Appendix XVIII: Determination of the CKM Matrix

- The experimental determination of the CKM matrix elements comes mainly from measurements of leptonic decays (the leptonic part is well understood).
- It is easy to produce/observe meson decays, however theoretical uncertainties associated with the decays of bound states often limits the precision
- Contrast this with the measurements of the PMNS matrix, where there are few theoretical uncertainties and the experimental difficulties in dealing with neutrinos limits the precision.
from nuclear beta decay

Super-allowed $\mathbf{0}^{+\boldsymbol{} \rightarrow \mathbf{0}^{+}}$beta decays are relatively free from theoretical uncertainties

$$
\Gamma \propto\left|V_{u d}\right|^{2}
$$

$$
\left|V_{u d}\right|=0.97377 \pm 0.00027 \quad\left(\approx \cos \theta_{c}\right)
$$

(2) $\left|\mathbf{V}_{\mathrm{us}}\right|$ from semi-leptonic kaon decays

$$
\left|V_{u s}\right|=0.2257 \pm 0.0021 \quad\left(\approx \sin \theta_{c}\right)
$$

(3) $\left|\mathbf{V}_{\mathrm{cd}}\right|$ from neutrino scattering $\quad v_{\mu}+N \rightarrow \mu^{+} \mu^{-} X$

$$
\left(\begin{array}{cc}
\cdots & \cdots \\
\times & \cdots \\
\cdots
\end{array}\right)
$$

Look for opposite charge di-muon events in v_{μ} scattering from production and decay of a $D^{+}(c \bar{d})$ meson

Rate $\propto\left|V_{c d}\right|^{2} \underbrace{\operatorname{Br}\left(D^{+} \rightarrow X \mu^{+} v_{\mu}\right.})$

> Measured in various collider experiments

$$
\Rightarrow \quad\left|V_{c d}\right|=0.230 \pm 0.011
$$

$$
\begin{aligned}
& \Gamma \propto\left|V_{u b}\right|^{2} \\
& \left|V_{u b}\right|=0.0043 \pm 0.0003
\end{aligned}
$$

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 Refer

Appendix XIX: Particle-AntiParticle Mixing

-The wave-function for a single particle with lifetime $\tau=1 / \Gamma$ evolves with time as:

$$
\psi(t)=N e^{-\Gamma t / 2} e^{-i M t}
$$

which gives the appropriate exponential decay of

$$
\langle\psi(t) \mid \psi(t)\rangle=\langle\psi(0) \mid \psi(0)\rangle e^{-t / \tau}
$$

-The wave-function satisfies the time-dependent wave equation:

$$
\hat{H}|\psi(t)\rangle=\left(M-\frac{1}{2} i \Gamma\right)|\psi(t)\rangle=i \frac{\partial}{\partial t}|\psi(t)\rangle
$$

-For a bound state such as a K^{0} the mass term includes the "mass" from the weak interaction "potential" $\hat{H}_{\text {weak }}$

$$
M=m_{K^{0}}+\left\langle K^{0}\right| \hat{H}_{\text {weak }}\left|K^{0}\right\rangle+\sum_{j} \frac{\left.\left|\left\langle K^{0}\right| \hat{H}_{\text {weak }}\right| j\right\rangle\left.\right|^{2}}{m_{K^{0}}-E_{j}} \leftarrow \begin{aligned}
& \text { Sum over } \\
& \text { intermediate } \\
& \text { states } \mathrm{j}
\end{aligned}
$$

The third term is the 2 nd order term in the perturbation expansion corresponding to box diagrams resulting in $K^{0} \rightarrow K^{0}$

- The total decay rate is the sum over all possible decays $K^{0} \rightarrow f$

$$
\left.\Gamma=2 \pi \sum_{f}\left|\langle f| \hat{H}_{\text {weak }}\right| K^{0}\right\rangle\left.\right|^{2} \rho_{F} \longleftarrow \text { Density of final states }
$$

\star Because there are also diagrams which allow $K^{0} \leftrightarrow \bar{K}^{0} \quad$ mixing need to consider the time evolution of a mixed stated

$$
\psi(t)=a(t) K^{0}+b(t) \bar{K}^{0}
$$

\star The time dependent wave-equation of (A1) becomes

$$
\left(\begin{array}{ll}
M_{11}-\frac{1}{2} i \Gamma_{11} & M_{12}-\frac{1}{2} i \Gamma_{12} \\
M_{21}-\frac{1}{2} i \Gamma_{21} & M_{22}-\frac{1}{2} i \Gamma_{22}
\end{array}\right)\binom{\left.\left.\left\lvert\, \begin{array}{l}
0 \\
0
\end{array} t\right.\right)\right\rangle}{\left|\bar{K}^{0}(t)\right\rangle}=i \frac{\partial}{\partial t}\binom{\left.\left.\left\lvert\, \begin{array}{l}
0 \\
0
\end{array} t\right.\right)\right\rangle}{\left|\bar{K}^{0}(t)\right\rangle}
$$

the diagonal terms are as before, and the off-diagonal terms are due to mixing.

$$
\begin{aligned}
& M_{11}=m_{K^{0}}+\left\langle K^{0}\right| \hat{H}_{\text {weak }}\left|K^{0}\right\rangle+\sum_{n} \frac{\left.\left|\left\langle K^{0}\right| \hat{H}_{\text {weak }}\right| K^{0}\right\rangle\left.\right|^{2}}{m_{K^{0}}-E_{n}} \\
& M_{12}=\sum_{j} \frac{\left\langle K^{0}\right| \hat{H}_{\text {weak }}|j\rangle^{*}\langle j| \hat{H}_{\text {weak }}\left|\bar{K}^{0}\right\rangle}{m_{K^{0}}-E_{j}}
\end{aligned}
$$

-The off-diagonal decay terms include the effects of interference between decays to a common final state

$$
\Gamma_{12}=2 \pi \sum_{f}\langle f| \hat{H}_{\text {weak }}\left|K^{0}\right\rangle^{*}\langle f| \hat{H}_{\text {weak }}\left|\bar{K}^{0}\right\rangle \rho_{F}
$$

-In terms of the time dependent coefficients for the kaon states, (A3) becomes

$$
\left[\mathbf{M}-i \frac{1}{2} \Gamma\right]\binom{a}{b}=i \frac{\partial}{\partial t}\binom{a}{b}
$$

where the Hamiltonian can be written:

$$
\mathbf{H}=\mathbf{M}-i \frac{1}{2} \Gamma=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

-Both the mass and decay matrices represent observable quantities and are Hermitian

$$
\begin{aligned}
& M_{11}=M_{11}^{*}, \quad M_{22}=M_{22}^{*}, \quad M_{12}=M_{21}^{*} \\
& \Gamma_{11}=\Gamma_{11}^{*}, \quad \Gamma_{22}=\Gamma_{22}^{*}, \quad \Gamma_{12}=\Gamma_{21}^{*}
\end{aligned}
$$

-Furthermore, if CPT is conserved then the masses and decay rates of the \bar{K}^{0} and K^{0} are identical:

$$
M_{11}=M_{22}=M ; \quad \Gamma_{11}=\Gamma_{22}=\Gamma
$$

-Hence the time evolution of the system can be written:

$$
\left(\begin{array}{cc}
M-\frac{1}{2} i \Gamma & M_{12}-\frac{1}{2} i \Gamma_{12} \\
M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*} & M-\frac{1}{2} i \Gamma
\end{array}\right)\binom{a}{b}=i \frac{\partial}{\partial t}\binom{a}{b}
$$

- To solve the coupled differential equations for $a(t)$ and $b(t)$, first find the eigenstates of the Hamiltonian (the K_{L} and K_{S}) and then transform into this basis. The eigenvalue equation is:

$$
\left(\begin{array}{cc}
M-\frac{1}{2} i \Gamma & M_{12}-\frac{1}{2} i \Gamma_{12} \\
M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*} & M-\frac{1}{2} i \Gamma
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}}
$$

-Which has non-trivial solutions for

$$
\begin{gathered}
|\mathbf{H}-\lambda I|=0 \\
\Rightarrow\left(M-\frac{1}{2} i \Gamma-\lambda\right)^{2}-\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)=0
\end{gathered}
$$

with eigenvalues

$$
\lambda=M-\frac{1}{2} i \Gamma \pm \sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}
$$

-The eigenstates can be obtained by substituting back into (A5)

$$
\left(M-\frac{1}{2} i \Gamma\right) x_{1}+\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)=\left(M-\frac{1}{2} i \Gamma \pm \sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right) x_{1}
$$

$$
\Rightarrow \quad \frac{x_{2}}{x_{1}}= \pm \sqrt{\frac{M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}}{M_{12}-\frac{1}{2} i \Gamma_{12}}}
$$

* Define

$$
\eta=\sqrt{\frac{M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}}{M_{12}-\frac{1}{2} i \Gamma_{12}}}
$$

- Hence the normalised eigenstates are

$$
\left|K_{ \pm}\right\rangle=\frac{1}{\sqrt{1+|\eta|^{2}}}\binom{1}{ \pm \eta}=\frac{1}{\sqrt{1+|\eta|^{2}}}\left(\left|K^{0}\right\rangle \pm \eta\left|\bar{K}^{0}\right\rangle\right)
$$

\star Note, in the limit where M_{12}, Γ_{12} are real, the eigenstates correspond to the $C P$ eigenstates K_{1} and K_{2}. Hence we can identify the general eigenstates as as the long and short lived neutral kaons:

$$
\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\eta|^{2}}}\left(\left|K^{0}\right\rangle+\eta\left|\bar{K}^{0}\right\rangle\right) \quad\left|K_{S}\right\rangle=\frac{1}{\sqrt{1+|\eta|^{2}}}\left(\left|K^{0}\right\rangle-\eta\left|\bar{K}^{0}\right\rangle\right)
$$

Substituting these states back into (A2):

$$
\begin{aligned}
|\psi(t)\rangle & =a(t)\left|K^{0}\right\rangle+b(t)\left|\bar{K}^{0}\right\rangle \\
& =\sqrt{1+|\eta|^{2}}\left[\frac{a(t)}{2}\left(K_{L}+K_{S}\right)+\frac{b(t)}{2 \eta}\left(K_{L}-K_{S}\right)\right] \\
& =\sqrt{1+|\eta|^{2}}\left[\left(\frac{a(t)}{2}+\frac{b(t)}{2 \eta}\right) K_{L}+\left(\frac{a(t)}{2}-\frac{b(t)}{2 \eta}\right) K_{S}\right] \\
& =\frac{\sqrt{1+|\eta|^{2}}}{2}\left[a_{L}(t) K_{L}+a_{S}(t) K_{S}\right]
\end{aligned}
$$

with

$$
a_{L}(t) \equiv a(t)+\frac{b(t)}{\eta} \quad a_{S}(t) \equiv a(t)-\frac{b(t)}{\eta}
$$

- Now consider the time evolution of $a_{L}(t)$

$$
i \frac{\partial a_{L}}{\partial t}=i \frac{\partial a}{\partial t}+\frac{i}{\eta} \frac{\partial b}{\partial t}
$$

\star Which can be evaluated using (A4) for the time evolution of $a(t)$ and $b(t)$:

$$
\begin{aligned}
i \frac{\partial a_{L}}{\partial t} & =\left[\left(M-\frac{1}{2} i \Gamma_{12}\right) a+\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right) b\right]+\frac{1}{\eta}\left[\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right) a+\left(M-\frac{1}{2} i \Gamma\right) b\right] \\
& =\left(M-\frac{1}{2} i \Gamma\right)\left(a+\frac{b}{\eta}\right)+\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right) b+\frac{1}{\eta}\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right) a \\
& =\left(M-\frac{1}{2} i \Gamma\right) a_{L}+\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right) b+\left(\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right) a \\
& =\left(M-\frac{1}{2} i \Gamma\right) a_{L}+\left(\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right)\left(a+\frac{b}{\eta}\right) \\
& =\left(M-\frac{1}{2} i \Gamma\right) a_{L}+\left(\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right) a_{L} \\
& =\left(m_{L}-\frac{1}{2} i \Gamma_{L}\right) a_{L}
\end{aligned}
$$

* Hence:

$$
i \frac{\partial a_{L}}{\partial t}=\left(m_{L}-\frac{1}{2} i \Gamma_{L}\right) a_{L}
$$

with $m_{L}=M+\operatorname{Re}\left\{\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right\}$

* Following the same procedure obtain:

$$
i \frac{\partial a_{s}}{\partial t}=\left(m_{S}-\frac{1}{2} i \Gamma_{s}\right) a_{s}
$$

with $m_{S}=M-\Re\left\{\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right\}$
and $\Gamma_{S}=\Gamma+2 \mathfrak{J}\left\{\sqrt{\left(M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}\right)\left(M_{12}-\frac{1}{2} i \Gamma_{12}\right)}\right\}$
\star In matrix notation we have
\star Solving we obtain

$$
\begin{gathered}
\left(\begin{array}{cc}
M_{L}-\frac{1}{2} i \Gamma_{L} & 0 \\
0 & M_{S}-\frac{1}{2} i \Gamma_{S}
\end{array}\right)\binom{a_{L}}{a_{S}}=i \frac{\partial}{\partial t}\binom{a_{L}}{a_{S}} \\
a_{L}(t) \propto e^{-i m_{L} t-\Gamma_{L} t / 2}
\end{gathered} a_{S}(t) \propto e^{-i m_{S} t-\Gamma_{S} t / 2}
$$

* Hence in terms of the K_{L} and K_{S} basis the states propagate as independent particles with definite masses and lifetimes (the mass eigenstates). The time evolution of the neutral kaon system can be written

$$
|\psi(t)\rangle=A_{L} e^{-i m_{L} t-\Gamma_{L} t / 2}\left|K_{L}\right\rangle+A_{S} e^{-i m_{S} t-\Gamma_{S} t / 2}\left|K_{S}\right\rangle
$$

where A_{L} and A_{S} are constants

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 Refer

Appendix XX: CP Violation : $\pi \pi$ decays

\star Consider the development of the $K^{0}-\bar{K}^{0}$ system now including CP violation

* Repeat previous derivation using

$$
\left|K_{S}\right\rangle=\frac{1}{\sqrt{1+|\varepsilon|^{2}}}\left[\left|K_{1}\right\rangle+\varepsilon\left|K_{2}\right\rangle\right] \quad\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\varepsilon|^{2}}}\left[\left|K_{2}\right\rangle+\varepsilon\left|K_{1}\right\rangle\right]
$$

-Writing the CP eigenstates in terms of K^{0}, \bar{K}^{0}

$$
\begin{aligned}
& \left|K_{L}\right\rangle=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\varepsilon|^{2}}}\left[(1+\varepsilon)\left|K_{0}\right\rangle+(1-\varepsilon)\left|\bar{K}^{0}\right\rangle\right] \\
& \left|K_{S}\right\rangle=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\varepsilon|^{2}}}\left[(1+\varepsilon)\left|K_{0}\right\rangle-(1-\varepsilon)\left|\bar{K}^{0}\right\rangle\right]
\end{aligned}
$$

- Inverting these expressions obtain

$$
\left.\left|K^{0}\right\rangle=\sqrt{\frac{1+|\varepsilon|^{2}}{2}} \frac{1}{1+\varepsilon}\left(\left|K_{L}\right\rangle+\left|K_{S}\right\rangle\right) \quad\left|\bar{K}^{0}\right\rangle=\sqrt{\frac{1+|\varepsilon|^{2}}{2}} \frac{1}{1-\varepsilon}\left(\left|K_{L}\right\rangle-\left|K_{S}\right\rangle\right) \right\rvert\,
$$

-Hence a state that was produced as a K^{0} evolves with time as:

$$
|\psi(t)\rangle=\sqrt{\frac{1+|\varepsilon|^{2}}{2}} \frac{1}{1+\varepsilon}\left(\theta_{L}(t)\left|K_{L}\right\rangle+\theta_{S}(t)\left|K_{S}\right\rangle\right)
$$

where as before $\theta_{S}(t)=e^{-\left(i m_{S}+\frac{\Gamma_{S}}{2}\right) t}$ and $\theta_{L}(t)=e^{-\left(i m_{L}+\frac{r_{L}}{2}\right)_{t}}$
-If we are considering the decay rate to $\pi \pi$ need to express the wave-function in terms of the CP eigenstates (remember we are neglecting CP violation in the decay)

$$
\begin{aligned}
& |\psi(t)\rangle=\frac{1}{\sqrt{2}} \frac{1}{1+\varepsilon}\left[\left(\left|K_{2}\right\rangle+\varepsilon\left|K_{1}\right\rangle\right) \theta_{L}(t)+\left(\left|K_{1}\right\rangle+\varepsilon\left|K_{2}\right\rangle\right) \theta_{S}(t)\right] \\
& =\frac{1}{\sqrt{2}} \frac{1}{1+\varepsilon}\left[\left(\theta_{S}+\varepsilon \theta_{L}\right)\left|K_{1}\right\rangle+\left(\theta_{L}+\varepsilon \theta_{S}\right)\left|K_{2}\right\rangle\right] \\
& \text { CP Eigenstates }
\end{aligned}
$$

-Two pion decays occur with $\mathrm{CP}=+1$ and therefore arise from decay of the $\mathrm{CP}=+1$ kaon eigenstate, i.e. K_{1}

$$
\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right) \propto\left|\left\langle K_{1} \mid \psi(t)\right\rangle\right|^{2}=\frac{1}{2}\left|\frac{1}{1+\varepsilon}\right|^{2}\left|\theta_{S}+\varepsilon \theta_{L}\right|^{2}
$$

- Since $|\varepsilon| \ll 1$

$$
\left|\frac{1}{1+\varepsilon}\right|^{2}=\frac{1}{\left(1+\varepsilon^{*}\right)(1+\varepsilon)} \approx \frac{1}{1+2 \mathfrak{R}\{\varepsilon\}} \approx 1-2 \mathfrak{R}\{\varepsilon\}
$$

- Now evaluate the $\left|\theta_{S}+\varepsilon \theta_{L}\right|^{2} \quad$ term again using

$$
\left|z_{1} \pm z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm 2 \mathfrak{R}\left(z_{1} z_{2}^{*}\right)
$$

$$
\begin{aligned}
\left|\theta_{S}+\varepsilon \theta_{L}\right|^{2} & =\left|e^{-i m_{S} t-\frac{\Gamma_{S}}{2} t}+\varepsilon e^{-i m_{L} t-\frac{\Gamma_{L}}{2} t}\right|^{2} \\
& =e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}+2 \operatorname{Re}\left\{e^{-i m_{S} t-\frac{\Gamma_{S}}{2} t} \cdot \varepsilon^{*} e^{+i m_{L} t-\frac{\Gamma_{L}}{2} t}\right\}
\end{aligned}
$$

-Writing $\varepsilon=|\varepsilon| e^{i \phi}$

$$
\begin{aligned}
\left|\theta_{S}+\varepsilon \theta_{L}\right|^{2} & =e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}+2|\varepsilon| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \operatorname{Re}\left\{e^{i\left(m_{L}-m_{S}\right) t-\phi}\right\} \\
& =e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}+2|\varepsilon| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos (\Delta m \cdot t-\phi)
\end{aligned}
$$

-Putting this together we obtain:
$\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right)=\frac{1}{2}(1-2 \operatorname{Re}\{\varepsilon\}) N_{\pi \pi}\left[e^{-\Gamma_{s} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}+2|\varepsilon| e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos (\Delta m . t-\phi)\right]$
Short lifetime
component
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi \pi$
CP violating long lifetime component $\mathrm{KL}_{\mid}^{\mid} \mathrm{p}$
Interference term
-In exactly the same manner obtain for a beam which was produced as \bar{K}^{0}

$$
\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right) \rightarrow \frac{1}{2}(1-2 \operatorname{Re}\{\varepsilon\}) N_{\pi \pi} \cdot|\varepsilon|^{2} e^{-\Gamma_{L} t}
$$

i.e. CP violating $K_{L} \rightarrow \pi \pi$ decays
\star Since CPLEAR can identify whether a K^{0} or \bar{K}^{0} was produced, able to measure $\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right)$ and $\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow \pi \pi\right)$

\star The CPLEAR data shown previously can be used to measure $\varepsilon=|\varepsilon| e^{i \phi}$-Define the asymmetry: $\quad A_{+-}=\frac{\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow \pi \pi\right)-\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right)}{\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow \pi \pi\right)+\Gamma\left(K_{t=0}^{0} \rightarrow \pi \pi\right)}$
-Using expressions on page 443

$$
\begin{aligned}
& A_{+-}=\frac{4 \mathfrak{R}\{\varepsilon\}\left[e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}\right]-4|\varepsilon| e^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2} \cos (\Delta m . t-\phi)}{2\left[e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}\right]-\underbrace{8 \Re\{\varepsilon\}|\varepsilon| e^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2} \cos (\Delta m \cdot t-\phi)}} \begin{array}{c}
\propto|\varepsilon| \mathfrak{R}\{\varepsilon\} \text { i.e. two small quantities } \\
\text { can safely be neglected }
\end{array} \\
& A_{+-} \approx \frac{2 \mathfrak{R}\{\varepsilon\}\left[e^{\left.-\Gamma_{S^{t}}+|\varepsilon|^{2} e^{-\Gamma_{L} t}\right]-2|\varepsilon| e^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2} \cos (\Delta m \cdot t-\phi)}\right.}{e^{-\Gamma_{S^{t}}+|\varepsilon|^{2} e^{-\Gamma_{L} t}}} \\
& =2 \mathfrak{R}\{\varepsilon\}-\frac{2|\varepsilon| e^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2} \cos (\Delta m \cdot t-\phi)}{e^{-\Gamma_{S} t}+|\varepsilon|^{2} e^{-\Gamma_{L} t}} \\
& =2 \mathfrak{R}\{\varepsilon\}-\frac{2|\varepsilon| e^{\left(\Gamma_{S}-\Gamma_{L}\right) t / 2} \cos (\Delta m \cdot t-\phi)}{1+|\varepsilon|^{2} e^{\left(\Gamma_{S}-\Gamma_{L}\right) t}}
\end{aligned}
$$

Best fit to the data:

$$
\begin{aligned}
|\varepsilon| & =(2.264 \pm 0.035) \times 10^{-3} \\
\phi & =(43.19 \pm 0.73)^{\circ}
\end{aligned}
$$

Appendix XXI: CP Violation via Mixing

- A full description of the SM origin of CP violation in the kaon system is beyond the level of this course, nevertheless, the relation to the box diagrams is illustrated below \star The K-long and K-short wave-functions depend on η

$$
\begin{gathered}
\left.\left|K_{L}\right\rangle=\frac{1}{\sqrt{1+|\eta|^{2}}}\left(\left|K^{0}\right\rangle+\eta\left|\bar{K}^{0}\right\rangle\right) \| K_{S}\right\rangle=\frac{1}{\sqrt{1+|\eta|^{2}}}\left(\left|K^{0}\right\rangle-\eta\left|\bar{K}^{0}\right\rangle\right) \\
\text { with } \quad \eta=\sqrt{\frac{M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}}{M_{12}-\frac{1}{2} i \Gamma_{12}}}
\end{gathered}
$$

\star If $\quad M_{12}^{*}=M_{12} ; \quad \Gamma_{12}^{*}=\Gamma_{12}$ then the K-long and K-short correspond to the CP eigenstates K_{1} and K_{2}
-CP violation is therefore associated with imaginary off-diagonal mass and decay elements for the neutral kaon system
-Experimentally, CP violation is small and $\eta \approx 1$
-Define: $\varepsilon=\frac{1-\eta}{1+\eta} \quad \Rightarrow \quad \eta=\frac{1-\varepsilon}{1+\varepsilon}$

- Consider the mixing term M_{12} which arises from the sum over all possible intermediate states in the mixing box diagrams e.g.

- In the Standard Model, CP violation is associated with the imaginary components of the CKM matrix, and it can be shown that mixing leads to $C P$ violation with

$$
|\varepsilon| \propto \Im\left\{M_{12}\right\}
$$

-The differences in masses of the mass eigenstates can be shown to be:

$$
\Delta m_{K}=m_{K_{L}}-m_{K_{S}} \approx \sum_{q, q^{\prime}} \frac{G_{\mathrm{F}}^{2}}{3 \pi^{2}} f_{K}^{2} m_{K}\left|V_{q d} V_{q s}^{*} V_{q^{\prime} d} V_{q^{\prime} s}^{*}\right| m_{q} m_{q^{\prime}}
$$

where q and q^{\prime} are the quarks in the loops and f_{K} is a constant

- In terms of the small parameter ε

$$
\begin{aligned}
& \left|K_{L}\right\rangle=\frac{1}{2 \sqrt{1+|\varepsilon|^{2}}}\left[(1+\varepsilon)\left|K^{0}\right\rangle+(1-\varepsilon)\left|\bar{K}^{0}\right\rangle\right] \\
& \left|K_{S}\right\rangle=\frac{1}{2 \sqrt{1+|\varepsilon|^{2}}}\left[(1-\varepsilon)\left|K^{0}\right\rangle+(1+\varepsilon)\left|\bar{K}^{0}\right\rangle\right]
\end{aligned}
$$

- If epsilon is non-zero we have CP violation in the neutral kaon system

$$
\begin{aligned}
& \text { Writing } \eta \\
& \text { gives } \eta=\sqrt{\frac{M_{12}^{*}-\frac{1}{2} i \Gamma_{12}^{*}}{M_{12}-\frac{1}{2} i \Gamma_{12}}}=\sqrt{\frac{z^{*}}{z}} \quad \text { and } \quad z=a e^{-i \phi}
\end{aligned}
$$

- From which we can find an expression for ε

$$
\begin{gathered}
\varepsilon \cdot \varepsilon^{*}=\frac{1-e^{-i \phi}}{1+e^{-i \phi}} \cdot \frac{1-e^{+i \phi}}{1+e^{i \phi}}=\frac{2-\cos \phi}{2+\cos \phi}=\tan ^{2} \frac{\phi}{2} \\
|\varepsilon|=\left|\tan \frac{\phi}{2}\right|
\end{gathered}
$$

Experimentally we know ε is small, hence ϕ is small

$$
|\varepsilon| \approx \frac{1}{2} \phi=\frac{1}{2} \arg z \approx \frac{1}{2} \frac{\mathfrak{I}\left\{M_{12}-\frac{1}{2} i \Gamma_{12}\right\}}{\left|M_{12}-\frac{1}{2} i \Gamma_{12}\right|}
$$

Appendix XXII: Time Reversal Violation

-Previously in equations (166) and (167) we obtained expressions for strangeness oscillations in the absence of CP violation, e.g.:

$$
\Gamma\left(K_{t=0}^{0} \rightarrow K^{0}\right)=\frac{1}{4}\left[e^{-\Gamma_{S} t}+e^{-\Gamma_{L} t}+2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos \Delta m t\right]
$$

-This analysis can be extended to include the effects of CP violation to give the following rates (see Question 24):

$$
\begin{aligned}
& \Gamma\left(K_{t=0}^{0} \rightarrow K^{0}\right) \propto \frac{1}{4}\left[e^{-\Gamma_{S} t}+e^{-\Gamma_{L} t}+2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos \Delta m t\right] \\
& \Gamma\left(\bar{K}_{t=0}^{0} \rightarrow \bar{K}^{0}\right) \propto \frac{1}{4}\left[e^{-\Gamma_{S} t}+e^{-\Gamma_{L} t}+2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos \Delta m t\right] \\
& \Gamma\left(\bar{K}_{t=0}^{0} \rightarrow K^{0}\right) \propto \frac{1}{4}(1+4 \operatorname{Re}\{\varepsilon\})\left[e^{-\Gamma_{S} t}+e^{-\Gamma_{L} t}-2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos \Delta m t\right] \\
& \Gamma\left(K_{t=0}^{0} \rightarrow \bar{K}^{0}\right) \propto \frac{1}{4}(1-4 \operatorname{Re}\{\varepsilon\})\left[e^{-\Gamma_{S} t}+e^{-\Gamma_{L} t}-2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) t / 2} \cos \Delta m t\right]
\end{aligned}
$$

* Including the effects of CP violation find that

$$
\Gamma\left(\bar{K}_{t=0}^{0} \rightarrow K^{0}\right) \neq \Gamma\left(K_{t=0}^{0} \rightarrow \bar{K}^{0}\right) \quad \text { Violation of time reversal symmetry ! }
$$

- No surprise, as CPT is conserved, CP violation implies T violation

