKM summary

e Experimentally (see Appendix XVIII) determine:

[Via| | |Vis| | [Vus] 0.97373 0.2243 0.0038
[Vea| | [Ves| | |Vas| | = 0.221  0.975 0.041
|th| ‘Vts‘ |th| 0.009 0.042 1.01

o Assuming unitarity of CKM matrix, e.g. |Vus|> + |Ves|* + | Vis|* = 1, get (2022 PDG):

0.97435 + 0.00016 0.22500 = 0.00067 0.00369 =+ 0.00011
|Voxm| = | 0.22486 4 0.00067 0.97349 + 0.00016  0.041820-90%
0.00857+3:9%020  0.0411073:99983  0.999118F 000051

which is ‘ fairly diagonal — very different from PMNS!

Weak Charged Current (i.e. W¥) is only SM interaction that changes flavour.

As off-diagonal elements are small, flavour changes are ‘discouraged’.

Weak interactions are largest between quarks of the same generation.

Coupling between first and third generation quarks is very small!
@ Just as for the PMNS matrix — the CKM matrix allows CP violation in the SM.

i = - EaNema

477 / 604



H12

The Neutral Kaon System

o Neutral Kaons are produced in strong interaction, e.g.:

7 (di) + p(uud) — N(uds) + K°(d3)
7" (ud) + p(uud) — K (u5) + K°(sd) + p(uud)

but decay via the weak interaction.

@ The Weak Interaction also allows mixing of neutral kaons via “box diagrams”

w— i, c,t
d S d S
KO X wet | |0 KO . w+ Sw- | ®°
S d s d
W+t u,c,t

@ This allows transitions between the strong eigenstates states K°, K°.

o Consequently, the neutral kaons propagate as eigenstates of the overall strong +
weak interaction (Appendix XIX); i.e. as linear combinations of K° K°

These neutral kaon mass states are called the “K-short”, Ks, and the “K-long’, K.
These states have approximately the same mass, m (Ks) = m(K.) ~ 498 MeV, but have

very different lifetimes: | 7 (Ks) = 0.9 x 10~ s | versus
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CP Eigenstates

The Ks and K| are closely related to eigenstates of the combined charge conjugation and
parity operators: CP.
@ The strong eigenstates K°(d5) and K°(sd) have J® =0~ and

Py ==k}, PIRe)=-|R).
@ The charge conjugation operator changes particle into anti-particle and vice versa:
é ‘K°> = &|ds) = +|sd) = ‘R°>. Likewise: € ‘R°> - ‘K°>.
(The plus sign is purely conventional. We could have used a minus sign with no

physical consequences.)
o Consequently:

CP|K®) =~ |R%) CP|R®) = |K")
i.e. neither K° or K° are eigenstates of CP.
@ Form CP eigenstates |K1) and |K2) from linear combs. of ‘K°> and |R°> as follows:

(|%*) ~ %)) oy | CPIKD) = +1KD)
k) = = (|K*) + |R%)) CPIKo) = —|Ka) |

479 / 604

|K1) =

S-Sl




Neutral Kaon decays

Neutral kaons often decay to two or three pions.

This is because:
@ Pions are the lightest hadrons.

@ The kaon masses are approximately 498 MeV and the pion masses are approximately
140 MeV, and so there is (just!) room to make three pions.
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Neutral Kaon decays to Two Pions

Decays to Two Pions: 7.50 N
Yo KO — 7070 JPr 00 =0 +0" o .- 0
*Conservation of angular momentum - [ =0 7&.
= P(n'7%) = —1.—1.(-1)l = +1
The 70 = % (uti — dd) is an eigenstate of €
C(n7% = cn®.ca® +1+1—+1
% K - ntn~  as before P(ntn )= -H
* Here the C and P operations have the identical effect
ot P T Hence the combined effect of CP
° % Y is to leave the system unchanged
T C +
e : o7

Neutral kaon decays to two pions occur in CP-even (i.e. CP = +1) eigenstates.
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Neutral Kaon decays to Three Pions

Decays to Three Pions:
* KO — ﬂoﬂoﬂo JP : 0" —=0"4+0" 40" Remember L is
*Conservation of angular momentum: magnitude of angular
momentum vector

Liol,=0 = Li=IL
P(r°n°7%) = —1. - 1. - L.(- )b (= 1)F2 = —1
C(n'n%7%) = +1.+1.+1

= éCP(nonOnO):—lg

Prta n%)=—1.-1.-1L(-D)h. (-1 = -1
C(rtrn %) =+1.C(xtn " )=P(ntn) = (~1)k

g ot NEs
Hence:  CP(n*n )= —1.(-1)k e |l Nt

*The small amount of energy available in the decay, m(K) —3m(m) ~70MeV
means that the L>0 decays are strongly suppressed by the angular momentum
barrier effects (recall QM tunnelling in alpha decay)

Neutral kaon decays to three pions mostly occur in CP-odd (i.e. CP = —1) eigenstates.

™7 = = T
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If CP were conserved in the weak decays of neutral kaons ...

@ we would expect decays to pions to occur from states of definite CP (i.e. K1 and K>):

Ki) = UK =KD | | CPIK) = +IK) | | K — 7m CP EVEN
K2) = Z5(IK") + 1K) CP Ky = — |Ka) Ko — mrre CP ODD

@ we would expect lifetimes of CP-eigenstates to be very different given that:
energy available in two pion decay is mx — 2m; =~ 220 MeV and
energy available in three pion decay is mx — 3m,; ~ 80 MeV;,

@ and we would expect decays to two pions to be more rapid than decays to three pions
due to increased phase space.

This is exactly what is observed:
A short-lived state “K-short” which decays to (mainly) to two pions and a long-lived state

“K-long” which decays (only) to three pions.
Therefore: in the absence of CP-violation we can identify:

(‘K(’) |R°>) with decays:  Ks — 7, and
(|K0 +|K®)  with decays: K. — w7 :

|Ks) = |K1) =
|KL) = |K2) =
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Neutral Kaon Decays to pions

o Consider the decays of a beam of K°. The
decays to pions occur in states of definite CP.

o If CP is conserved in the decay, need to express
K° in terms of Ks and K:

|Ko) = 75 (IKs) + |KL)) -

@ Hence from the point of view of decays to pions, a K beam is a linear combination
of CP eigenstates containing a rapidly decaying CP-even component and a long-lived
CP-odd component.

@ Therefore, expect to see predominantly two-pion decays near start of beam and
predominantly three pion decays further downstream:

Ky — nm

At large distance left
with pure K| beam

K, — nnrw /

Distance from K° production

Log Intensity
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@ Suppose we have a beam of pure K° at time t = 0: | [1)(t = 0)) = % (IKs) + |KL)) |-

o Put in the time dependence: | |Ks(t)) = |Ks) e ™st=Tst/2
with ms being the mass of the K-short and I's = 1/7s being its decay rate.

Aside: The term e~ "S'/2 ensures the Ks probability density decays exponentially, i.e.:

s = (Ks(t) | Ks(t)) = e s" = /s,

@ Hence the wave-function evolves as:

1 limesTs
o) = —= | 1Ks) e (" F) g 1k
o Compressing by defining 0s(t) = e~ (ms*Ts/2)t and we have:
1
() = 7 (0s(t) |Ks) + |KL)) -

e As anticipated, the decay rate to two pions for a state which was produced as K° is:

I (Ko = ) o [(Ks | () o 10s(e)fF = 715 = e74/75.

il = = = =
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Neutral Kaons decays to Leptons

o Neutral Kaons can also decays to Leptons: _ d o+
d
= __ __ u
K° = nte 1. KO*)TI'+/J, vy EO
K > eve KO*)W7M+VM ’ S v,

o Note: the final states are not CP eigenstates which is
why we express these decays in terms of K, K°.

o Neutral kaons propagate as combined eigenstates of weak + strong interaction i.e.
the Ks, K.

@ The main decay modes/branching fractions are:

Ks —rta™ BR = 69.2% K, —atm 7 BR=12.6%
— w070 BR = 30.7% - m7%7°  BR =19.6%
— 7 e've BR=0.03% —n"e"ve BR=202%
—~ate"v. BR=0.03% —rTe v BR=202%
— 7 putv, BR=0.02% -7 utv, BR=135%
—atu~v, BR=0.02% —atu~ v, BR=13.5%

@ Leptonic decays are more likely for the K-long because the three pion decay modes
have a lower decay rate than the two pion modes of the K-short.
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Strangeness Oscillations (neglecting CP violation)

The “semi-leptonic” decay rate to 7~ etv. occurs from the K° state. Hence to calculate
the expected decay rate, need to know the K® component of the wave-function.
For example, for a beam which was initially K° we have:

() = % (0(t) [Ks) + 00(t) |KL)) . (175)

Writing Ks and K| in terms of K° and K°:

3 [0500 (|6) = [K7)) + ou) () + 7))

1 N Lo _oalie
2(95+9L)‘K>+2(9L 05)’K>.

4 (1))

Because 0s(t) # 0.(t) a state that was initially a K° evolves with time into a mixture of
K® and K® — “strangeness oscillations” .

The K° intensity (i.e. K° fraction), whose form we will improve over pages, is thus:

r (K?:o - KO): ‘<K° | w(t)>‘2 - % |6s + 6. (176)
Similarly: T (K?:o - RO): ‘<R° | 1/)(t)>‘2 - % 16s — 0.2 (177)
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e Using the identity |z1 + z|* = |z1]* + |22|* & 2 Re (2125 ) we find:

|95 + 0L|2 = ef("m$+%r5)t + ei(imL+%rL)t 2

— st + e Tt 4 2Re {e—imste—%rst . e+imLte—%|'Lt}
Tg+r )
— st + e Lt 4 267752 Lt Re {efl(msme)t}

Mg+l
—lst —Tpt -S> Ly
=e S'+e t'+2e 77 Tcos(ms—m)t

Mo+l
et Tt _ STy
=e ST4+e "E2e" 2 ‘cosAmt.

Thus we see oscillations between neutral kaon states

The frequency is given by the mass splitting Am = m (K.) — m (Ks).

This is reminiscent of neutrino oscillations! Only this time we have decaying states!

Thus, from (176) and (177) get form of kaon fractions that is nicer than on last page:

r (Kf:o — KO) = [e_rst +e Tt 4 2e(TsHM)E/2 (g Amt} (178)

ENFE

M (Ko = R) = 4 [Tt + et — 2e 7702 cos A (179)

=== = s
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Observed strangeness oscillations in the Kaon System

Experimentally it is measured/found that:

7(Ks)=0.9x10 " s| | 7(K) =05x10""s|and
| H |

\ Am = (3.506 + 0.006) x 10™*° GeV \

i.e. the K-long mass is greater than the K-short by one part in 10°.

Oscillation period is thus

Tose =

2mh

T x12%x107° s
Am X S

The oscillation period is relatively long compared to the Ks lifetime.
Consequently, we only observe a slight wiggle. (See below!)

Intensity

I (K., — K) = % [e’rﬁl +e Tt 4 0 TsHlL)/2 cosAmt]

MK, —» &) = i [eirsr e Tt 26’<r5+rL)’/zcosAmt]

After a few K; lifetimes, left with a pure K
beam which is half K° and half K°
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* Strangeness oscillations can be studied by looking at semi-leptonic decays

d - d -
— T
d u d u
0 _ -0
K S €+ K S v,
Ve e

* The charge of the observed pion (or lepton) tags the decay as from either a K or K°
because

K° 4 1 et ve
K° A e Ve

K° = 1 etve

= _ but
K = nte v

is not allowed (see Question 23).

* So for an initial K° beam, observe the decays to both charge combinations:

KL, —K° KL, —K°

Ve

— wfeJrve e

which provides a way of measuring strangeness oscillations.
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The CPLEAR Experiment [9]

o CPLEAR used a low energy anti-proton
beam at CERN (1990-1996).

@ Produced neutral kaons in reactions like:
pp— K ntK°,
pp— KT K°,
@ Low energy, so particles produced almost at
rest.

@ Observe production process and decay in the
same detector.

o Charge of K*7T in the production process tags the initial neutral kaon as either K°
or K°.
o Charge of decay products tags the decay as either as being either K° or K°.

@ Provides a direct probe of strangeness oscillations.
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An example of a CPLEAR event

K
K~ K’ (sd)

Production:
pp —|KtK°

Decay: / :
K —Erelv.

*For each event know initial wave-function,

e.g. here: |y (r=0)) = |K°)

492 / 604




Quantifying the asymmetry

Can measure decay rates as a function of time for all combinations:
eg R" =T (KXo > 7 ') oc T (KXo — K°).

From equations (178) and (179) and similar relations:

_ 11 _ _ _
R. =T (K?ZO - e*ve) = NreJ [e Fst 4 e Mit 4 e~ (Tstru)t/2 cosAmt]
_ 17 _ _ _
R_=T (Ktozo —rte Ve) = NwevZ [e Fst 4 e MLt _ 0= (TsHTL)t/2 g Amt]
_ _ _ 11 _ — _
R_=T (KtO:O —n'e \75) = Nﬁevz [e Fst 1 et 4 0e ™ (TsHT1)t/2 g Amt]
1

R, =T (R?:o — 7rfe+ve) = N“VZ [efl—st + e "t — 2Tt cog Amt

where N, is some overall normalisation factor.

Express measurements as an “asymmetry” to remove dependence on Nye:

(R + R-) — (R-+ Ry) _ 2estTDY2 cos Amt
(R +R-) + (R-+Ry) e~ Tst 4 e it

Am —
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CPLEAR's results:

§507 A Angelopoulos et al., Eur. Phys. J. C22 (2001) 55 o Points show the data.
< =8 . . ..
06 @ The line shows the theoretical prediction
os *' for the value of Am most consistent
os =1 with the CPLEAR data:
o8 —15
bt Am =3.485x 107" GeV
o' E ‘. . using
0 - . “”“.'-r'O;-ﬂ”ﬁw..‘Wm
F . oo
o b o o™ 20~ (TsHT0t/2 cos Amt
- 7 AAm =

e—Tst + e—Tit

10 15 20
Neutral—kaon decay time [t]

@ The sign of Am is not determined here but is known from other experiments.

When the CPLEAR results are combined with experiments at FermilLab obtain:

Am = m(K.) — m(Ks) = (3.506 & 0.006) x 10~ GeV.
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In 2013 even nicer oscillations were seen in B-hadrons:

= -
& & e Tagged mixed
— 4 _
= - ik ) o Tagged unmixed
N’ [ o0
= L | 5 . .
~ 400 ¢ — Fit mixed
2 - &%
o , :
= . & 20000 IR g, e Fit unmixed
=
= B
g 200
< —
S ]

Gr n " n L " L L L " L " - n L " L

0 | 2 3 4

decay time [ps]

[If you are interested, look could up the B2~B? mixing evidence in arXiv:1304.4741 [10].]
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CP-Violation in the Kaon System

@ So far we have ignored CP-violation in the neutral kaon system.
o We identified the K-short as the CP-even state and the K-long as the CP-odd state:

Ks) = |Ky) =
[KL) = [K2) =

|K0 ‘R°>) with decays: Ks — 77 CP =+1|,
(|K°> + |K0> with decays: K, — wnmw CP =—-1|

\%\

@ At a long distance from the production point a beam of neutral kaons will be
100% K-long (the K-short component will have decayed away). Hence, if CP is
conserved, would expect to see only three-pion decays.

In 1964 Fitch & Cronin (joint Nobel prize) observed 45 K, — w7~ decays in a sample of

22700 kaon decays a long distance from the production point.

This implies that weak interactions violate CP!

@ CP is violated in hadronic weak interactions, but only at the level of 2 parts in 1000.
K. —a'r n° BR=126% CP=-1
K. — 7r07ro7r0 BR=19.6% CP=-1
K. —ata™ BR=0.20% CP=+1
K. — n°x° BR=0.08% CP=+1

K to pion BRs:
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There are two possible explanations of CP violation in the kaon system:

@ The Ks and K, do not correspond exactly to the CP-eigenstates Ki and Ka:

1 1
|Ks) = Wisnr [[Ki) +elk)]| |IKL) = WiEar [[K2) + €| K1)l

with |g| ~ 2 x 1073,
In this case the observation of K, — 77 is accounted for by:
KL) = JiTTer [1K2) +€|K1)]
L n
@ and/or CP is violated in the decay

|K) =|K2) |cP=-1 . . .
‘ This effect is parameterised
L wrw | CP=-1 by a parameter €.
¥ CP=+1
@ Experimentally both possibilities are found to contribute, but the first source
/e =(17+03)x10* ‘ (NA48(CERN) and KTeV (Fermilab)).

@ The dominant mechanism is discussed in Appendix XX.

dominates since
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CP Violation in Semi-leptonic decays

o If observe a neutral kaon beam a long time after production (i.e. at large distances) it
will consist of a pure K, component:

1K) = d3 s [(1 +©)IKo) + (1 - ) K

2 \/1+e)?

g
_ eV,
netv, ¢

o Decays to 7~ e've must come from the K° component, and
decays to 7" e” Ve must come from the K° component so:

M(Ke—n"e ) ’<R° | KL>‘2 x |1 —e)? ~ 1—2%{e},
M(Ke— 7 e ve) ’<KO | KL>‘2 o |1 +e)® ~ 1+ 2%{e}.

@ This results in a small difference in decay rates:

‘the K, decay to 7~ e" v is 0.7% more likely than the K, decay to 7" e e |

@ This difference has been observed and thus provides the first direct evidence for an
absolute difference between matter and anti-matter.

It also provides an unambiguous definition of matter which could, for example, be

transmitted to aliens in a distant galaxy!

“The electrons in our atoms have the same charge as those emitted least often in the
decays of the long-lived neutral kaon.”
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CP Violation and the CKM Matrix

@ Imaginary parts of the CKM matrix should be able to lead to CP-violation for the
reasons already discussed when we considered the PMNS Matrix.

o Can we link I’ (Rtozo — KO) =T (Ktozo — RO) to imaginary parts of the CKM matrix?

o Consider the box diagrams responsible for mixing, i.e.:

W q
d | S d S
K° 'k i e K0 §W+ §W _
5 d S d
W+ q/

where ¢ = {u, c,t} and ¢’ = {u, c, t}.

@ Have to sum over all possible quark exchanges in the box. For simplicity consider just
one diagram:

Vea Vtt
d S ‘
K? c t R Mpi<AyVeaViViaVi
5 d
< A constant related
Vés Via to integrating over

virtual momenta
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e Compare the equivalent box diagrams for K® — K° and K° — K°

Vea V;; Ves VtZ
4N D> '
K° cy At - T« K’ cy At KO
S|« hannl—< 9 d_< o < S
Vc*s Vz‘d cd Vis
My o< Act Vg Ve Via Vi M o Act Vi Ves VigVis = M

o Evidently M; — Mf; = 23 {Mg} ... yet the imaginary part of the CKM Matrix
generates CP-violation.

@ Hence likely that the factors which drive CP-violation are related to My — Mj.
|€‘ xJ {Mﬁ} .

[See also Thomson's “Modern Particle Physics”, Chap 14.]

@ In the kaon system we can show that:
le] o< Aut - T{Vua Vs Ved Vis } + Act - T{Vea Vi Vea Vis } + Aee - T {Viea Ve Vea Vis

(see Question 25).
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Summary of quark sector CP-violation

The weak interactions of quarks are controlled by the CKM matrix. J

Similar structure to the lepton sector, although unlike the PMNS matrix, the CKM matrix
is nearly diagonal. J

CP violation enters through via a complex phase in the CKM matrix for same reasons as
PMNS matrix. ‘

There is a great deal of experimental evidence for CP violation in the weak interactions of
quarks ‘

Some kind of CP-violation might explain matter-antimatter asymmetry in the Universe. J

CP violation in the SM is not sufficient to explain the matter-antimatter asymmetry.

Either there is a different as-yet-undiscovered mechanism of CP-violation, or there was
just more matter than antimatter to start with!
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