

H10: Leptonic Weak Interactons and Neutrino Deep Inelastic Scattering

Aside : Neutrino Flavours

- Recent experiments (see Handout 11) imply neutrinos have mass (albeit very small).
- The textbook neutrino states, $\nu_{e}, \nu_{\mu}, \nu_{\tau}$, are not the fundamental particles; these are $\nu_{1}, \nu_{2}, \nu_{3}$.
- Concepts like 'electron number' conservation are now known not to hold.
- So what are $\nu_{e}, \nu_{\mu}, \nu_{\tau}$?
- Never directly observe neutrinos - can only detect them by their weak interactions. Hence by definition ν_{e} is the neutrino state produced along with an electron. Similarly, charged current weak interactions of the state ν_{e} produce an electron.

$$
\left\{\nu_{e}, \nu_{\mu}, \nu_{\tau}\right\}=\text { weak eignestates }
$$

- Unless dealing with very large distances: the neutrino produced with a positron will interact to produce an electron. For the discussion of the weak interaction continue to use $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ as if they were the fundamental particle states.

Muon Decay and Lepton Universality

- The leptonic charged current $\left(W^{ \pm}\right)$interaction vertices are:

- Consider muon decay:

- It is straight-forward to write down the matrix element

$$
M_{f i}=\frac{g_{W}^{(e)} g_{W}^{(\mu)}}{8 m_{W}^{2}}\left[\bar{u}\left(p_{3}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(p_{1}\right)\right] g_{\mu \nu}\left[\bar{u}\left(p_{2}\right) \gamma^{\nu}\left(1-\gamma^{5}\right) v\left(p_{4}\right)\right]
$$

- Note: for lepton decay $q^{2} \ll m_{W}^{2}$ so propagator is a constant (Fermi theory limit!).
- Its evaluation and subsequent treatment of a three-body decay is rather tricky (and not particularly interesting). Here will simply quote the result (over page):
- The muon to electron rate is

$$
\Gamma(\mu \rightarrow e \nu \nu)=\frac{G_{F}^{e} G_{F}^{\mu} m_{\mu}^{5}}{192 \pi^{3}}=\frac{1}{\tau_{\mu}} \quad \text { with } \quad G_{F}=\frac{g_{W}^{2}}{4 \sqrt{2} m_{W}^{2}}
$$

- Similarly for tau to electron $\Gamma(\tau \rightarrow e \nu \nu)=\frac{G_{F}^{e} G_{F}^{\tau} m_{\tau}^{5}}{192 \pi^{3}}$ however, the tau can decay to a number of final states:

$\operatorname{Br}(\tau \rightarrow e \nu \nu)=0.1784(5) \quad \operatorname{Br}(\tau \rightarrow \mu \nu \nu)=0.1736(5)$
- Recall total width (total transition rate) is the sum of the partial widths

$$
\Gamma=\sum_{i} \Gamma_{i}=\frac{1}{\tau}
$$

- Can relate partial decay width to total decay width and therefore lifetime:

$$
\Gamma(\tau \rightarrow e \nu \nu)=\Gamma_{\tau} \operatorname{Br}(\tau \rightarrow e \nu \nu)=\operatorname{Br}(\tau \rightarrow e \nu \nu) / \tau_{\tau}
$$

- Therefore predict $\tau_{\mu}=\frac{192 \pi^{3}}{G_{F}^{e} G_{F}^{\mu} m_{\mu}^{5}} \quad \tau_{\tau}=\frac{192 \pi^{3}}{G_{F}^{e} G_{F}^{\tau} m_{\tau}^{5}} \operatorname{Br}(\tau \rightarrow e \nu \nu)$.
- All these quantities are precisely measured: $\left\{\begin{array}{l}m_{\mu}=0.1056583692(94) \mathrm{GeV} \\ m_{\tau}=1.77699(28) \mathrm{GeV} \\ \tau_{\tau}=0.2906(10) \times 10^{-12} \mathrm{~s} \\ \tau_{\mu}=2.19703(4) \times 10^{-6} \mathrm{~s} \\ \operatorname{Br}(\tau \rightarrow e \nu \nu)=0.1784(5)\end{array}\right\}$ so

$$
\frac{G_{F}^{\tau}}{G_{F}^{\mu}}=\frac{m_{\mu}^{5} \tau_{\mu}}{m_{\tau}^{5} \tau_{\tau}} \operatorname{Br}(\tau \rightarrow e \nu \nu)=1.0024 \pm 0.0033
$$

- Similarly by comparing $\operatorname{Br}(\tau \rightarrow \mu \nu \nu)$ and $\operatorname{Br}(\tau \rightarrow e \nu \nu)$

$$
\frac{G_{\digamma}^{e}}{G_{F}^{\mu}}=1.000 \pm 0.004
$$

The above demonstrates the weak charged current is the same for all leptonic vertices.
This is referred to as 'Charged Current Lepton Universality'.

Neutrino Scattering

In Handout 6 considered electron-proton Deep Inelastic Scattering where a virtual photon is used to probe nucleon structure.

- Can also consider the weak interaction equivalent: Neutrino Deep Inelastic Scattering where a virtual W-boson probes the structure of nucleons. This provides additional information about parton structure functions.
- provides a good example of calculations of weak interaction cross sections.

Neutrino beams are needed. To make them:

- Smash high energy protons into a fixed target to make hadrons.
- Focus positive pions/kaons.
- Allow them to decay $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}+K^{+} \rightarrow \mu^{+} v_{\mu}(B R \approx 64 \%)$;
- this gives a beam of "collimated" ν_{μ}.
- Focus negative pions/kaons to give beam of \bar{v}_{μ}.

Neutrino-Quark Scattering

- For ν_{μ}-proton Deep Inelastic Scattering the underlying process is $\nu_{\mu} d \rightarrow \mu^{-} u$

- In the limit $q^{2} \ll m_{W}^{2}$ the W-boson propagator is $\approx i g_{\mu \nu} / m_{W}^{2}$. so the Feynman rules give:

$$
-i M_{f i}=\left[-i \frac{g_{W}}{\sqrt{2}} \bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right)\right] \frac{i g_{\mu \nu}}{m_{W}^{2}}\left[-i \frac{g_{W}}{\sqrt{2}} \bar{u}\left(p_{4}\right) \frac{1}{2} \gamma^{\nu}\left(1-\gamma^{5}\right) u\left(p_{2}\right)\right]
$$

so

$$
M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} g_{\mu \nu}\left[\bar{u}\left(p_{3}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u\left(p_{1}\right)\right]\left[\bar{u}\left(p_{4}\right) \frac{1}{2} \gamma^{\nu}\left(1-\gamma^{5}\right) u\left(p_{2}\right)\right]
$$

- Evaluate the matrix element in the extreme relativistic limit where the muon and quark masses can be neglected.
- In this limit the helicity states are equivalent to the chiral states. Furthermore

$$
\frac{1}{2}\left(1-\gamma^{5}\right) u_{\uparrow}\left(p_{1}\right)=0 \quad \text { and } \quad \frac{1}{2}\left(1-\gamma^{5}\right) u_{\downarrow}\left(p_{1}\right)=u_{\downarrow}\left(p_{1}\right)
$$

so $M_{f i}=0$ for $u_{\uparrow}\left(p_{1}\right)$ and $u_{\uparrow}\left(p_{2}\right)$.

- Since the weak interaction 'conserves the helicity', the only helicity combination where the matrix element is non-zero is

$$
M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} g_{\mu \nu}\left[\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)\right]\left[\bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\nu} u_{\downarrow}\left(p_{2}\right)\right] .
$$

(We could have written this down straight away as in the ultra-relativistic limit only LH helicity particle states participate in the weak interaction.)

- We will next consider this scattering in the C.o.M frame:

Evaluation of Neutrino-Quark Scattering Matrix Element

- Go through the calculation in gory detail (fortunately only one helicity combination)
- In the $\nu_{\mu} d$ CMS frame, neglecting particle masses:

$$
\begin{aligned}
& p_{1}=(E, 0,0, E) \\
& p_{2}=(E, 0,0,-E) \\
& p_{3}=\left(E, E \sin \theta^{*}, 0, E \cos \theta^{*}\right) \\
& p_{4}=\left(E,-E \sin \theta^{*}, 0,-E \cos \theta^{*}\right)
\end{aligned}
$$

- Dealing with LH helicity particle spinors. From Handout 2 (page 106), for a massless particle travelling in direction θ, ϕ :

$$
u_{\downarrow}=\sqrt{E}\left(\begin{array}{c}
-s \\
c e^{i \phi} \\
s \\
-c e^{i \phi}
\end{array}\right) \quad c=\cos \frac{\theta}{2} ; \quad s=\sin \frac{\theta}{2}
$$

- Here $\left(\theta_{1}, \phi_{1}\right)=(0,0) ; \quad\left(\theta_{2}, \phi_{2}\right)=(\pi, 0) ; \quad\left(\theta_{3}, \phi_{3}\right)=\left(\theta^{*}, 0\right) ; \quad\left(\theta_{4}, \phi_{4}\right)=\left(\pi-\theta^{*}, \pi\right)$ giving:

$$
u_{\downarrow}\left(p_{1}\right)=\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) ; \quad u_{\downarrow}\left(p_{2}\right)=\sqrt{E}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) ; \quad u_{\downarrow}\left(p_{3}\right)=\sqrt{E}\left(\begin{array}{c}
-\mathrm{s} \\
\mathrm{c} \\
\mathrm{~s} \\
-\mathrm{c}
\end{array}\right) ; \quad u_{\downarrow}\left(p_{4}\right)=\sqrt{E}\left(\begin{array}{c}
-\mathrm{c} \\
-\mathrm{s} \\
\mathrm{c} \\
\mathrm{~s}
\end{array}\right)
$$

Neutrino-Quark scattering (cont.)

- To calculate

$$
M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} g_{\mu \nu}\left[\bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)\right]\left[\bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\nu} u_{\downarrow}\left(p_{2}\right)\right]
$$

need twice to evaluate terms of the form

$$
\begin{aligned}
\bar{\psi} \gamma^{0} \phi & =\psi^{\dagger} \gamma^{0} \gamma^{0} \phi=\psi_{1}^{*} \phi_{1}+\psi_{2}^{*} \phi_{2}+\psi_{3}^{*} \phi_{3}+\psi_{4}^{*} \phi_{4} \\
\bar{\psi} \gamma^{1} \phi & =\psi^{\dagger} \gamma^{0} \gamma^{1} \phi=\psi_{4}^{*}+\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}+\psi_{4}^{*} \phi_{1} \\
\bar{\psi} \gamma^{2} \phi & =\psi^{\dagger} \gamma^{0} \gamma^{2} \phi=-i\left(\psi_{1}^{*} \phi_{4}-\psi_{2}^{*} \phi_{3}+\psi_{3}^{*} \phi_{2}-\psi_{4}^{*} \phi_{1}\right) \\
\bar{\psi} \gamma^{3} \phi & =\psi^{\dagger} \gamma^{0} \gamma^{3} \phi=\psi_{1}^{*} \phi_{3}-\psi_{2}^{*} \phi_{4}+\psi_{3}^{*} \phi_{1}-\psi_{4}^{*} \phi_{2}
\end{aligned}
$$

- Using

$$
u_{\downarrow}\left(p_{1}\right)=\sqrt{E}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) ; u_{\downarrow}\left(p_{2}\right)=\sqrt{E}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) ; u_{\downarrow}\left(p_{3}\right)=\sqrt{E}\left(\begin{array}{c}
-\mathrm{s} \\
\mathrm{c} \\
\mathrm{~s} \\
-\mathrm{c}
\end{array}\right) ; \quad u_{\downarrow}\left(p_{4}\right)=\sqrt{E}\left(\begin{array}{c}
-\mathrm{c} \\
-\mathrm{s} \\
\mathrm{c} \\
\mathrm{~s}
\end{array}\right)
$$

we get

$$
\begin{aligned}
& \bar{u}_{\downarrow}\left(p_{3}\right) \gamma^{\mu} u_{\downarrow}\left(p_{1}\right)=2 E(c, s,-i s, c) \\
& \bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\nu} u_{\downarrow}\left(p_{2}\right)=2 E(c,-s,-i s,-c)
\end{aligned}
$$

$$
\Longrightarrow M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} 4 E^{2}\left(c^{2}+s^{2}+s^{2}+c^{2}\right)=\frac{g_{W}^{2} \hat{s}}{m_{W}^{2}}
$$

Neutrino-Quark scattering (cont.)

Note that the Matrix Element is isotropic:

$$
M_{f i}=\frac{g_{W}^{2}}{m_{W}^{2}} \hat{s} .
$$

We could have anticipated this since the helicity combination (spins anti-parallel) has $S_{z}=0$ so expect no preferred polar angle.

- As before need to sum over all possible spin states and average over all possible initial state spin states. Here only one possible spin combination ($L L \rightarrow L L$) and only two possible initial state combinations (the neutrino is always produced in a LH helicity state).

$$
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle=\frac{1}{2}\left|\frac{g_{W}^{2}}{m_{W}^{2}} \hat{s}\right|^{2}
$$

The factor of a half arises because half of the time the quark will be in a RH states and won't participate in the charged current Weak interaction.

- From Handout 1, in the extreme relativistic limit, the cross section for any $2 \rightarrow 2$ body scattering process is

$$
\left.\frac{d \sigma}{d \Omega^{*}}=\left.\frac{1}{64 \pi^{2} \hat{s}}\langle | M_{f i}\right|^{2}\right\rangle
$$

Neutrino-Quark scattering (conclusion).

- Therefore:

$$
\left.\frac{d \sigma}{d \Omega^{*}}=\left.\frac{1}{64 \pi^{2} \hat{s}}\langle | M_{f i}\right|^{2}\right\rangle=\frac{1}{64 \pi \hat{s}} \frac{1}{2}\left(\frac{g_{W}^{2} \hat{s}}{m_{W}^{2}}\right)^{2}=\left(\frac{g_{W}^{2}}{8 \sqrt{2} \pi m_{W}^{2}}\right)^{2} \hat{s}
$$

- Using $\frac{G_{F}}{\sqrt{2}}=\frac{g_{W}^{2}}{8 m_{W}^{2}}$ the above simplifies to

$$
\begin{equation*}
\frac{d \sigma}{d \Omega^{*}}=\frac{G_{F}^{2}}{4 \pi^{2}} \hat{s} \tag{127}
\end{equation*}
$$

and integrating this isotropic distribution over $d \Omega^{*}$ gives

$$
\begin{equation*}
\sigma_{\nu q}=\frac{G_{F}^{2} \hat{S}}{\pi} \tag{128}
\end{equation*}
$$

- Since the cross section is a (longitudinally) Lorentz invariant, (128) is also the cross section for scattering in the lab frame.

Antineutrino-Quark Scattering

- In the ultra-relativistic limit, the charged-current interaction matrix element is:

$$
M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} g_{\mu \nu}\left[\bar{v}\left(p_{1}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(p_{3}\right)\right]\left[\bar{u}\left(p_{4}\right) \gamma^{\nu} \frac{1}{2}\left(1-\gamma^{5}\right) u(p\right.
$$

- In the extreme relativistic limit only LH Helicity particles and RH Helicity anti-particles participate in the charged current weak interaction:

$$
M_{f i}=\frac{g_{W}^{2}}{2 m_{W}^{2}} g_{\mu \nu}\left[\bar{v}_{\uparrow}\left(p_{1}\right) \gamma^{\mu} v_{\uparrow}\left(p_{3}\right)\right]\left[\bar{u}_{\downarrow}\left(p_{4}\right) \gamma^{\nu} u_{\downarrow}\left(p_{2}\right)\right]
$$

In terms of the particle spins it can be seen that the interaction occurs in a total angular momentum $J=1$ state:

Antineutrino-Quark Scattering (cont.)

- Similarly to the neutrino-quark scattering calculation obtain:

$$
\frac{d \sigma_{\bar{\nu} q}}{d \Omega^{*}}=\frac{d \sigma_{\nu q}}{d \Omega^{*}} \frac{1}{4}\left(1+\cos \theta^{*}\right)^{2} \hat{s}
$$

- The factor $\frac{1}{4}\left(1+\cos \theta^{*}\right)^{2}$ can be understood in terms of the overlap of the initial and final angular momentum
 wave-functions.
- Integrating over solid angle:

$$
\begin{gathered}
\int\left(1+\cos \theta^{*}\right)^{2} d \Omega^{*}=2 \pi \int_{-1}^{+1}\left(1+\cos \theta^{*}\right)^{2} d\left(\cos \theta^{*}\right)=\frac{16 \pi}{3} \\
\Longrightarrow \quad \sigma_{\bar{\nu} q}=\frac{G_{F}^{2} \hat{s}}{3 \pi}
\end{gathered}
$$

- This is a factor three smaller than the neutrino quark cross-section: $\frac{\sigma_{\bar{\nu} q}}{\sigma_{\nu q}}=\frac{1}{3}$

(Anti)neutrino-(Anti)quark Scattering

- Non-zero anti-quark component to the nucleon also consider scattering from q
- Cross-sections can be obtained immediately by comparing with quark scattering and remembering to only include LH particles and RH anti-particles

$S_{z}=0$	S_{z}	$S_{z}=-1$	$S_{z}=0$
$\frac{\mathrm{d} \sigma_{v q}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2}}{4 \pi^{2}} \hat{s}$	$\frac{\mathrm{d} \sigma_{\overline{\bar{V}} q}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2}}{16 \pi^{2}}\left(1+\cos \theta^{*}\right)^{2} \hat{s}$	$\frac{\mathrm{d} \sigma_{v \bar{q}}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2}}{16 \pi^{2}}\left(1+\cos \theta^{*}\right)^{2} \hat{s}$	$\frac{\mathrm{d} \sigma_{\overline{\bar{V}} \bar{q}}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2}}{4 \pi^{2}} \hat{s}$
$\sigma_{v q}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{\pi}$	$\sigma_{\bar{v} q}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{3 \pi}$	$\sigma_{v \bar{q}}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{3 \pi}$	$\sigma_{\bar{v} \bar{q}}=\frac{G_{\mathrm{F}}^{2} \hat{S}}{\pi}$

Differential Cross Section in form $d \sigma / d y$

- We derived the differential neutrino scattering cross sections in C.o.M frame. Let us convert them to Lorentz invariant form.

- As for DIS use Lorentz invariant $y \equiv \frac{p_{2} \cdot q}{p_{2} \cdot p_{1}}$.
- In relativistic limit y can be expressed in terms of the C.o.M. scattering angle: $y=\frac{1}{2}\left(1-\cos \theta^{*}\right)$.
- In the lab. frame $y=1-\frac{E_{3}}{E_{1}}$.
- Convert from $\frac{d \sigma}{d \Omega^{*}} \rightarrow \frac{d \sigma}{d y}$ using

$$
\frac{d \sigma}{d y}=\left|\frac{d \cos \theta^{*}}{d y}\right| \frac{d \sigma}{d \cos \theta^{*}}=\left|\frac{d \cos \theta^{*}}{d y}\right| 2 \pi \frac{d \sigma}{d \Omega^{*}}=4 \pi \frac{d \sigma}{d \Omega^{*}}
$$

- But we already found (in (127)) that: $\frac{d \sigma}{d \Omega^{*}}=\frac{G_{F}^{2}}{4 \pi^{2}} \hat{s} \quad$ hence:

$$
\frac{d \sigma_{\nu q}}{d y}=\frac{d \sigma_{\bar{\nu} \bar{q}}}{d y}=\frac{G_{F}^{2}}{\pi} \hat{s}
$$

Similarly

$$
\frac{d \sigma_{\bar{\nu} q}}{d \Omega^{*}}=\frac{d \sigma_{\nu \bar{q}}}{d \Omega^{*}}=\frac{G_{F}^{2}}{16 \pi^{2}}\left(1+\cos \theta^{*}\right)^{2} \hat{s}
$$

becomes

$$
\frac{d \sigma_{\bar{\nu} q}}{d \Omega^{*}}=\frac{d \sigma_{\nu \bar{q}}}{d \Omega^{*}}=\frac{G_{F}^{2}}{16 \pi^{2}}\left(1+\cos \theta^{*}\right)^{2} \hat{s}
$$

from $y=\frac{1}{2}\left(1-\cos \theta^{*}\right) \rightarrow 1-y=\frac{1}{2}\left(1+\cos \theta^{*}\right)$ and hence

$$
\frac{d \sigma_{\bar{\nu} q}}{d y}=\frac{d \sigma_{\nu \bar{q}}}{d y}=\frac{G_{F}^{2}}{\pi}(1-y)^{2} \hat{s}
$$

For comparison, the electro-magnetic $e^{ \pm} q \rightarrow e^{ \pm} q$ cross section is:
QED: $\quad \frac{d \sigma_{e^{ \pm} q}}{d y}=\frac{2 \pi \alpha^{2}}{q^{4}} e_{q}^{2}\left[1+(1-y)^{2}\right] \hat{s}$
Weak:

$$
\frac{d \sigma_{\bar{\nu} q}}{d y}=\frac{d \sigma_{\nu \bar{q}}}{d y}=\frac{G_{F}^{2}}{\pi}(1-y)^{2} \hat{s}
$$

(Differences are in (i) Helicity Structure, and (ii) in interaction+propagator.)

Parton Model For Neutrino Deep Inelastic Scattering

Scattering from a proton with structure functions

Scattering from a point-like quark within the proton

- Neutrino-proton scattering can occur via scattering from a down-quark or from an up-antiquark.
- In the parton model, number of down quarks within the proton in the $x \rightarrow x+d x$ momentum fraction range is $d^{P}(x) d x$. Their contribution to the neutrino scattering cross-section is obtained by multiplying by the $\nu_{\mu} d \rightarrow \mu^{-} u$ cross-section derived previously

$$
\frac{d \sigma^{\nu p}}{d y}=\frac{G_{F}^{2}}{\pi} \hat{s} d^{p}(x) d x
$$

where \hat{s} is the centre-of-mass energy of the $\nu_{\mu} d$.

- Similarly for the \bar{u} contribution

$$
\frac{d \sigma^{\nu p}}{d y}=\frac{G_{F}^{2}}{\pi} \hat{s}(1-y)^{2} \bar{u}^{p}(x) d x
$$

- The neutrino-proton scattering cross section is obtained by summing the two contributions and using $\hat{s}=x s$ to give:

$$
\frac{d^{2} \sigma^{\nu p}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[d^{p}(x)+(1-y)^{2} \bar{u}^{p}(x)\right] .
$$

- The anti-neutrino proton differential cross section can be obtained in the same manner:

$$
\frac{d^{2} \sigma^{\bar{\nu} p}}{d x d y}=\frac{G F^{2}}{\pi} s x\left[(1-y)^{2} u^{p}(x)+\bar{d}^{p}(x)\right]
$$

- For (anti)neutrino-neutron scattering:

$$
\begin{aligned}
\frac{d^{2} \sigma^{\nu n}}{d x d y} & =\frac{G_{F}^{2}}{\pi} s x\left[d^{n}(x)+(1-y)^{2} \bar{u}^{n}(x)\right] \\
\frac{d^{2} \sigma^{\bar{\nu} n}}{d x d y} & =\frac{G_{F}^{2}}{\pi} s x\left[(1-y)^{2} u^{n}(x)+\bar{d}^{n}(x)\right] .
\end{aligned}
$$

- As before, define neutron distributions functions in terms of those of the proton

$$
\begin{aligned}
u(x) \equiv u^{\mathrm{p}}(x)=d^{\mathrm{n}}(x) ; & & d(x) \equiv d^{\mathrm{p}}(x)=u^{\mathrm{n}}(x) \\
\bar{u}(x) \equiv \bar{u}^{\mathrm{p}}(x)=\bar{d}^{\mathrm{d}}(x) ; & & d(x) \equiv \bar{d}^{\mathrm{p}}(x)=\bar{u}^{\mathrm{n}}(x)
\end{aligned}
$$

$$
\begin{align*}
& \frac{d^{2} \sigma^{\nu \rho}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[d(x)+(1-y)^{2} \bar{u}(x)\right] \tag{129}\\
& \frac{d^{2} \sigma^{\bar{\nu} p}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[(1-y)^{2} u(x)+\bar{d}(x)\right] \tag{130}\\
& \frac{d^{2} \sigma^{\nu n}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[u(x)+(1-y)^{2} \bar{d}(x)\right] \tag{131}\\
& \frac{d^{2} \sigma^{\bar{\nu} n}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[(1-y)^{2} d(x)+\bar{u}(x)\right] \tag{132}
\end{align*}
$$

- Because neutrino cross sections are very small, need massive detectors. These are usually made of iron, hence, one experimentally measurea a combination of proton/neutron scattering cross sections.
- For an isoscalar target (i.e. equal numbers of protons and neutrons), the mean cross section per nucleon, N :

$$
\frac{d^{2} \sigma^{\nu N}}{d x d y}=\frac{1}{2}\left(\frac{d^{2} \sigma^{\nu p}}{d x d y}+\frac{d^{2} \sigma^{\nu n}}{d x d y}\right)
$$

$$
\Longrightarrow \frac{d^{2} \sigma^{\nu N}}{d x d y}=\frac{G_{F}^{2}}{2 \pi} s x\left[u(x)+d(x)+(1-y)^{2}(\bar{u}(x)+\bar{d}(x))\right] .
$$

- Integrate over momentum fraction x :

$$
\begin{equation*}
\left.\frac{d \sigma^{\nu N}}{d y}=\frac{G_{F}^{2}}{2 \pi} s\left[f_{q}+(1-y)^{2} f_{\bar{q}}\right)\right] \tag{133}
\end{equation*}
$$

where f_{q} and $f_{\bar{q}}$ are the total momentum fractions carried by the quarks and by the anti-quarks within a nucleon:

$$
f_{q} \equiv f_{d}+f_{u}=\int_{0}^{1} x[u(x)+d(x)] d x ; \quad f_{\bar{q}} \equiv f_{\bar{d}}+f_{\bar{u}}=\int_{0}^{1} x[\bar{u}(x)+\bar{d}(x)] d x
$$

- Similarly

$$
\begin{equation*}
\left.\frac{d \sigma^{\bar{\nu} N}}{d y}=\frac{G_{F}^{2}}{2 \pi} s\left[(1-y)^{2} f_{q}+f_{\bar{q}}\right)\right] \tag{134}
\end{equation*}
$$

CDHS Experiment (CERN 1976-1984)

- 1250 tons

- Magnetized iron modules -Separated by drift chambers

Study Neutrino Deep Inelastic Scattering

Experimental Signature:

- Measure energy of X, and call it E_{X},
- Measure muon momentum from curvature in B-field. and call it E_{μ}.
- For each event can then determine neutrino energy and y :

$$
E_{\nu}=E_{X}+E_{\mu}
$$

and then

$$
E_{\mu}=(1-y) E_{\nu}
$$

implies

$$
y=\left(1-\frac{E_{\mu}}{E_{\nu}}\right)
$$

Measured y Distribution

- CDHS measured y distribution
- Shapes can be understood in terms of (anti)neutrino - (anti)quark scattering

Measured Total Cross Sections

- Integrating the expressions for $\frac{d \sigma}{d y}$ (equations (133) and (134)):

$$
\sigma^{\nu N}=\frac{G_{\digamma}^{2} s}{2 \pi}\left[f_{q}+\frac{1}{3} f_{\bar{q}}\right] \quad \text { and } \quad \sigma^{\bar{\nu} N}=\frac{G_{\digamma}^{2} s}{2 \pi}\left[\frac{1}{3} f_{q}+f_{\bar{q}}\right]
$$

- In lab frame $p^{\mu}(\nu)=\left(E_{\nu}, 0,0,+E_{\nu}\right)$ and $p^{\mu}(p)=\left(m_{p}, 0,0,0\right)$ so $s=\left(E_{\nu}+m_{p}\right)^{2}-E_{\nu}^{2}=2 E_{\nu} m_{p}+m_{p}^{2} \approx 2 E_{\nu} m_{p}$ therefore the Neutrino DIS cross section is approximately proportional to lab. frame neutrino energy!
- Measure cross sections can be used to determine fraction of protons momentum carried by quarks, f_{q}, and fraction carried by anti-quarks, $f_{\bar{q}}$.
- Find: $f_{q} \approx 0.41 ; \quad f_{\bar{q}} \approx 0.08$.
- $\sim 50 \%$ of momentum carried by gluons (which don't interact with virtual W-boson).
- If no anti-quarks in nucleons expect $\frac{\sigma^{\sigma^{\nu N}}}{\sigma^{\overline{\nu N}}}=3$.

- Including anti-quarks $\frac{\sigma^{\nu N}}{\sigma^{\bar{\nu} N}} \approx 2$.

Weak Neutral Current

- Neutrinos also interact via the Neutral Current. First observed in the Gargamelle bubble chamber in 1973. Interaction of muon neutrinos produce a final state muon.

- Cannot be due to W exchange - this is first evidence for Z-boson!

Summary

- Derived neutrino/anti-neutrino - quark/anti-quark weak charged current (CC) interaction cross sections.
- Neutrino-nucleon scattering allows us to measure anti-quark content of protons nad neutrons because:
- ν couples to d and \bar{u},
- $\bar{\nu}$ couples to u and \bar{d},
- $\nu \bar{q}$ scattering is suppressed by factor $(1-y)^{2}$ compared with νq, and
- $\bar{\nu} q$ scattering is suppressed by factor $(1-y)^{2}$ compared with $\bar{\nu} \bar{q}$.
- Further aspects of neutrino deep-inelastic scattering (expressed in general structure functions) are covered in Appendix XVII.
- Finally observe that neutrinos interact via weak neutral currents (NC).

