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o 9 Maisonnex The “Higgs Boson Pizza Day” was held on Monday, 4 ]ul\{ 2016, on the fourth -
anniversary of the announcement of tHe discovéry of the Higgs bason at CERN. On'this’
o 9 CERN occasion, more than 400 pizzas were prepared and served at lunchtime in Restaukgis51.

https://www.youtube.com/watch?v=1eleLelihT@

Dr C.G.Lester

CERN Pizza Recipe:

Part lll Physics
Particle Physics

https://www.hep.phy.cam.ac.uk/~lester/HiggsPizza.pdf

Sub-divisions (Handouts)

HO1:
HO2:
HO3:
HO4:
HO5:
HO06:
HO7:
HO08:
HQ9:
H10:
H11:
H12:
H13:
H14:

Introduction

The Dirac Equation

Interaction by Particle Exchange and QED
Electron-Positron Annihilation

Electron-Proton Elastic Scattering

Deep Inelastic Scattering

Symmetries and the Quark Model

Quantum Chromodynamics

The Weak Interaction and V-A

Leptonic Weak Interactons and Neutrino Deep Inelastic Scattering
Neutrino Oscillations

The CKM Matrix and CP Violation

Electroweak Unification and the W and Z Bosons

Precision Tests of the Standard Model

References
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Particle Physics

Dr Lester

Handout 1 : Introduction
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Preliminaries
Web-page
https://www.hep.phy.cam.ac.uk/~lester/teaching/partIIIparticles
» All course material, old exam questions, corrections, interesting links etc.

» Detailed answers will posted after the supervisions.

Format
» For historical reasons, the fourteen sections of the course are called ‘handouts’.

» Some handouts contain additional theoretical background in non-examinable
appendices at their ends.

> Please let me know of any mistakes/corrections: Lester@hep.phy.cam.ac.uk

Books

> “Modern Particle Physics”, Mark Thomson (Cambridge) BASED ON THIS
COURSE!

> “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.

> “Introductory High Energy Physics”, Perkins (Cambridge): slightly below level
of the course but well written.

> “Introduction to Elementary Physics”, Griffiths (Wiley): about right level but
doesn’t cover the more recent material.

> “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level textbook
(slightly above level of this course).
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Cambridge Particle Physics Courses

11 H H 7
Particle and Nuclear Physics Introductory course

PART II Dr Pottelr :
I H
PART Il |
' ! H
| ————————————————
Major Option I : Major Option |
“Particle Physics” : | “Quantum Field Theory” ;
Dr Lester : 1 DAMTP (Prof Allanach) j
i bl r
Covering most Standard Model : " The theoretical principles.
physics, both experiment and I ! behind the SM !
underlying theory v v e V_ ________
Minor Option | Minor Option :
“Gauge Field Theory” | | “Advanced QFT” I
Dr Mitov ! DAMTP (Dr Reid-Edwards) :
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Aims of this course

» The course is intended as an overview-style course. It aims to
provide:

» a context for the other more rigourous courses (QFT, AQFT, Gauge Field Theory),

P examples of the experiments and types of experimental evidence which have lead to our
current underfstanding of The Standard Model, and

» ‘just enough’ of the theory to understand how/why the experiments constrain theory.

Since the QFT, AQFT and Gauge Field Theory courses are
either not yet lectured or are lectured in parallel, it is necessary
for many results in this course to be presented without proof,
or with only plausibility arguments, or with outline theoretical
motivations. That will be dissatisfying for some taking the
course — but are a necessary evil if this course is to complement
those other courses.
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Past student advice:

This mini-review was taken from https://www.reddit.com/r/Physics/comments/
iatn6o/an_interesting_question_from_my_2020_particle/

“Technically, this is Part 11l Physics from the Natural Sciences Tripos. You do
get to borrow a QFT course from the Part Il Mathematical Tripos though.

[redacted] the lecturer [redacted] [likes] to point with a great big stick.

This book [Thomson] is based on the course; author is a previous lecturer.
Perhaps flicking through the preview might help? It’s not a formal QFT course,
so there's less maths. It tries to explain both theory and experiment. If you
want more theory, I'd recommend the Gauge Field Theory courses or the QFT
and AQFT courses from Part |1l Maths.

Pre-req: “Students who are not familiar with the overall structure of The
Standard Model, the quark model of the hadrons, scattering processes, and
wave equations at some level, have found the course hard in the past.” You
use quite a lot of Einstein notation / tensors like 4-vectors, Bra-Kets and
matrices, so perhaps be comfortable with that (if you aren’t already).

Have fun in Part 111!
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Non-examinable material

Some parts of the course are marked ‘not examinable’' or ‘non-examinable’. What
these terms mean is that no student taking the course is expected to revise or learn
any material so-labelled for Tripos. In other words: the exam questions should not
require knowledge of material presented therein.

This does not mean that a Tripos question could never have a domain overlapping
with ‘non-examinable’ material, though. In the rare cases that happens, it simply
means that the examiner has judged that material in the overlap can be reasonably
deduced from material which was deemed fair game (i.e. which was not labelled
‘non-examinable’). Therefore, a more specific (though wordier) name for the material
could be ‘material-which-does-not-need-to-be-learned-or-revised’.

» Material in these sections is presented purely to provide extra support to other
things in the course. Sometimes material from non-examinable sections is
discussed in lectures, but most is not. The discussion of such material in lectures

does not change its status unless an official announcement to that effect is given.

» Some of the sub-sections of the course (‘handouts’) are followed by Appendices.
All material in appendices is automatically non-examinable, even if not
so-labelled.

» |n the event that material has been mis-labelled, a correction would be issued to
the class by email before the end of Michaelmas Term.).

» If in doubt about the status of any material, ask the lecturer for clarifications
before the end of Michaelmas Term.
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Lecture Zero

The course proper begins in Monday!
Before then, here are a few things which fit nowhere else:

» Units.

» Assumed knowledge about Dirac d-Functions.

» Standard Model - review.

» Special Relativity - things you should be familiar with.
» Why Mandelstam variables matter.
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Units in Particle Physics

S.1. Units measure:
mass in kg, length in m,
time in s, charge in C.

In principle particle physics ‘natural’ units measure:!
mass in GeV/cQ, length in hc/GeV,
time in i/ GeV, charge in (60hc)%

Heaviside-Lorentz convention: )
c=h=¢g =1 (and po = 1 too since ¢ = (gouo) ™ 2)

In practice particle physics units measure:

mass in GeV, length in 1/GeV,
time in 1/GeV, and charge is dimensionless
on account of using that Heaviside-Lorentz convention!

INB: You could change GeV to MeV, TeV or any other eV-based energy unit without upsetting anyone at
CERN.
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How particle physicists cope with their units:

» Most of the time, they ignore all ¢ and & symbols everywhere.

» They put the back ¢ and h symbols only when they need to talk to ‘ordinary’
physicists or publish a paper in a journal.
» They remember whether the “GeV"s are on the bottom/top by remembering
that they are mostly interested in:
» large energies and large momenta: GeV
» small lengthscales and small timescales: GeV !

» To help them rebuild proper units from energies they (mostly) use the following
aides-mémoire:
> (to get a mass): E ~ mc?,
> (to get a momentum): E ~ (mc)(c) ~ pc,
> (to get a time): AEAt ~ 1
> (to get a length): 1 = hic ~ 197 MeV - fm.

» To get specific S.I. units they may also use:

> (to get an energy in Joules): eV ~ 1.60 x 1019,
P> (to get a length in metres): 1 = hc ~ 197 MeV - fm.
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Standard results for Dirac d-Functions:

One variable:

B dx| g(x)
/Xg(X)5(U(X))dX—/g(X(U))5(U) du‘dU— > ; (1)

eg. [ g(x)d(x—a)dx=g(a) or
J2% 800802 — @) = S, 85 = B0k + AT = 2(8(2) +8(=2)).

Two variables:

_ x(u, v u,v u)o(v 0x.5)
/Xg(x,y)5(U(X,Y))5(V(XvY))dXdY—/g( (u;v), y(u, v))()o( )Ha(u, v)

= > IES ‘ga(ﬂ) i

’ ’ dudv

x,y)EX s.t. u(x,y)=v(x,y)=0 x
In general: (x¥) (x,y)=v(x,y) a(x,y)
N SR/ =N s avens o || O,y Xn n g(x
[ e anas = [e@@r|| g oy S ED
X Lyeeeo B REX s.t. ﬁ(z):on ‘
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Review of The Standard Model

Particle Physics is the study of:

* MATTER: the fundamental constituents of the universe
- the elementary particles

* FORCE: the fundamental forces of nature, i.e. the interactions
between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and
fundamental manner possible

* Current understanding embodied in the STANDARD MODEL:
* Forces between particles due to exchange of particles

* Consistent with most experimental data !

* Does not account for Dark Matter

* But it is just a “model” with many unpredicted parameters,

e.g. particle masses.

* As such it is not the ultimate theory (if such a thing exists), there

are many mysteries.
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Matter in the Standard Model

* In the Standard Model the fundamental “matter” is described by point-like

spin-1/2 fermions

LEPTONS QUARKS
q | mlGeV q | miGeV
First e |-1/0.0005(d|-1/3| 0.3
Generation|y | 0 | =0 |u|+2/3| 03
Second p|-1| 0106 |s (-1/3| 0.5
Generation | \, | 0 =0 |c|+2/3| 1.5
Third v |-1| 177 |b|-1/3| 45
Generation | v, | 0 =0 t|+2/3| 175

The masses quoted for the
quarks are the “constituent
masses”, i.e. the effective
masses for quarks confined
in a bound state

* In the SM there are three generations — the particles in each generation

are copies of each other differing only in mass. (not understood why three).
* The neutrinos are much lighter than all other particles (e.g. v, has m<3 eV)
— we now know that neutrinos have non-zero mass (don’t understand why

so small)
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Forces in the Standard Model

* Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) | JP | m/GeV g
EM (QED) Photon vy | 1~ 0
Weak Wt/ Z 1- |1 80/91
Strong (QCD) | 8 Gluons g | 1- 0
Gravity (?) | Graviton? | 2* 0 8

- Fundamental interaction strength is given by charge g.
* Related to the dimensionless coupling “constant” ¢

e.g. QED gem = € = Amagyhc
(both g and & are dimensionless,
* In Natural Units g=V 4o but g contains a “hidden” 7c )
* Convenient to express couplings in terms of & which, being

genuinely dimensionless does not depend on the system of
units (this is not true for the numerical value for ¢)
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Standard Model Vertices

* Interaction of gauge bosons with fermions described by SM vertices
* Properties of the gauge bosons and nature of the interaction between
the bosons and fermions determine the properties of the interaction

STRONG EM WEAK CC : WEAK NC
|
I
q 8s q [T e p d 8w u | q 8z q

I
I
|
1

Only quarks All charged All fermions : All fermions

Never changes fermions Always changes |, Never changes

flavour Never changes flavour \ flavour

flavour

o ~ 1 o~ 1/137 Oy /z ~ 1/40
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Feynman Diagrams

* Particle interactions described in terms of Feynman diagrams
e.g. scattering e.g. annihilation
e_ —
e e’ T
Y

q q
* IMPORTANT POINTS TO REMEMBER:

*“time” runs from left — right, only in sense that:
+ LHS of diagram is initial state | INITIAL |
+ RHS of diagram is final state + +
+ Middle is “how it might have happened” e H
* anti-particle arrows in -ve “time” direction
* Energy, momentum, angular momentum, etc. _
conserved at all interaction vertices e H
* All intermediate particles are “virtual”

i.e. E2 #|p|>+m? (handout 3)

lltimell

17 /557

Special Relativity and 4-Vector Notation

*Will use 4-vector notation with po as the time-like component, e.g.

pH = {E7ﬁ} = {Eap)ﬁpyapz} (contravariant)
pp =guvp¥ = {E,—p} ={E,—px, Py, —p:} (covariant)
with 1 0 0 O
_ouv_[0-=1 0 0
Swv=8&" =10 0-1 0
0O 0 0-1

*In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.l. quantities formed from 4-vector
scalar products, e.qg.

Plpu = E?—p? =m? Invariant mass
xpy=Et—pF Phase
*A few words on NOTATION
Four vectors written as either: p" or p

Four vector scalar product: p“g, or p.q
Three vectors written as: [

Quantities evaluated in the centre of mass frame: P*, p* etc.
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Mandelstam s, t and u

* In particle scattering/annihilation there are three particularly useful
Lorentz Invariant quantities: s, tand u 1 b < 2

» €

* Consider the scattering process 1 +2 — 3+ 4 /
4

* (Simple) Feynman diagrams can be categorised according to the four-momentum
of the exchanged particle
e~ DI P3_o- e Py e
et  pi p3 M e
Y
Y Y

e/ p pW o e P4 -

p2 P4 p2

*Can define three kinematic variables: s, t and u from the following four vector
scalar products (squared four-momentum of exchanged particle)

s=(p1+p2)? t=(p1—p3)? u=(p1—ps)?
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Example: Mandelstam s, t and u

§ = (Pl +P2)2a = (Pl —P3)2, U= (Pl —104)2

Note: s+i4u= m% + m% + m% + mﬁ (Question 1)
* e.g. Centre-of-mass energy, S:
e’ pi p3 M
Y
e/ p paSH

s=(p1+p2) = (E1+E)” — (pP1+p2)
*This is a scalar product of two four-vectors === |orentz Invariant

« Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

pi = (E{.P") p3i=(E3,—p")
= |s=(Ef+E5)

*Hence /S is the total energy of collision in the centre-of-mass frame
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From Feynman diagrams to Physics

Particle Physics = Precision Physics

* Particle physics is about building fundamental theories and testing their
predictions against precise experimental data

*Dealing with fundamental particles and can make very precise theoretical
predictions — not complicated by dealing with many-body systems

*Many beautiful experimental measurements
=» precise theoretical predictions challenged by precise measurements
*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20t century physics.
Requires understanding of theory and experimental data
* Part Il : Feynman diagrams mainly used to describe how particles interact

* Part lll: ¢ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes
+ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

* Interaction cross sections;
* Particle decay rates;
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The first five lectures

* Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: e~ e
+ +
cete— putu- e Y u
"€ q7eq >vvv<
(e-q—e—q to probe _ -
proton structure) € H q q

4 Need relativistic calculations of particle decay rates and cross sections:
|Myi|?
0 = ——— X (phase space
qux < (Phase space)
A Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function
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Cross Sections and Decay Rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics

» Calculate transition rates from Fermi’s Golden Rule Form assumes one

particle per unit
O = 2EDE |y Foomeans Ty =

I'; is number of transitionsper unit time from initial state
|i) to final state {f]| — not Lorentz Invariant !

Tfi is Transition Matrix Element

Al <f‘H|J><J|H‘l> H is the i
o . perturbing
Tfl <f‘H|l> + JZ# E; — Ej T Hamiltonian

p(Ey) is density of final states
* Rates depend on MATRIX ELEMENT and DENSITY OF STATES
- S - J/

~" ~"

the ME contains the fundamental particle physics just kinematics
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Non-relativistic Phase Space (revision)

- Apply boundary conditions ( p = 7ik): =
» Wave-function vanishing at box boundaries
== quantised particle momenta: a/\/\/
__ 27ny . _ 27[”)‘ . __ 27@ng
Px = a py - T4 Pz = a a
* Volume of single state in momentum space: Dy a
(o)’ =5
a .
=dp,dp,dp; » Iz_ﬂ__
d3 — d3 — | a — px
(2m) (27)
V Pz

» Therefore density of states in Golden rule:

dn dn d|p| with
Ef) =|— =|—=—-=
PUE) = |2E g, A7 dE |, p=BE
* Integrating over an elemental shell in /2
momentum-space gives 471']? \/>< ﬁ

(d°p = dmp*dp) PUED = (o)

24 /557




Intentionally Blank
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The Golden Rule revisited

Ly =2x|Ty|*p(Ey)

* Rewrite the expression for density of states using a delta-function

dn dn .
p(Ef) = dE dEé(E E;)dE since Er = E;

Note : integrating over all flnal state energies but energy conservation now
taken into account explicitly by delta function

» Hence the golden rule becomes: I'y; = 271:/ |Tﬁ|25(Ei —E)dn

the integral is over all “allowed” final states of any energy

* For dn in a two-body decay, only need to consider /(V
one particle : mom. conservation fixes the other 1 o

5 d*p Vdip
——F =2r / T Ei—E —FE
Vv Ji = | fl| ( [ 2)(2 ) ) (275)3
* However, can include momentum conservation explicitly by integrating over

the momenta of both particles and using another 3-fn

3 3>
| .. 4/ 2 32 o 4P d'po
—I'y=02r T:|“6(E;—E; —E>) i — P1 —
Energy cons. Mom.cons. - .7 . .

Density of states
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Lorentz Invariant Phase Space

- In non-relativistic QM normalise to one particle/unit volume: | Y*wdV =1

* When considering relativistic effects, volume contracts by Y = E/m
—

= S
o™ a NN

a aly
* Particle density therefore increases by Y — E/m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume | [ y*y/'dV = 2FE

* Previously used ¥ normalised to 1 particle per unit volume f l//* wdV =1
* Hence l//’ = (2E)1/2W is normalised to 2 F per unit volume

» Define Lorentz Invariant Matrix Element, Mﬁ, in terms of the wave-functions
normalised to 2F particles per unit volume

My = (Wi |H|..w'_ W) = (2E1 2, 2F;5...2E,) ' 2Ty
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« For the two body decay My = <1I/{1//£‘I—A]’||I/l’>
2 = (2E:2E1.2E)" (yiy|A' i)

=  (2E;.2E1 2E)*Ty;
* Now expressing T; in terms of My; gives

(2n)4/ 2 32 = o~ @p d>pa
Tj= Mi[28(Ei— Ey — E>) 83 (Bu— p1 —
L~ 2E [Myil"o( 1 = £2)0% (P =P pz)(27t)32E1 (27)32E;

Mfi uses relativistically normalised wave-functions. It is Lorentz Invariant

d3ﬁ is the Lorentz Invariant Phase Space for each final state particle

(2m)32E  the factor of 2E arises from the wave-function normalisation

(prove this in Question 2)
This form of Ffi is simply a rearrangement of the original equation

but the integral is now frame independent (i.e. L.1.)

Ff,- is inversely proportional to E;, the energy of the decaying particle. This is
exactly what one would expect from time dilation (E; = ymn).
Energy and momentum conservation in the delta functions
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Decay Rate Calculations

1 (273)4 2 3/ o o d3ﬁl dSﬁz
STy = E —E —E)8%(p;— B, —
v (Ei =By = E2)0°(Pi = P1 = P2) o b (ayia s

* Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.o0.M. frame is most convenient

* In the C.o.M. frame Ei=m; and pi=0 =

1 25 d? Pl d3
—Fi_ My; —FE _—

1
* Integrating over D2 using the d-function: l/(é
1 1 y
':>Vrfi =

d*p °
My |28 (m; —Ey —E

now E2 = (m3+|p1|*) since the 5-function imposes ]_52 = —pi
« Writing d3p*l _ P%dpl sin0dode = p%dpldQ : For convenience, here : E

|p1] is written as p,

f 1 2 2 2 2. 2\ PidpidQ
I:€>T/Fﬂ—Win/|Mﬂ| S(m,-—\/ml—l—pl—\/mz-i—pl)W
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it o bewnten |1y — o [ MaPe(p)8(F(p))dmd @)
where g(p1) = pi/(E1E2) = pi(mi +pp) =" (m3 + pi) =72

and  f(p1) = m;— (m2 +pH)V/2 — (md + pH)1/? ) P
Note: - O(f(p1)) imposes energy conservation. :/@V

« f(p1) =0 determines the C.0.M momenta of /
p*

the two decay products 2
ie. f(p1) =0 for p1 =p~
* Eq. (2) can be integrated using the property of - function derived earlier (eq.[@)])

/g(pl)s(f(m))dp] Idf/d tpr /g(pl)a(pl_P*)dPl: 8(r)

|df/dpi] -
where P" is the value for which f(p*) =0

« All that remains is to evaluate df/dp;

A pi &_ﬂ:_p1E1+E2
dp (m%—{—p%)l/z (m + p] )1/2 E E E\E,
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\ 1 E1E2 p2
iving: — Ty = 7/M-2 I 40
aving: 5T = g | Ml E T B BB |
1 2| P
= —= [ IMul]" | =——= dQ
327r2El-/’ il 5T g I
*Butfrom f(p;) =0, i.e. energy conservation E\+E, =
\ 2
B P / Myi 249 |
v 327r2E Myl T P”'/V
In the particle’s rest frame E; — m; f
1 2
- —= 222/|M|dg 3)
cr-; f-- wean Ilfe‘('w\q_
VALID FOR ALL TWO-BODY DECAYS ! 05 s--‘f)((_ ()0""\((9.
- p¥can be obtained from f(p;) =0
(m% +p*2)1/2 + (m% +p*2)1/2 = m; (Question 3)
|

[ = (1 +m2)?] [mf —

m) P =—

2ml~

(mi —my)?] (now try Questions 4 & 5)
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Cross section definition

no of interactions per unit time per target

incident flux

Flux = number of
incident particles/
unit area/unit time

* The “cross section”, ¢, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

Differential Cross section

o —»

here @ is the projective area of nucleus

or generally
do _— no of particles per sec/per target into dQ do
dQ incident flux d
€A dQ =d(cos6)d¢
e / do
ith |0 = [ —dQ
® with |0 = q Qd

NS

integrate over all
other particles
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example

+ Consider a single particle of type a with velocity, U, traversing a region of area

(Va + vb)5t

A containing ny, particles of type b per unit volume

In time &t a particle of type a traverses °
region containing 1, (v, +vp)ASt
particles of type b

o * Interaction probability obtained from effective
A @® cross-sectional area occupied by the
®e np(vq +vp)ASt particles of type b
np (v +vp)AOto
« Interaction Probability = (a I ) =npvoto [v=v,+Vp]
— Rate per particle of type a = 1,0 O
- Consider volume V, total reaction rate = (n,v0).(n,V) = (n,V) (nzv) o

= Nb(PaG

* As anticipated: | Rate = Flux x Number of targets x cross section
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volume V'
95\1"‘4'"‘5 * ek (u

M. = rate ia

Cross Section Calculations

(w"k" s‘l;mb”;s\ porbcle
» Consider scattering process 7 / 3
Rebe por o= yelome 142 —3+4 1 »E—— 2
v
- Start from Fermi’s Golden Rule: 4 2
dpy &y
Ffl\ 277: / |Tfl|2 El +E> _E3 E4)5 (pl +p2 p3 p4)( ) (271.)3

where Tﬁ is the transition matrix for a normalisation of 1/unit volume
'ALsTo: Rate/Volume (flux of 1) X (number density of 2) X &
(From last sI.'Aa]

nl(V1+V2) Xy X O

* For 1 target particle of each species per unit volume Rate/Volume = (Vl + V2)

[whi chois raTAru\ B:) our r} zbvu\ the ‘Iﬂrw\ Aj fU'” Golden R “‘l:‘)"a ]
fi

c = ——

(v1 —+ Vz)
(2m)* &3 d&Ppu

= T 6 E\+E,—E;—Ey)8° +pr—p3—
o /l 7il?8(E1 + Ey — E3 — E4)8° (P + > — P3 — Pa) CHE
—_ D
————>~_| the parts are not Lorentz Invariant|_——""
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*To obtain a Lorentz Invariant form use wave-functions normalised to 2F particles

per unit volume Y = (2E)1/2‘I/
* Again define L.I. Matrix element M; — (2E1 2E,2F; 2E4)1/2Tﬁ
___@em” ‘\M~]26(E Ey—E3 —Eg)83(p1+ pr— &pis &pi
_2E12E2(v1+v2)/ fi 1 +E>—E3—E4)8°(P1 + P> — P3 — Pa) T

* The integral is now written in a Lorentz invariant form
* The quantity F' = 2FE2F, (v1 -+ V@) can be written in terms of a four-vector
scalar product and |s-theﬁe-fe|-e-e+se Lorentz Invariant (the Lorentz Inv. Flux)

F=4 [(p p2u) m%m%} 1/2 (see appendix I)

nn,'hm(mu“
» Consequently cross section is aALorentz Invariant quantity.

Two special cases of Lorentz Invariant Flux:

» Centre-of-Mass Frame * Target (partlcle 2) at rest
F = 4E1Ey(vi+wn) F = 4E\Ex(vi+w)
= 4EE(|P'|/Ei+p|/E2) = 4Eimy)
= 4p"|(E1 +E2) = 4Eimy(|p1]/Er)
4|5" Vs = 4my|p|
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2—2 Body Scattering in C.o.M. Frame

» We will now apply above Lorentz Invariant formula for the 13}/' 3
interaction cross section to the most common cases used 5~ —PB
in the course. First consider 2—2 scattering in C.0.M. frame / ) 2

- Start from g

(2m)~2 / 25 d3ps & py
o= M E\ +Ey—E3s—Es)8* (D) + o — P3 — Pa) = =
SE 2B (v ) ) Ml OB + B2 = By = E)(P1 + P2 = Py = Pa) 5 =5
* Here ﬁl—i—pz:O and E\+Ey= /s
&’ p3 & py

= o= (m) / Mi|*§ E3—E4) 83 (Ps +
|-»*|\/— |Myi| (\/_ 3—FE4)87(P3+ Pa) = 2E; 2Es
*The integral is exactly the same integral that appeared in the particle decay
calculation but with 771, replaced by \/
|Pf|

= o= |f4f/‘ g

1
| i / M a0

64n2s
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* In the case of elastic scattering |ﬁf| = |ﬁ}| 1 e e 3

1 2 *
Oelastic = 6472s / |Myi|~dQ )
+ +
1) pt o4
* For calculating the total cross-section (which is Lorentz Invariant) the result on
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:

i 1 |B}l
64n2s |p¥|

because the angles in dQ* = d(cos0*)d¢@* refer to the C.0.M frame
« For the last calculation in this section, we need to find a L.I. expression foildo

|M;|2dQ*

* Start by expressing dQ* in terms of Mandelstam ¢t 2 — ( — )2
i.e. the square of the four-momentum transfer =4 =\P1—P3
_ M
e Plgl e
Product of
four-vectors
qu — p.‘li _ Pél therefore L.I.
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+ Want to express dQQ* in terms of Lorentz Invariant dt

where = (pl —p3)2 = p% +p% — 2p1.p3 = m% -I—m% — 2p1.p3
¢+ In C.o0.M. frame:

X 3
p>1ku (ET,0,0,‘[TH) /ﬁ;/
pi = (E3,|P3]sin6*,0,|p3|cos 67) 1 5, P, ,
Pipu = EPES —|Bi||pi[cos6” T 2
(= b 2B 42 |Flcose” 4
giving dr =2|p}||p3]|d(cos 6%)
. N drd¢*
therefore  dQ* =d(cos0")d¢" = ———=~
- 2|pi 1173
p§ 2 * 1 2 3 4%
hence do — | M£|°dQ* = ——————— |Mg|"d¢™de
saxs |pi] 1 2-gamslpip Ml 49

* Finally, integrating over d¢* (assuming no ()* dependence of |Mf,~|2) gives:

do 1 ’
R — Y 98
dt 647rs|ﬁ;<|2| il
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Lorentz Invariant differential cross section

* All quantities in the expression for do/dr are Lorentz Invariant and
therefore, it applies to any rest frame. It should be noted that |ﬁ* |2

is a constant, fixed by energy/momentum conservation l
- 1
51 = 2[5 = (m +m)?][s — (my —my)?]

* As an example of how to use the invariant expression do/dt
we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E;| > m;

E, 7:’2 e.g. electron or neutrino scattering
232
In this limit 5] = %
S
do 1 M2
dr  167(s —m3)? /! (my =0)
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2—2 Body Scattering in Lab. Frame

. A commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m; =m3 =0, my =my=M

e 3

E3,|p 3 g. 1e-
T it = e:};‘/

* Wish to express the cross section in terms of scattering angle of the e~
dQ =2nd(cos6)
do do dr 1 dt do Integrating
—_—_— == — over d¢
dQ dr dQ 2w d(cos®) dt
* The rest is some rather tedious algebra.... start from four-momenta
p1=(E,0,0,E,), p»=(M,0,0,0), p3=(E3,E3sin0,0,E3c080), ps=(Es,ps)
sohere t=(p —p3)2:—2p1.p3 = —2F1E3(1 —cos0)
But from (E,p) conservation P1+ P2 = p3+ p4
and, therefore, can also express { in terms of particles 2 and 4

4

therefore
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t = (pr—pa)?=2M*—2py.ps =2M> —2ME,

= 2M?—2M(E,+M —E3) = —2M(E, — E3)
Note E1 is a constant (the energy of the incoming particle) so

dr — M dE;
d(cos@) d(cos9)

EiM
M+E, —Ejcos@

+ Equating the two expressions for f gives E; =

dEs _ E12A4 _ 2M E; 2 _ E%
S0 d(cos8) ~ (M+E —Ejcos8)? "W \EM) M
do 1 dt do 1 _ Ejdoc Ejdo  Ej 1 P
dQ  2md(cos@) dr 2 M dr 7w dt 7 lem(s— M2
using s = (p1+p2)? =M% +2p1.pr = M+ 2ME; Pj“g}j%1:3§5'essg
gives (S—Mz) =2ME;
— = =) M4 In limit m; — 0
dQ ~ 642 (ME1> My
41557
In this equation, E; is a function of :
EM
Es =
M+E|—E;cos0
- do 1 1 S
giving D My; m; =0
dQ  64n? <M+E1—Elcos9> My (m1 =0)

General form for 2—2 Body Scattering in Lab. Frame
*The calculation of the differential cross section for the case where m, can not be
neglected is longer and contains no more “physics” (see appendix Il). It gives:

do 1 1 |53
dQ 6472 my|py| |P3|(E1 +mo) — E3|p1|cos@

Again there is only one independent variable, §, which can be seen from
conservation of energy

Bt = /|2 /151 P 1B 217 175 os 0 +-m

My

—

ie. |ﬁ3‘ is a function of 0 P4a=DpP1—pP3
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Summary

* Used a Lorentz invariant formulation of Fermi’s Golden Rule to
derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay:

A ) Where p* is a function of particle masses
|M¢;|~dQ

© 327m2m ,2 pr= ﬁ [(m? — (m1 +mp)?] [m? — (m1 —my)?]

* Scattering cross section in C.0.M. frame:

/ M i |*dQ*

647r2 |“*|

* Invariant differential cross section (valid in all frames):
do 1 .
dt  64ms|pr|>

= b5 Gmbma)?lls — (my - m2)?
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Summary cont.

* Differential cross section in the lab. frame (11,=0)

1 S
M
—E10056> 1M

do 1 [ E3\* ., do 1
— = ) Mg |- —= =
dQ  64n2 (ME1> M dQ  64x2 (M+E1

* Differential cross section in the lab. frame (m1,= 0)

do 1 1 |B3|? ML
dQ 64n? |m2\ﬁ1\ |ﬁ3‘(E1+m2)—E3|ﬁ1|COSQ

with E| +m) = \/|53’2+mg+\/‘[31|2+|ﬁ3|2—2‘ﬁ1"ﬁ3|0089+m42‘

Summary of the summary:

*Have now dealt with kinematics of particle decays and cross sections
* The fundamental particle physics is in the matrix element
*The above equations are the basis for all calculations that follow
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Appendix | : Lorentz Invariant Flux

NON-EXAMINABLE

=Collinear collision: a > < b
VasPa Vb, Pb
F=2E2Ey(vatv) = 4B, (el 1Pl
Ea Eb

= 4(|PalEb + |Pp|Ea)
To show this is Lorentz invariant, first consider
Pa-Pb = Pl Pou = EaEp — Pa-Pb = EaEb + | Pal|Pb]
Giving  F2/16— (phipou)* = (Bal Ep +|PblEa)” — (EaEp +|Pal P)?
= |Bal*(E; — o)+ E(|Po* — E})
= |Bal*my — Eqm;
R

12
F = 4[(p¥ppu)* —mamj)
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Appendix Il : general 2—+2 Body Scattering in lab frame

NON-EXAMINABLE
3

= (E3"ﬁ3|)
E7 2 /
L (mp) 2 PRl
(E47‘ﬁ4’) 4
plz(EbOvOa |ﬁ1|)7 p2:(]\42,0,0,0), p3:(E3,E38iI19,O,E3COSG)7 p4=(E4,]_54)

. do do dr 1 d do
again -_=  _ - _ = "7
dQ dr dQ 2w d(cosB) dr

But now the invariant quantity ¢:

t = (p2—pa)® =ms+mi—2py.ps=ms+mj—2mE,
= m%+m£—2m2(E1+m2—E3)
dr dEj
Y

e Pt A
d(cos ) e d(cos0)
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Which gives do _ mp dE3 do
dQ 7 d(cos®) dr

To determine dE;/d(cos@), first differentiate E32 —|P3 \2 = m3

3
dE; - d|ps]
2By ————— =2 —_— )
3 d(cos ) 73| d(cos ) (All-1)
Then equate 1= (p1 — P3)2 = (P4 — p2)2 to give

m% —I—m% — 2(E1E3 — |ﬁ1 ||ﬁ3|COS 9) = mﬁ +m§ —2m2(E1 +my —Eg)
Differentiate wrt. cos @

dE3 _» dips] - =
E - 0 —
(Ey+ma) 5 —|Pi|cos 8 0 = [p1]|73]
Using (AIl1) des |17 (All2)
d(cos®) |P3|(E1 +my) — E3|pi|cosO '
do _m dE; do _m dEj 1

L_m o _m VAL
dQ 7w d(cosB) d& 7 d(cosh) 64ns|ﬁ;‘|2| i
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It is easy to show |p}|\/s = ma|p1|

do dE3 my 2
dQ  d(cos@) 64m2m3|p |
and using (All.2) obtain

do 1 1 |53
dQ 6472 ma|pi| |ps3|(E1 +mo) — E3|p1|cos @

M|
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Particle Physics
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Handout 2 : The Dirac Equation
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Non-Relativistic QM (Revision)

* For particle physics need a relativistic formulation of quantum mechanics. But
first take a few moments to review the non-relativistic formulation QM

» Take as the starting point non-relativistic energy:
=2
E=T+v=21v
2m

* In QM we identify the energy and momentum operators:

- d
p——iV, E—i—

dt
which gives the time dependent Schrodinger equation (take V=0 for simplicity)
1 = d
- @
m . >
(5 —ET) —iVy =py
with plane wave solutions: Y = Ne'\/” where dy
lw = El[/

*The SE is first order in the time derivatives and second order in spatial
derivatives — and is manifestly not Lorentz invariant.

*In what follows we will use probability density/current extensively. For
the non-relativistic case these are derived as follows

1 2,5 a‘lf*
(@7} - oYV =i 3]

50 /557




* . 1 k72 2.k . *all’ 81[/*
X L R —wV = ik -r
v x (@) - v x (B) 2(WV1VWW) ’<"’a;+"’at

V. (v Vy—yvy) = i%(w*w)

2m
*Which by comparison with the continuity equation
- - dp
V.j+—-—=0
I
leads to the following expressions for probability density and current:
- 1 — —
2 Iy
pP=vy=ly| J=5 (v Vv -yvy)
mi

“For a plane wave Y = Ne/(P7—E1) )
P:|N|2 and f: |N|2§1:|N|2‘7

* The number of particles per unit volume is |N|2

* For |N|2 particles per unit volume moving at velocity v, have |N|2|\7| passing
through a unit area per unit time (particle flux). Therefore f is a vector in the
particle’s direction with magnitude equal to the flux.
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The Klein-Gordon Equation

“Applying  — —iV, E —id/0dt to the relativistic equation for energy:

E? = |2+ nr? (@)
gives the Klein-Gordon equation:
I’y _ = 2
oz v ¥omy (&

Usi =9 _ (9 9 9 9 ng —=9- _9° _ 9° 0~
Using 8)”: axtt (8t’8x’8y’81> - 0 a”_atz ox>  Jdyr 972

KG can be expressed compactly as (8# au + m2) y=0 (-)

*For plane wave solutions, Yy = Nei(ﬁ-7_Et) the KG equation gives:
2 =12 2
—E*y =—[plfy—my
= F =4 ‘ﬁ|2 + m2

* Not surprisingly, the KG equation has negative energy solutions - this is
just what we started with in eq. [

+ Historically the —ve energy solutions were viewed as problematic. But for the KG
there is also a problem with the probability density...
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*Proceeding as before to calculate the probability and current densities:

Pyt -
(KG2)* 8;12, =V2y* —mPy* (KG4)
v % (KG2) — v x (KG4) :
v &—t;’[—w 3;’2' = Y (Vy—nmly)—y(Viy* —m’y*)
o[ .9 du . .
E("’a_‘f_"’all;) = V.(y'Vy—yVy")

*Which, again, by comparison with the continuity equation allows us to identify

. *a Iy* T e kv "
p=z(wa—lf—w(;’;> and  j=i(y"Vy—yVy’)

For a plane wave Y= Nei(PT=E1)
p=2EIN? and j=IN]’p
* Particle densities are proportional to E. We might have anticipated this from the
previous discussion of Lorentz invariant phase space (i.e. density of 1/V in the

particles rest frame will appear as E/V in a frame where the particle has energy E
due to length contraction).
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The Dirac Equation

* Historically, it was thought that there were two main problems with the
Klein-Gordon equation:
¢+ Negative energy solutions
+ The negative particle densities associated with these solutions

p =2E[N|?

*We now know that in Quantum Field Theory these problems do not arise
and the KG equation is used to describe spin-0 particles
(inherently single particle description = multi-particle quantum
excitations of a scalar field).

Nevertheless:

*These problems motivated Dirac (1928) to search for a
different formulation of relativistic quantum mechanics
in which all particle densities are positive.

* The resulting wave equation had solutions which not only
solved this problem but also fully describe the
intrinsic spin and magnetic moment of the electron!
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The Dirac Equation :

Schrodinger eqn: _L§2 _ oy 1st orderin d/dt

om V79 2orderin 9/9x,0/dy,d/dz
* Klein-Gordon eqn:  (9#d, +m?)y =0 2" order throughout
* Dirac looked for an alternative which was 1st order throughout:

N d

Hy = (a.p+pm)y —13—3, (D1)

where FI is the Hamiltonian operator and, as usual, ﬁ = —jV

“Writing (D1) in full:

0 Jd . 4 (.0
lOCx 5 lOtya zocZa—Z—l—Bm Y= IE v

“squaring” this equation gives
hox 1My TG TR\ TGy T Iy TR TR )V E T

* Which can be expanded in gory details as...
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d%y J%y 9%y 9%y )
“oE T %gm %ga - %ga tEMY
2’y %y %y

%%%+%%ba—%%%+%%%—~%%%+%%5§;

(axﬁ—kﬁax)maaw (0B + Bay)m aw (azﬁJrB(xz)m%—Z

* For this to be a reasonable formulatlon of relativistic QM, a free particle
must also obey E? p + m? , i.e. it must satisfy the Klein-Gordon equation:

82 &ZW 82111 82
_azz_ FI az+ B4

* Hence for the Dirac Equation to be consistent with the KG equation require:

ajog+ oo, =0 (jFk) (D4)

*Immediately we see that the (; and B cannot be numbers. Require 4
mutually anti-commuting matrices
* Must be (at least) 4x4 matrices (see Appendix I)
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*Consequently the wave-function must be a four-component Dirac Spinor

v A consequence of introducing an equation
Y= %g that is 15t order in time/space derivatives is that
VA the wave-function has new degrees of freedom !

* For the Hamiltonian ﬁl,l/ = (56[7'4— Bm)y = ial[//at to be Hermitian
requires

w=o o=o o=o; B=p% (D5)

i.e. the require four anti-commuting Hermitian 4x4 matrices.

« At this point it is convenient to introduce an explicit representation for @, f3
It should be noted that physical results do not depend on the particular
representation — everything is in the commutation relations.

* A convenient choice is based on the Pauli spin matrices:

(5. w-(3%)

wn 1=(89), 0=(38) w=(08) @=(3-9)

* The matrices are Hermitian and anti-commute with each other
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Dirac Equation: Probability Density and Current

*Now consider probability density/current — this is where the perceived
problems with the Klein-Gordon equation arose.

Start with the Dirac equation

dy oy ay dy
—iO—=— — iy —— — [0, —— =i— D6
O~ R i 3 +mPBy i~ (D6)
and its Hermitian conjugate
‘9‘/’T oyt . ov . gt 3‘!’T
o, o, = D7
+i P of +i 2 +i—— pE +my' B = = (D7)
-Consider Y’ x (D6) — (D7) X ¥ remembering ¢, 8 are Hermitian ==
] d d d oy’ oy’ oy’ .0 oyt
v (fiocx 811 i, aw i Za—il+ﬁmw> ( aw O +1 a"”y oy, +i aw o+ my’ ,8) =iy’ (;i/ ;)l; v
dy _dy Jdy oyt~ ay!  Jyt I(y'y)
] T _r hlh =
- Y (axaerayaeraZaZ)Jr(ax O+ Iy oy + 9z o; 1:;/+ o 0
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. T
gives the continuity equation | V.(y'ay)+ a(lgt V) =0 (D8)

where ll/Jr = (Wﬁ‘l’;ﬂl’;auq)

*The probability density and current can be identified as:

p=y'y| and | j=vylay
2 2 2 2

where p =y y = [y >+ |yol’ + |ys” + |yl > 0

*Unlike the KG equation, the Dirac equation has probability densities which
are always positive.

¢ In addition, the solutions to the Dirac equation are the four component
Dirac Spinors. A great success of the Dirac equation is that these
components naturally give rise to the property of intrinsic spin.

« It can be shown that Dirac spinors represent spin-half particles (appendix Il)
with an intrinsic magnetic moment of

f=-S$

S

(appendix Il1)
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Covariant Notation: the Dirac y Matrices

*The Dirac equation can be written more elegantly by introducing the
four Dirac gamma matrices:

Y=B; V' =PBa; V=B ¥ =Pe;

Premultiply the Dirac equation (D6) by B
iBo a—w+iﬁ(xya—w+iﬁa a—w—ﬁzml/f: g2V
T ox dy “ 0z ot
40y L,y 0y A
1Y% e e - _ T
- Y ox ir dy i dz my iy Jt

using dy = (%, %, a%, a%) this can be written compactly as:

(i’}/'u au — m) Y = 0 (D9)

* NOTE: it is important to realise that the Dirac gamma matrices are not
four-vectors - they are constant matrices which remain invariant under a

Lorentz transformation. However it can be shown that the Dirac equation
is itself Lorentz covariant
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Properties of the Y matrices

*From the properties of the ¢ and ﬁ matrices (D2)-(D4) immediately obtain:
(Y)?=p*=1 and (y')*=Bapoy=—-ofpo=—0a}=—1

*The full set of relations is (}p)z - 1

¥)»P=0r)P=0)? = -1
YY+yYyY = 0
YYHYY = 0 (G#K)
which can be expressed as:
{7 =7y +9vy"* =2g"Y  (defines the algebra)

* Are the gamma matrices Hermitian?

¢ /3 is Hermitian so YO is Hermitian.
+ The ¢ matrices are also Hermitian, giving

f}/lT — (Bax)'*' — a;ﬁ"’ f— axﬁ = —B(xx f— _»)/1
¢+ Hence 71, 72, )/3 are anti-Hermitian

P =P =y, P =P Pi=F
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Pauli-Dirac Representation

*From now on we will use the Pauli-Dirac representation of the gamma matrices:

W:(é_?); < 0 Gk) which when written in full are
10 0 0 0001 000 -i 001 0
(o100} , [o0010) ., 00:0_7,3_ 000 -1
=loo-1 0=V o100 |:Y={o0oio0o]*"Y=|-100 0
00 0-1 -1 000 4000 010 0

*Using the gamma matrices P = IIITIV and f= IIIT&I// can be written as:

M=) =y

where j“ is the four-vector current.
(The proof that j* is indeed a four vector is given in [ page 109 )

In terms of the four-vector current the continuity equation becomes

*Finally the expression for the four-vector current
M =virty

can be simplified by introducing the adjoint spinor
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The Adjoint Spinor

* The adjoint spinor is defined as

y=y'y

100 0
ie. =y = W)Y =0vwvd) | 001 o
00 0-1

Vv = (II/T' ll[;a _nga _W:I-k)
In terms the adjoint spinor the four vector current can be written:
=y

* We will use this expression in deriving the Feynman rules for the
Lorentz invariant matrix element for the fundamental interactions.

* That’s enough notation, start to investigate the free particle solutions
of the Dirac equation...
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Dirac Equation: Free Particle at Rest

*Look for free particle solutions to the Dirac equation of form:
Y= u(E,ﬁ)ei(ﬁ'7_Et)
where u(E,ﬁ), which is a constant four-component spinor which must satisfy
the Dirac equation ol

(i Oy —m)y =0

*Consider the derivatives of the free particle solution

d : vy .
Y = a_l;/ =—iEy; oy = a_il = ipy,

substituting these into the Dirac equation gives:
('}’OE - 'ylpx - '}’zpy - Vgpz - m)” =0
which can be written: (Mpu—mu=0 (D10)

*This is the Dirac equation in “momentum” — note it contains no derivatives.
*For a particle atrest p =0
and v =u(E,0)e &
eq. (D10) == EYu—mu=0
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IV
= Eloo1 o) lg]=m %) (D11)

3
00 0-1 04 04
*This equation has four orthogonal solutions:
1 0 0 0
0 1 0 0
ur(m,0)= | o s ua(m0)=1¢|: us(m,0)= {7 |: wa(m0)= 1|
0 0 0 1
N— ~— N— g
(D11) mmp E=m (D11)mp |E=-m
still have NEGATIVE ENERGY SOLUTIONS . (Question 6)
- Including the time dependence from W = u(E,0)e " gives
1 0 0 0
v = 8 efimt; v, = (1) efimt; Vi = (]) e+lmt and Wy = 8 e+imt
0 0 0 1
Two spin states with E>0 Two spin states with E<0

*In QM mechanics can’t just discard the E<0 solutions as unphysical
as we require a complete set of states -i.e. 4 SOLUTIONS
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Dirac Equation: Plane Wave Solutions

‘Now aim to find general plane wave solutions: Y = M(E,ﬁ)ei(p'r*Et)
-Start from Dirac equation (D10): (Y*py —m)u =0

andusey“p“—m = EYO—Px}’I—P)772—Pz7’3_m
B I E 0 6\ - 10
= o-1)"{-50)P ™01

- ( 6.p —(E+m)l
Note in the above equation the 4x4 matrix is
written in terms of four 2x2 sub-matrices

*Writing the four component _[ua
spinor as u=

(Ypu—mu=0 = <(E_l’;1)[ (—E '

e}
Giving two coupled G.p)u mu
simultaneous equations (_, 6) B ( Jua (D12)
for Ua, UB (6.P)ua = (E+m)ug
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Expanding 6.[_5:((1)(1))Px+((3' _é)py+((1)—(1))pz

- Pz Px—1py )
o-p ( x 1Py —P:
*Therefore (D12) (6.p)up = (E—m)uy }
(6.p)ua = (E+m)ug
. _ G.p _ ! Pz Px—ipy )
gives uB_E+muA_ E+m (px+ipy —Pz “a

*Solutions can be obtained by making the arbitrary (but simplest) choices for U4

o =) o w=())

1 0
- 0 1, where N is the
giving  u; =N, EL ; and  up =No | puipy wave-function
pxizlzy E- o normalisation
E+m E+m

NOTE: For p =0 these correspond to the E>0 particle at rest solutions
*The choice of 14 is arbitrary, but this isn’t an issue since we can express any

other choice as a linear combination. It is analogous to choosing a basis for
spin which could be eigenfunctions of Sy, S, or S,
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1
Repeating for up = (0) and Ug = <(1) gives the solutions U3 and 4

* The four solutions are: y; = u;(E, j)e'(P7 1)

1 0 = px—ipy

—m _

1 Dxtipy E_przn

uy =Ny | = |, up=Ny| px—iny |; u=N3| E-m |; ug=Ny| E-m
E+m E+m 1 0
pxtipy —p- 0 1

E+m E+m
*If any of these solutions is put back into the Dirac equation, as expected, we obtain
E2 = +m?

which doesn’t in itself identify the negative energy solutions.

: *One rather subtle point: One could ask the question whether we can interpret
all four solutions as positive energy solutions. The answer is no. If we take

all solutions to have the same value of E, i.e. E = +|E|, only two of the solutions
are found to be independent.

There are only four independent solutions when the two are taken to have E<0.

* To identify which solutions have E<0 energy refer back to particle at rest (eq. D11).
* For 1_5 =0 uj1, Uy correspond to the E>0 particle at rest solutions
U3z, Uy correspond to the E<0 particle at rest solutions

* So U1, Uz are the +ve energy solutions and U3, U4 are the -ve energy solutions
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Interpretation of —ve Energy Solutions

*The Dirac equation has negative energy solutions. Unlike the KG equation
these have positive probability densities. But how should -ve energy
solutions be interpreted? Why don’t all +ve energy electrons fall into
to the lower energy -ve energy states?

Dirac Interpretation: the vacuum corresponds to all —ve energy states

being full with the Pauli exclusion principle preventing electrons falling into
-ve energy states. Holes in the —ve energy states correspond to +ve energy
anti-particles with opposite charge. Provides a picture for pair-production
and annihilation.

Y— e et e et — Y
4 -~ -~
mc2 - — me2 |- . S — me2 |-
s Y i
-mc2fF ———— -mv::}lx—o—o— -mc2- -v-"ré"—
. — f—e—-c
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Discovery of the Positron

* Cosmic ray track in cloud chamber:

» e* enters at bottom, slows down in the
lead plate — know direction

 Curvature in B-field shows that it is a
positive particle

» Can’t be a proton as would have stopped in the lead

mmm) Provided Verification of Predictions of Dirac Equation

* Anti-particle solutions exist ! But the picture of the vacuum corresponding to
the state where all —-ve energy states are occupied is rather unsatisfactory, what
about bosons (no exclusion principle),....
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Chronology relating to Negative Energy Solutions

» 1928, Dirac invents his Equation. Probability density is positive, but negative

energies are permitted (Proc. Roy. Soc. Al117, 610-628) [1].

» 1930, Dirac tries to solve negative energies via the “hole” theory. He relates

anti-particles to negative energy eigenstates. (Proc. Cam. Phil. Soc. 26,
376-381) [2].
» 1934, Paulu and Weisskopf present a new interpretation of Klein-Gordon

equation: as field equation for a charged spin-0 field. p represents the charge

density. The energy is given via
1
5 [ PrIveR + i)

and thus positive by definition (Helv. Phys. Acta 7, 709-734) [3].

» 1934, The Dirac equation aquired a field-theoretic interpretation. It no longer
represented a probability amplitude. Instead it became the field operator of a

spin—% field in a QFT. See the QFT and AQFT courses.
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Anti-Particle Spinors

Find negative energy plane.wave solutions to the Dirac equation of

the form: y = V(E,p’)é:,i(ﬁ?—Ef) where E =|\/|p|? +m?|
Note that although E > O these are still negative energy solutions

in the sense that Av, =i-v, = —Ev,

ot
*Solving the Dirac equation (i}’“ (9“ — m) yv=0

= (=YE+Y' pe+Vpy+ ¥ pc—m)y=0
(Ypu+m)jy=0
*x The Dirac equation in terms of momentum for ANTI-PARTICLES

Proceeding as before: (6.P)va = (E—m)vp } etc.. ...
(6.p)vg = (E+m)vu
Px*ipy Eﬁf
m
E;?T Px+iPy
- Vv = N{ E—6m ; V) = Né E‘i‘m
1 0

(D13)
(c.f. D10)
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Particle and anti-particle Spinors

* Four solutions of form: y; — ui(E’ﬁ)ei(ﬁ.F—Et)

1 0 Epz Px—ipy
—m —
0 1 prtipy Epr
Uy = N Pz s Uy = N px—ipy |5 U3z = N E-m y Ug = N E-m
E+m E+4m 1 0
Px+ipy —p: 0 |
E+m E+m
g N— g
—~ —~
=) —
E=+ |V E=—|VFP+m
* Four solutions of form  y; = v;(E, p)e {(P7—E1)
Px—ipy Pz 1 0
E+m
Ej}—)lzn PxFipy 0 1
vi=N| E+tm |; vo=N| E+tm |; v3=N Pz s a=N| px—ipy
0 1 E—m E—m
1 0 Pxtipy ~ Dz
E—m E—m
g

—~— —~
E =+ |7+ E=—| VP
* Since we have a four component spinor, only four are linearly independent
= Could choose to work with  {uy,up,u3,us}or {vi,vy,v3,v4} or...
= Natural to use choose +ve energy solutions

{l/tl,blz,Vl,Vz}
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Wave-Function Normalisation

*From handout 1 want to normalise wave-functions

to 2F particles per unit volume (1)
*Consider Y= ule"'i(ﬁ'?_Et) uy =N Pz
Probability density P = W w = (v*) v = ulu i,
2 2 2 E+m
T 2 P Px +Py
= |[N|“|1
uyuy | | ( +(E+m)2+(E+m)2
> ((E+m)”+|p) 2 ((E+m)>+E>—m’
= |N| = |V
(E +m)? (E +m)?
2E*+2Em 2E
2 2
= NP = NP
(E+m) E+m

which for the desired 2E particles per unit volume, requires that
N=+vVE+m

*Obtain same value of N for U1, Uz, Vi, V2
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Charge Conjugation

* In the part Il Relativity and Electrodynamics course it was shown that
the motion of a charged particle in an electromagnetic field A* = (¢,A)
can be obtained by making the minimal substitution

pP—pP—eA; E—E—ef
p=—iV, E=id/ot
this can be written dy — dy +ieAy

with

and the Dirac equation becomes:

P (O + ieAy )y + imy =0

*Taking the complex conjugate and pre-multiplying by —z'y2
= =iy Oy —ieAy )yt —myPyt =0
But ,YO* — ,YO; ,},1* — ,yl; ,},2* — _,},2; 73* — ,}ﬁ
I . LDk P2k
= YOy —ieAy )iy y* +imiy y* =0

*Define the charge conjugation operator:

v =Cy=iy’y*

and Py =—pHy?

(D14)
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D14 becomes:

Y (dy —ieAy)y +imy’ =0
«Comparing to the original equation
Y (Ou +ieAy )y +imy =0

we see that the spinor l}/’ describes a particle of the same mass but with
opposite charge, i.e. an anti-particle !

A

C ™% | particle spinor < anti-particle spinor

*Now consider the action of é on the free particle wave-function:
v = Mlei(p‘.?—Et)

v =Cy =Py = ipue (PTEY
] 1 - Px—Iipy
TIT O 2
Pui=i| 0500 | VETm| 2 | =vEFm| Em | =w
000 Pxi_l’?)y (1)
E+m
hence W= up elPF=E) Syl — o i(PF-E1)
similarly V= uzei(ﬁ.?—Ez) L} lI[, _ vzefi(ﬁ?*Et)

* Under the charge conjugation operator the particle spinors 141 and u)
transform to the anti-particle spinors viand v,
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Using the anti-particle solutions
*There is a subtle but important point about the anti-particle solutions written as
y =v(E,p)e PTE
Applying normal QM operators for momentum and energy p= —lV H= la/at
gives Hv| =idvi/dt = —Ev; and pv| = —iVy) = —Pvi
* But have defined solutions to have E>0
*Hence the quantum mechanical operators giving the physical energy and
momenta of the anti-particle solutions are: ~
AY = —ig/ar and P =iV
-Under the transformation (E,p) — (—E,—p): L=FAp — —L
Conservation of total angular momentum [H,L+S] =0 == |§(v) _, _§
* The physical spin of the anti-particle solutions is given by §<V) = —S
0 :
A spin-up hole leaves the
In the hole picture:  -mc¢2| ——4— negative energy sea in a spin
down state
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Summary of Solutions to the Dirac Equation

*The normalised free PARTICLE solutions to the Dirac equation:

v = u(E,p)etiPT-E)  satisfy (Y py—m)u=0
with 1 0
0 1
u =+vE+m Dz ; uy = E+m| p—ipy
E+m E+m
Px+ipy —Pz
E+m E+m
*The ANTI-PARTICLE solutions in terms of the physical energy and momentum:
Y= V(E,ﬁ)e*i(ﬁf*m) satisfy (Y pu+m)y=0
x—Ipy p.
with B Etm
Pz Px+tipy
vi=+vVE+m E6m ; v =+vVE+m EJlrm
1 0
For these states the spin is given by SO = _§
|B|* +m?

*For both particle and anti-particle solutions:
(Now try question 7 — mainly about 4 vector current )
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Connection between Dirac Hamiltonian and existence of Intrinsic Spin

*For a Dirac spinor is orbital angular momentum a good quantum number?
i.e.does L=7Ap commute with the Hamiltonian?

[H.L] = [&p+BmFAp)
= [@&.7,7Ap]
Consider the x component of L:
[H,L,] = [a&.p,(FAP),]

= [axpx + 0ypy + 0Pz, YD — Zpy]
The only non-zero contributions come from: [x, px] = [}’,Py] = [Z,pz] =i

[HaLX] = Oyp; [pyvy] — Oz py [pmz]
= _i(aypz - O‘zpy)
= —i(GAP)x
Therefore [H,Z] =—i0Ap (A.1)

*Hence the angular momentum does not commute with the Hamiltonian
and is not a constant of motion
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Introduce a new 4x4 operator:

s la 1750
S=3%= z(oa)

where G are the Pauli spin matrices: i.e.

M
I
coco~—
co—o
o—oo
—o0oO

H, 2] =[6.5+pm, ]
S G 0 I 0
- () (32)( )
and hence [H,Z] = [6.p,2
Consider the x comp: [H, Zx] = [Otxpx + oy py + azpmzx]

= Px[axazx] +Py[ayazx] + pz[amzx]
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Taking each of the commutators in turn:

0 o o, 0 o, 0 0 o\ _
ws] = (6 6)(Fa)(%a)(ad)=0
B 0 oy\(ox O o, 0 0 o
[%”Zx] - (Gy 0)(6 Gx>—<0x Gx)(cy O)
_ ( 0 Gycy—aycx)
0,0y — 0y Oy

_ 0 2o,
- —2io, O

—2ia,
o, 2] = 2
Hence H,LZ,] = pufoe, L]+ pylog, X + polog, 2]
= —2ipy0+2ip, 0

[H,Y] = 2ia AP
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*Hence the observable corresponding to the operator Y is also not
a constant of motion. However, referring back to (A.1)

S -
(H,5) = SH.5] = 6/ =—[H,L

Therefore: [H,L+S5]=0
. c 1/(c 0
Because S= 5 ( 0 6)

the commutation relationships for S are the same as for the & , €.9.
[Sx,Sy] = iS;. Furthermore both S? and S, are diagonal

1000
$=4E+B+5) =1 g 1

0

)W

1 000
01. g — 0-100
0)> #7210 0T10
1 0 00—

oo
O'—‘O

1

3 and for a particle travelling along

Consequently S2y = S(S+1 =3

the z direction S,y = :|:21;1

* S has all the properties of spin in quantum mechanics and therefore the
Dirac equation provides a natural account of the intrinsic angular
momentum of fermions
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Spin States

*In general the spinors u1,u2,v1,V2 are not Eigenstates of §Z

1 000
& _1v _1({0; 0\ _1[{0-10 0 .
Sy =13, = z( 0 oz) =3{o00 10 (Appendbx )
0 0 0 -1
However particles/anti-particles travelling in the z-direction: p. = |p|
1 0 0 7]
0 1 +\7| E6m
up=N| tp | m=N| 0 ; vi=N E6m ; =N 1
E6m F|7| 1 0
E+m

are Eigenstates of S,

Szl/ll = _|_%u] ng)vl =85y = +%V1 Note the change of sign
of § when dealing with

Szuz - —%Mz §V>V2 = _SZVQ = —%Vz antiparticle spinors
-—) <= -—) <= —) <= —) <=
—_— — > > | —— < 4 <
Uy up Vi z V2 uy 125 Vi z V2

* Spinors U1,U2,V1,V2 are only eigenstates of S‘Z for Pz = ilﬁ’
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Pause for Breath...

A

Have found solutions to the Dirac equation which are also eigenstates S, but
only for particles travelling along the z axis.

*Not a particularly useful basis

*More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of commuting observables.

«Can’t use z component of spin: [I—AI, S’Z] #0 (Appendix Il)

*Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows
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Helicity

* The component of a particles spin along its direction of flight is a good quantum
number:

[A,5.p] =0

* Define the component of a particles spin along its direction of flight as HELICITY:

Sp 285p %p
Slip| 1Bl 1Pl
*If we make a measurement of the component of spin of a spin-half particle

along any axis it can take two values +1/2 , consequently the eigenvalues
of the helicity operator for a spin-half particle are: +1

’z 7,

h=+1 h=—1
Often termed: “right-handed” “left-handed”

h

* NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
* In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit
V=~ ¢ are the HELICITY eigenstates the same as the CHIRAL eigenstates
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Helicity Eigenstates

*Wish to find solutions of Dirac equation which are also eigenstates of Helicity:
(Z.ﬁ)MT = tuy (Z.ﬁ)ul =—u|

where U1 and U are right and left handed helicity states and here pis
the unit vector in the direction of the particle.

*The eigenvalue equation: [.] []] [’]
6.p 0 ua\ _ o (ua
(% &) (1) == (1) BEie
gives the coupled equations: (3-]3)%4 = Zuy (D15)
(6ﬁ)u3 = :IZMB
«Consider a particle propagating in (8, ¢) direction /{
p=(sinBcos¢,sinOBsing,cosO) 0 F4
o oa p Pr—ipy\ cos O sinf@cos ¢ —isin B sin @
O'-P—<px+zipy —pzy>_<sin9cos¢+isin65in¢ —cos 6 )
55_ ( cosé sin Qe 0
P sinfe’® —cos0
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a a
*Writing either ug = (b) or Up = (b) then (D15) gives the relation

COSG Sineeii‘p a . a F helicit :*:1
(sin@ei“’ —cos 9 ) (b) =+ (b) (For helicity +1)

So for the components of BOTH “A and ¥B

*For the right-handed helicity state, i.e. helicity +1:

é: 1—.coseei¢ _ ZSil’lz(g) 9 _ 4o sin(
a sin 2sin(%)cos(%) cos(

cos (Q)

cos
- Har = (eiq’ sin%g)) “BT = (ei¢ sirg

AN D oD |D

| D’ e [—
~—
v

U = us\ | K e’¢ sin
! ug K cos (
in
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*From the Dirac Equation (D12) we also have

(6.0 ua = (E+m)up
"B E—I—muA E+m( p)uA E+muA

* (D15) determines the relative normalisation of 44 and Up , i.e. here

*The negative helicity particle state is obtained in the same way.

*The anti-particle states can also be obtained in the same manner although
it must be remembered that S(V) =\

ie. AV =—(Ep) = Epv;=-—w
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* The particle and anti-particle helicity eigenstates states are:

l(qzsos (%g) l—¢ sin ((ge))
e?sin (> e'?cos (%
=N| 5 .7 =N Bl
1N (s | Y| )
Erm€?sin(3) — g€ cos (3)
Lsn(9) Lco(?
vi =N _ﬁe_mcgs(z) v =N ﬁe"psgl(z)
—sin (%) cos (5)
€9 cos (g) €9 sin (g)
particles anti-particles

MT’ ul VT’ Vl
h=+1 %——1 h=+1 , h=-—1

* For all four states, normalising to 2E particles/Volume again gives |N = \/E +m |

The helicity eigenstates will be used extensively in the calculations that follow.
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Intrinsic Parity of Dirac Particles

non-examinable
* Before leaving the Dirac equation, consider parity

* The parity operation is defined as spatial inversion through the origin:

X=—x; VY=—y, d=-z =t

*Consider a Dirac spinor I/J(x v, 2, t) which satlsfles the Dirac equation

iy! a +y2 +y3—— l//——zyo (D17)

A

*Under the parity transformatlon I/I "y, 2 = Pl]/(x,y,z,t)
Ty P=o° W' (.Y, 2 ) =P w(x,y,2,0)
()2 =1 so w(xyzr) =7y (x ,y',z’J’)

©17) - i +,-y2wa_y ity - —iyoyog_"t’

*Expressing derivatives in terms of the primed system:
iy’ — 2 =

Since '}’O anti-commutes with Yl '}’2 YS

+ipy S iy O

/

—myy’ = aﬂ
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oy’ vy’

L | .

Pre-multiplying b }/O = I +1y —l’yC
plying by 4 ox' dy’ ot’
*Which is the Dirac equation in the new coordinates.

* There for under parity transformations the form of the Dirac equation is
unchanged provided Dirac spinors transform as

y— Py=+yy
(note the above algebra doesn’t depend on the choice of P = j:yo )
°For a particle/anti-particle at rest the solutions to the Dirac Equation are:

W =ue —imt. . I,U—uze Lmt, l[/_V1€+lmt,l[/_V2€+lmt

0 0 0
with uy =N ; up=N é;w=N 8;w=N ?;
0 1 0
1000 1 5 . P
01 0O 0 Uy ==xuy vy =+v
P + == tc. A N
" 88 é? 8 S T iy =ty vy = T

*Hence an anti-particle at rest has opposite intrinsic parity to a particle at rest.
* Convention: particles are chosen to have +ve parity; corresponds to choosing

P=+y
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Summary

* The formulation of relativistic quantum mechanics starting from the
linear Dirac equation oy

Ay =(a.p+Bm)y = iW
=) New degrees of freedom : found to describe Spin ' particles

* In terms of 4x4 gamma matrices the Dirac Equation can be written:
(iY*dy —m)y =0
* Introduces the 4-vector current and adjoint spinor:
M=y =yrty
* With the Dirac equation: forced to have two positive energy and two
negative energy solutions

* Feynman-Stiickelberg interpretation: -ve energy particle solutions
propagating backwards in time correspond to physical +ve energy
anti-particles propagating forwards in time

ur, Uz, vi, v2
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* Most useful basis: particle and anti-particle helicity eigenstates

”T’ u VT’ V]
h=+1 %l—l h=+1 , h=—-1

* In terms of 4-component spinors, the charge conjugation and parity
operations are:

y—Cy=iry'| |yv—Py=~"y

* Now have all we need to know about a relativistic description of
particles... next discuss particle interactions and QED.
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Appendix | : Dimensions of the Dirac Matrices

) . L oy non-examinable
Starting from Hy = (.5 + fm)y = IS
For A to be Hermitian for all 7 requires o« =0 p=p"
To recover the KG equation: of = o2 =a? =2 =1
Boj+oif =0
ooy + oo =0 (j#k)
Consider Tr(B'AB) = BlAuBy
with B'B =1 = BuB[Aj
OjkA jic
= Tr(A)
Therefore Tr(a) = Tr(oga))

= —Tr(a}ocjoc,-) (using commutation relation)
= —TF(OC,')
= Tr(og) = 0
similarly Tr(B) = 0
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We can now show that the matrices are of even dimension by considering
the eigenvalue equation, e.g. oX=AX
i =atoxd = A AFTE
Eigenvalues of a Hermitian matrix arerealso A2=1 — A =+1
but Tr(a) =Y A

Since the ;,3 are trace zero Hermitian matrices with eigenvalues of
+1 they must be of even dimension

For N=2 the 3 Pauli spin matrices satisfy
0,0;+0;0;,=0 (]751)
But we require 4 anti-commuting matrices. Consequently the @;, 8 of the

Dirac equation must be of dimension 4, 6, 8,..... The simplest choice for
is to assume that the Oc,-,ﬁ are of dimension 4.
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Appendix Ill : Magnetic Moment

non-examinable
* In the part Il Relativity and Electrodynamics course it was shown that _
the motion of a charged particle in an electromagnetic field A* = (¢,A)
can be obtained by making the minimal substitution
P—P—qA; E—E—q¢
» Applying this to equations (D12)

(6.5—qG.Aup = (E—m—qo)ua (A.2)
(8.[)’—6](—’7.1‘_{)%4 = (E4+m—q@)up
Multiplying (A.2) by (E+m—q0)
(6.5—q0.A)E+m—qd)ug = (E—m—q@)(E+m—qd)u,
(6.5—q0.A)(6.5—q8A)us = (T—qd)(T+2m—qP)us (A3)

where kineticenergy T =F —m
*In the non-relativistic limit 7 < m (A.3) becomes

(6.5 —q6.A)(G.F—q6.Auy ~ 2m(T —qd)uy
[(aﬁ)Z*Q(aA’)(aﬁ)*Q(al_’))(af_{)Jqu(aA’)z]uA ~ om(T—q9)us (A4)
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‘Now G.A= (Ax ?—ZiAy Ax__AlZAy ) - 3.B= (Bx —%iBy Bx_—BlZBy ) :
which leads to  (G.A)(G.B) = A.B+i5.(AAB)
and (8.4)> = AP

*The operator on the LHS of ( 4)i ~

= (P—qA)* —iqd [4/\13+ﬁ/\5q

= (F—qA)* —4%G. [_}64—6;} p=—iV

= (P—qA)* —qB.(VAA) (VAA)Y =V A (Ay)+AN (Vy)
= (P—qA)*—48.B B=VAA

* Substituting back into (A.4) gives the Schrodinger-Pauli equation for
the motion of a non-relativisitic spin 'z particle in an EM field

1 - nd q - =
[%(p—qA)z — %G.B—f—q(p] ug = Tuy
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1 — hnd - =
%(p—qA)2 — %G.B—f—q(}) us = Tuy

@ Since the energy of a magnetic moment in a field B is —ﬁﬁ we can
identify the intrinsic magnetic moment of a spin % particle to be:

— q —
A= 2
In terms of the spin: § = %6‘
— q_’
H:_
m R

@ The intrinsic magnetic moment of a spin half Dirac particle is twice
that expected from classical physics. This is often expressed in terms
of the gyromagnetic ratio is g=2.
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Generators of Lorentz Transformations |
It will shortly be seen that the quantities

(MOPY = ghaghl — gvaght ()
or the equivalent (but less symmetric) quantities
(MO, = ghes) — 5 gh” (8)

are generators of Lorentz Transformations. The indices a3 choose between generators
M8, while *,, in (M®B)", are there to act on vector indices. Evident antisymmetry
in the a3 of (7) means that there are only six independent non-zero generators.
Suppressing the vector indices (taken to be *,) and taking gh¥ = diag(+, —, —, —)
the six independent generators are:

01 0 O
_ a0l _ a0 |1 0 0 O
Ki=MZ=-M"=145 4 0 o0
0 0 0 O
0 0 1 0
_ a2 _ a2 |0 0 0 O
Ke=M*=-M"=11 0 0 o
0 0 0 O
0 0 0 1
_ 03 _ ga30_]10 0 0 O
Ke=M"=-M"=109 0 0 o
1 0 0 O
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Generators of Lorentz Transformations |
and

00 0 O
_ a3 _ _ga32_ |0 0 0 0
H=M"==M"=145 o o 1

0 0 +1
0 0 0 O
a3l _ a3 _ |0 0 0 +1
h=MT==M="=14s 4 o o
0 -1 0 O
0 0 0 O
a2 _ a2 |0 0 -1 0
H=ME==MT=19 11 0 o
0 0 0 O

or, for short:
1 .
J,'ZEE,'J'[(MJI(
K = M.

[Aside: The generators obey commutation relations
Ui, 4] = €jjc s i, Ki] = €ji K, [Ki, Ki] = —€jjic k.

100 / 557




Generators of Lorentz Transformations |1

The first of these says that the J's generate rotations in three-dimensional space and
fixes the overall sign of the Js. The second says the K's transform as a vector under
rotations. End of aside]

With above definition? one could represent and arbitrary Lorentz transformation
(boost, rotation or both) as

[ /\HVXV
with
1 I
AHV = (exp |:2Waﬁ(MaB).Q:|) (9)
1
=0, + Ewaﬁ(/\/lo‘ﬁ)“y + 0(w?) (10)

using a set of parameters w, g which may as well be antisymmetric in o5 (since any
symmetric part would not participate in (10) on account of the (a <+ 3)-antisymmetry
of M®8) and so contain six independent degrees of freedom (controlling three boosts
and three rotations) as required. In most of the proofs which follow we use the
infinitesimal transformations to first order in w since if some properties can be proved
for infinitesimal transformations then it is always be possible to generalise that result
to the exponential form for a finite transformation.

2Compare to similar but slightly different sign/index conventions in
http://www.phys.ufl.edu/~fry/6607/lorentz.pdf.
101 /557

Why do (M*%)*, generate Lorentz transformations? |

Lorentz transformations should be continuously connected to the identity (which (10)
is, when wqg = 0) and should preserve inner products. The transformation in Eq. (10)
preserves inner products because:

X/ . y/ — gluyxlp.ylu
= 8 (Nox7)(N"-y7)
1 1 =3
= guv (05 + Ewaﬁ(’\/’aﬁ)“a)(& + Ewag(Maﬁ)”T)XUyT + O(w)?
[ 1 ., T
= |gor + 5 (Waﬁ(Ma'B)TU +wd6 ) x“y" + O(Wz)
| 1 aB [e%5] o.T 2 .
= |gor + > (Waﬁ(M )ro + wag(MYF)or ) x7y" + O(w?) relabelling

1
= |gor + > (w g(M“ 'B)TU — wag(M“ B)TJ) x%yT + O(wz) antisymmetry of M

= gorx7y" + O(WZ)
=x-y+ O(w?).
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Why do (M*P)*, generate Lorentz transformations? ||

If the above argument seems too abstract, a more concrete way of checking that we

have generators of Lorentz transformations might instead be to compute

coshn sinhnp 0 O

sinh cosh 0 O

exp (nkKi1) = 0 K 0 K 1 0
0 0 0 1

(11)

as this will be recognised by some as a boost in the positive x-direction with rapidity n

(that is with coshn = 7 and sinhn = 8v) while

1 0 0 0
exp (0.h) = 8 (1) co(;e —s?nG (12)
0 O sinf  cosé
will be recognised by most as a rotation by an angle 6 about the x-axis.
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Lorentz covariance of the Dirac equation |
If the Dirac Equation:
¥ Byt = mp (13)
is to be Lorentz covariant, there would have to exist a matrix S(A) such that
¥’ = S(A)4 is the solution of the Lorentz transformed Dirac Equation
o = my'. (14)
Equation (14) implies
i7" = my’ (15)
and so
i, O S(N% = mS(A) (16)
and so since S(A) is independent of position
SN, 8 = S(A)mip (17)

which using (13) becomes

YuS(MA, 0% = S(N) iy O
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Lorentz covariance of the Dirac equation Il
and hence
iV SN, Ouh = S(N)iv” Oy
or
i [P S(ANAY — S(AYY] 8 = 0. (18)
Therefore, if we can show that there exists a matrix S(A) satisfying
VES(MA,Y = S(A)Y” (19)

we will have found a solution to (18) and thus will have found that the Dirac Equation
is Lorentz covariant as desired. Thought it would be entirely possible to work directly
with (19) it is perhaps nicer to bring both S matrices to the left hand side

STHAWHS(MA,LY =+
and then use the identity

NN, =62 (20)

so that (19) ends up being written in the more common and (perhaps) more
suggestive and useful form:

STHAYIS(A) = A%, (21)
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Lorentz covariance of the Dirac equation Il

[Aside: Here is (for infinitesimal Lorentz transformations) a proof of the identity (20):
NN = (g2 4+ SeaaM), ) (87 + Swas (M), ) + O(2)
=574 3 [an (M), 7 +wa(M7),] + 0w?)
=0, + % [Waﬁ(MaB)“U + waﬁ(Maﬁ)gu} + 0(w?) (relabelling)
=d,+ %“-’a,@ [(Maﬁ)ua + (Maﬁ)au} + O(w?) (factorising)
= 67+ 2was [(MP)77 4 (MP)77] gur + O(?)  (tdying)
=0, + %Waﬂ {(Maﬁ)m - (Maﬁ)m} gur + O(w?) (antisymmetry of M)
=37 + O(w?).
End of aside]

Lemma
A valid choice of S(\) (for an infinitesimal Lorentz transformation) is given by:

1
S(N) =1+ Zwaﬁ'yo"y + O(w?). (22)
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Lorentz covariance of the Dirac equation IV

Proof.

STHANTS(N) = (1 - %wam“vﬂ) ° (1 + %wam&vé> +0(w?)
=77+ % (9ap777%9? = wapr®777) + O(w?)
=7+ %waﬂ (v r*2P = 7*vPy7) + O(w?)
=77+ %waﬁ (77 + 9971 =7 (777 +775%)) + O(w?)
=47 + %Waﬁ (2g"avﬁ -~ 7a2g"5) +O(w?)  since {y*,7"} = 2g""
= (57 + Guas (£7°02 - 626°%) ) 2¥ + O(?)
= (57 + Jeas (M), ) 27+ 0(?)  using (8

=N%,4" + O(w?) using (10).

L]
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Lorentz covariance of the Dirac equation V
[Aside: Since v*vP = %{’ya‘,’yﬂ} + %[’ya,'yﬁ] we can also rewrite (22) in the more
frequently seen (conventional) form:
1 a B3 2
S =1+ Foasb® 7] + O2) (23

End of aside]
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Transformation properties of ¢, ¢y*ep and pyH~y" ). |

Each of the expressions ¢, ¢y*1p and ¢y*~"4) is of the form ¢yH~Y - ~y74. To
understand how any of them is affected by a Lorentz transformation it is therefore
interesting to consider the following set of manipulations:3

Gy AT = (SN - A TI(S(N)Y)

= ¢TST (A [ S(N)STHAWYS(N) - - STHANWTIS(A)Y

= ¢TST(MYPS(N)(STHAYS(N)(STHA)YS(N)) -+ - (STHAWTS(A)Y

= T STA SN (A )N 57Y) - (N 37 )¢ using (21)
which itself suggests that if we can show that

STAYS(A) =4° (24)

then we will have proved that

Ty AT = BNy g7) -+ (N3 e

which will itself have showed that each of the expressions under consideration
transforms like a tensor of the appropriate rank.
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Transformation properties of @1, ¢y*1) and pyH~Ya). |
We must therefore prove (24). To do so is a two-stage process. First we compute
ST(A). Then we combine it with 7°S(A). Starting with (22):
f 1 e 2
STA) = |1+ qwapr™y”| + 0(w7)
1
=1+ Zwag('yafy’B)T + O(w?) (wap are real)
1
= 1+ 3was (1)) (%) + 0(?)
1 @
=14 Swap(1°771")(1"%7%) + O(w?)
1
=14 Jwap1"771*1° + O(w?) (25)
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Transformation properties of ¢, ¢y*ep and pyH~yV ). 1l

from which we can deduce (using (22)) that
1 1 - 3
SHAROS(N) = (14 w19 ) 20 (1+ Juazn™) + 0(P)
0 1 0.8.0.0.0 0.a. B 2
=7 +Z<wamv YN+ wagr vy )+0(W)
1 o
= [14 5 (wan®2® +wpar®1?) | 406D (@) > (5.a)

= ~°[1 4+ 0] % + O(w?) (Wap = —wsa)
=%+ 0(w?)

verifying (24) as required. This completes our proof that:
> ¢ is Lorentz invariant scalar,
> pyHe) transforms as a Lorentz vector, and

> pyH+Ye) transforms as a second-rank tensor, etc.

3These manipulations may look complex but they really only consist of inserting lots of ‘ones’ in form
‘S(A)STL(A)’ at the right places, using ¢ = ¢T+° and using (21) many times:
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Particle Physics
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Handout 3 : Interaction by
Particle Exchange and QED
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Recap

* Working towards a proper calculation of decay and scattering processes
Initially concentrate on: _+

+ € e
cefe > utu © Y H
e q *eq
e u q q

A In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections IMI2

— X (phase space
S % Flux P pace)

A In Handout 2 covered relativistic treatment of spin-half particles
Dirac Equation

A This handout concentrate on the Lorentz Invariant Matrix Element
* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED
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Interaction by Particle Exchange

« Calculate transition rates from Fermi’s Golden Rule

— 2
Uy =27|T7i|"p(Ey)
where Tﬂ is perturbation expansion for the Transition Matrix Element

Vi
JFL

* “Classical picture” — particles act as sources for fields which give
rise a potential in which other particles scatter — “action at a distance”

* “Quantum Field Theory picture” — forces arise due to the exchange

of virtual particles. No action at a distance + forces between particles
now due to particles
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Interaction by Particle Exchange

We now go to
https://www.hep.phy.cam.ac.uk/~lester/
teaching/partIIIparticles/Propagators.pdf
to provide some motivation for why matrix elements

of the form ,
g

e m

might arise in scattering between two particles when
this scattering is caused by the exchange of a virtual
particle whose non-virtual mass (i.e. if it were it on
shell) is m,. Here g" is the four momentum of the

virtual particle.
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8a8b
= |\Mp = S5
q- — ny
* After summing over all possible time orderings, My; is (as anticipated)
Lorentz invariant. This is a remarkable result — the sum over all time
orderings gives a frame independent matrix element.

*Exactly the same result would have been obtained by considering the
annihilation process
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Feynman Diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

%} v
sl a c | a ¢ a c
& &
X < —
+ ¥ = x
b d b d b d
time time
a c In a Feynman diagram:
~—
% the LHS represents the initial state
X @ the RHS is the final state

% everything in between is “how the interaction
b ~d happened”
* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

® The factor 1/(q2 — m)%) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange
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8a8b
q* —m;
@ The fundamental strength of the interaction at the two vertices &a, &5

* The matrix element: Mf,- = depends on:

@ The four-momentum, g, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

¢ Here ‘]2:(171 - P3)%(P4 - P2)2= ! “t-channel”
For elastic scattering: p1 = (E,p1); p3 = (E,P3)
g =(E—E)*—(p1—p3)

q*><0 termed “space-like”
. . Here C]2:(P1 + P2)2z(l93 + P4)2:S “s-channel”
oY /%, InCoM: p1=(E,p); p2=(E,—p)
P ¢ =(E+E)*—(Pp—Pp)* =4E°

q*>>0 termed “time-like”
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Virtual Particles

“Time-ordered QM”

Ela c ¥ta c
[ ]
S o
b d b d
I time I time
— 7

—~
‘Momentum conserved at vertices
*Energy not conserved at vertices
*Exchanged particle “on mass shell”

E = |pe? =m;

Feynman diagram

— -

*Momentum AND energy conserved
at interaction vertices
*Exchanged particle “off mass shell”

EZ = bl = 4* # 3
VIRTUAL PARTICLE
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Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:
*Interaction by particle exchange in 2"¢ order perturbation theory.

a (o

b d

8a8b

My =
=

*Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

rise to a potential V(r)

f
i \>§/
[ )
V(r)

V(I’) = 8a8b

M = (yr[V(r)|yi)

Obtain same expression for M ; using

e " YUKAWA
r potential

* In this way can relate potential and forces to the particle exchange picture
* However, scattering from a fixed potential V(r) is not a relativistic

invariant view
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Quantum Electrodynamics (QED)

*Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

(Non-examinable)
*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part Il electrodynamics)

P—DP—qA; E—E—q

(here g = charge)

In QM: P=-iV; E=id/ot
Therefore make substitution:  id,, — id, —gAy
where Ay =(9,-A); 9y =(3/1,+V)
*The Dirac equation:

YHouy+imy =0 = Yo,y +igtAyy+imy =0

. oy -
(xi) = iyoa—‘fﬂy-w—q}"‘fluw—mw:()
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. a 2 [
Woa—lf=7°Hw = my—i7.Vy+qy Ay

<y Ay = (Pm—i¥V)y+q Ay
H_J %f_J
Combined rest Potential
mass + K.E. energy

*We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

~ (note the A, term is
Vb = qY’ ! Ay just: qy°Ao = q9 )

*The final complication is that we have to account for the photon
polarization states.

A“ _e ELA) l(PT—E1)

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(1) 8 Could equally have
ell) = 0 e = 1 chosen circularly
0 0 polarized states
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*Previously with the example of a simple spin-less interaction we had:

a\/ (8}
M- <w|wa>q2m%<wm>\ ‘ X
Il 1
8a 8b — T _ D1 p3
b e m e
*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for V. If we were
to do this, remembering to sum over all photon P2 P4
polarizations, we would obtain: P T \% r
+ 2, g, (&y)" (. ,
M= [Me(m)qeyo?’pue(pl)} 2—2 [MT(PLL)%YOY Mr(Pz)}
- J \)L:‘] 9 J — _
Y Y Y
Interaction of ¢~ | | Massless photon propagator || Interaction of 7~
with photon summing over polarizations with photon
+All the physics of QED is in the above expression !
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equation be transverse. Then it is easy to show:

*The sum Zsﬁ” (e})* over the
A

2 rkertk) = kuky

;eu( (k) = —gu— CE-e =R
polarizations o_f the wrtual photon' is Stk B
not —8uv, but in matrix elements it (k) — k2 (k- n? K2

can be replaced by _g[.lV in certain Fortunately, the noninvariant terms involving n can all be dropped. The terms
. proportional to k, vanish when inserted into a scattering amplitude. This is
circu mStances . because the propagator couples to two currents, which in turn are conserved by
. L , gauge invariance. (To see this, notice that the theory is invariant under § A, = 3, A.
(Beyond this course, but see, say, Michio Kaku's In a scattering amplitude, this means that adding &, to the polarization vector €,
“Quantum Field Theory: a modern introduction”) | cannot change the amplitude. Thus, k, terms in the propagator do not couple to

(end of non-examinable section) the rest of the diagram. This will be discussed more in detail when we study the

‘Ward identities.)

Therefore the invariant —&guv
matrix element becomes: M = [”Z(m)%?’()?”uue(]?lﬂ —q2 [”2(194)6]1?})7"’”1@2)}

Using the definition of the adjoint spinor ¥ = IIITYO
_ guv
M = [t (p3)ge Y ue(p1)] —=5— [z (pa) gy uz(p2)]
* This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that u;Y"u; transforms as a four vector. [(page 109)]

* Writing ]g :ﬁe(pg,)’}/.yu.e(p]) J“c/ :ﬁf(p4)yvur(p2)
Je-Jt
qZ

we have M = —q.q: showing that M is Lorentz Invariant
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Feynman Rules for QED

It should be remembered that the expression
M= [ﬁe(p?))Qe'yuue(pl)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary — can just write down matrix element
using a set of simple rules

S8 ) )]

Basic Feynman Rules:

et T ® Propagator factor for each internal line
Y (i.e. each internal virtual particle)
@® Dirac Spinor for each external line
e e (i.e. each real incoming or outgoing particle)

@& Vertex factor for each vertex
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Basic Rules for QED

® External Lines

incoming particle u(p) —>—
spin 1/2 outgoing particle u(p) —>
incoming antiparticle v(p) —<—
outgoing antiparticle v(p) —<—

_ incoming photon e (p) AN

spin 1 outgoing photon eH (p)* AN
@ Internal Lines (propagators)

: v v
spin 1 photon q2 AN\
spin1/2  fermion i(Yqu +m)

G —m?

@ Vertex Factors
spin1/2  fermion (charge -|e|) ey \\5/

@ Matrix Element —j)/ = product of all factors
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eg. __ pi L P e\\p;/,/e— tie(p3)iey" Jue(p1)

v Uc(pa)iey"uz(p2)

i = [,(p3)ier ue(p1)] "j;” (e (pa)iey"ue(p2)

*Which is the same expression as we obtained previously
eg. et 2 p*

y P4/
v —iM = [v(py)ieY*u(p1)]

_;i“” [@(p3)iey"v(pa)]

/Pl

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
¢+ The &uv of the propagator connects the indices at the vertices
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Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

8a8b
My = =

2
q- —my

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

_iM = [a(p3)ier u(py)] "j;” [@(pa)iey"u(p)

* We now have all the elements to perform proper calculations in QED !

128/ 557




Particle Physics

Dr Lester

Handout 4 : Electron-Positron
Annihilation
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QED Calculations

@ How to calculate a cross section using QED (e.g. e'e™ = p*u):
© Draw all possible Feynman Diagrams
*For e*e~ = u*u there is just one lowest order diagram
et [
Y
M o< €2 o< Oty
e~ e
+ many second order diagrams + ...

e* Y wooer W
M + M v Meetoeag,
e~ poe [T
® For each diagram calculate the matrix element using Feynman rules

derived in the previous handout.
© Sum the individual matrix elements (i.e. sum the amplitudes)

My =My +M, +M3+ ...

*Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!
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and then square  |My|? = (M) +My+ M5+ ...) (M} +M; +Mj +....)
m) this gives the full perturbation expansion in 0O,

*For QED Q. ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.

e* y pt e* Y pt
2 2 2 4
>\/VV\< M? < a2, >V\O/\< M? < o,
e~ n- e u-
O Calculate decay rate/cross section using formulae from handout 1.
-e.g. for a decay p*

2
U= 5 / IMyil*aQ
*For scattering in the centre-of-mass frame
do _ 1 Bl o
dQ* ~ 64nls |ﬁ;“|| sl (1)

*For scattering in lab. frame (neglecting mass of scattered particle)

- =2 M+
dQ ~ 642 (ME1> My
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Electron Positron Annihilation

*Consider the process: e*e~— u‘u- p3 K
*Work in C.o.M. frame (this is appropriate 12 6/\)‘
for most e*e~ colliders). e X et
P2
pIZ(E70703p) pZZ(an)O)_p) +A
ps=(E.fy)  pa=(E,~py) H
*Only consider the lowest order Feynman diagram:
¢+ Feynman rules give: .
NN pa, M y g —ig

—iM = [v(p2)iey*u(p1)]

NOTE: ‘°Incoming anti-particle V
*Incoming particle u
*Adjoint spinor written first

q2” “[a(p3)ieyv(ps)]

In the C.o.M. frame have
do 1 |py]
dQ ~ 64n2s ||

Mg> with 5= (p1+p2)* = (E+E)* =4E>
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Electron and Muon Currents

*Here q2 = (Pl +P2)2 = S and matrix element

—iM = [¥(p2)ier u(pi)] "qg;‘” [@(ps)iey" v(pa)]

e2
= M= ——guy [V(p2) " u(p)][E(ps) 7" v(ps)]

* In handout 2 introduced the four-vector current
=y
which has same form as the two terms in [ ] in the matrix element
» The matrix element can be written in terms of the electron and muon currents

(Je)* =V(p2)u(pr) and  (ju)" =7(p3)y"v(ps)

2
e . .
- M= _?8MV(Je)”(Ju)V
2
e, .
M= _?]e-]/.l

» Matrix element is a four-vector scalar product — confirming it is Lorentz Invariant
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Spin in e*e~ Annihilation

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !
e_-» - e* e_-» - e* e_- - e* e—" - e*
RL RR LL LR
« Similarly there are four possible helicity combinations in the final state
* In total there are 16 combinations e.g. RL2RR, RL—RL, ....

* To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

1 1
<|M|2> = Z Z ‘Mi|2 = Z (|1V[LL—>LL|2 + ‘MLL—>LR|2 + )
spins
* i.e. need to evaluate: e
= _?Je-Ju

for all 16 helicity combinations !

* Fortunately, in the limit £ > my only 4 helicity combinations give non-zero
matrix elements — we will see that this is an important feature of QED/QCD
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*In the C.0.M. frame in the limit £ > m yu_
p1 = (E,0,0,E); py=(E,0,0,—E) e P ) e

p3=(E,Esin6,0,Ecos0); /
ps = (E,-Esin6,0,—FE cos 0) pﬁ P4
Left- and right-handed helicity spinors (handout 2) for particles/anti-particles are:
c —s || AL
ets ete i B
— B — 7 = — e’c = —e'Ps
up N E,‘ﬂn u| N % | V1 N Eﬂ,g V| N E+mc
where § = sing; c:cos% and N=+E+m
*In the limit E > m these become:
c —s s c
i i ol i¢
u=VE|" [su=VE| 5 s v=VE{TE | iv=VE[®,
se'? —ce'? ce'? se'?
*The initial-state electron can either be in a left- or right-handed helicity state
1 0
0 1
u(p)=vVE |7 |su(p)=VE| ¢ |;
0 —1
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*For the initial state positron (6 = T)can have either:

1 0
0 1
vi(p2) =vVE | 2y |svi(p2) =VE |
0 1

-Similarly for the final state lL~ which has polar angle 6 and choosing =0

c —s ¢/:0('u_
ur(p3) =VE | ¢ |su(p3)=VE| § |; " -
s —c Q g
+And for the final state p* replacing 6 — T —0; ¢ — T obtain
c s using sin(%Z52) =cos $
vi(pa) =VE | e |svi(p) =VE | ) cos(%52) =sin g
s c ) ST 1
‘Wish to calculate the matrix element M = — ?je.ju

* first consider the muon current ju for 4 possible helicity combinations
P 2 e Pl
u*f u*f M+/ Iu*/
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The Muon Current

*Want to evaluate (ju)v = ﬁ(p3)}/vv(p4) for all four helicity combinations

*For arbitrary spinors VY, (Z) with it is straightforward to show that the
components of W}/“(Z) are

o = ¥V = wioi+ w00+ w03+ i (3)
' = vV =it vos v+ w0 (4)
o = Y0 = —i(wioa— v o3+ i — wion) (5)
Vo = vPYo=wids— v+ vio —vion (6)

*Consider the LLR_,LLZrcombination using Y = uy O = V|

N C
with v =VE (SC) s up =VE (ﬁ) ;
—C S

ﬁr(p3)}'0vl(p4) = E(cs—sc+cs—sc)=0

- 4 (p3)yY'vi(ps) = E(=c*+s*—c?+5%) =2E(s* —c*) = —2Ecos 8
i (p3)YPvi(pa) = —iE(—c*—s*—c*—s%) =2iE
iy (P3)}’3V¢(p4) = E(cs+sc+cs+sc)=4Esc =2Esin0
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*Hence the four-vector muon current for the RL combination is
@ (p3)Y'v(ps) = 2E(0,—cos,i,sin8)

*The results for the 4 helicity combinations (obtained in the same manner) are:

M+‘}}'“__ ur(p3)y'vi(ps) = 2E(0,—cos8,i,sinb) RL
e 22w () i) = (0,0,0,0) RR
oz = ()Y () = (0,0,0,0) H
MK}}'H u(p3)Y'vi(ps) = 2E(0,—cosf,—isinf)| LR

* IN THE LIMIT E >> m only two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.

* In the Weak interaction only one helicity combination contributes.

* The origin of this will be discussed in the last part of this lecture

* But as a consequence of the 16 possible helicity combinations only
four given non-zero matrix elements
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Electron Positron Annihilation cont.

* For €'€~ = W'~ now only have to consider the 4 matrix elements:

Mgp| € >« e e X et |Mpgp

/ T Py
- - - M,

X et e- > < et

MLR

*Previously we derived the muon currents for the allowed helicities:

=W gt o w(p3)Y'vi(pa) = 2E(0,—cos,i,sin6)

He= _
m A .uL_.uI—Qi_ ﬂl(p3)yva(p4) = ZE(O,—COSG,—i,SiHO)

+‘}
*Now need to consider the electron current
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The Electron Current

*The incoming electron and positron spinors (L and R helicities) are:

1 0 1 0
) e{l) o
0 -1 0 1

*The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =V(p2) Y u(p1) () =u(p3)v*v(ps)

*Taking the Hermitian conjugate of the muon current gives

@(p3) ¥ v(pa)lt = [u(ps) Py v(pa)]

= v(pa) PP u(ps) (AB)" = B'AT
= v(pa) P Y u(ps) Y=
= v(pa) "Y'V u(p3) PP = Dyt
= V(pa)y"u(p3)
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*Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

Vi (pa)7Muy(p3) = [uy(p3)y'vi(ps)]” =2E(0,—cos6,—i,sin6)
vi(pa)¥u (ps) = [a,(p3)y'vi(ps)]” =2E(0,~cos8,i,sin0)
To obtain the electron currents we simply need to set 6 =0
2, 2 e lepe) v (p2)Y ur(p1) = 2E(0,—1,-i,0)
e——1 «——e* |ejep : vi(p2)Y u(p1) = 2E(0,—1,i,0)
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Matrix Element Calculation

2
e . .
‘We can now calculate M = —— j,. j, for the four possible helicity combinations.
s

€.d. the matrix element for €ze; — Lz I which will denote| Mgy

2 Q
/ Here the first subscript refers to the helicity
e = = of the €™ and the second to the helicity of the .
, Don’t need to specify other helicities due to
/ “helicity conservation”, only certain chiral
Ty combinations are non-zero.
. -+ . S\ _ :
xUsing: epe; (j) =y (p2)Y"ur(p1) = 2E(0,—1,-i,0)
—yt+ - SV = v _ .
JTiy Ta (Ju)" =u1(p3)y'vi(ps) = 2E(0,—cosb,i,sinb)
62
gives Mprp = ——[2E(0,—1,—i,0)].[2E(0,—co0s0,i,sin0)]
S
= ¢*(14cos0)

4ro(1+cosB) where a =e?/4m~1/137
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Similarly |Mgg|* = M1 = (470t)* (14 cos 6)*
\Mge* = [Myg|* = (4ma)?(1 — cos 0)?
Mgr - || MRo - || Myr /u‘ My /u‘

-1 colse I+; -1 cosO +1 -1 colse I+; -1 colse I+;
1 0)? 1 —cosB)? 1 —cosB)? 1 0)?
(14+cos0) (1 —cos0) (1 —cosB) (14cos0)
*Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.
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Differential Cross Section
*The cross section is obtained by averaging over the initial spin states
and summing over the final spin states: \Mre?+ [Mr|>  |Mgg|? + My
: A :

do
dQ

1

(IMrg|* + |Mge|* + |Mr|* + | ML)

7 X

1
64712s

(4mar)?
25672s

(2(14-cos0)? +2(1 —cos 0)?)

do

-d—Q

2
a
4_s(1 +cos>0)

Example:

Mark Il Expt., M.E.Levi et al.,
Phys Rev Lett 51 (1983) 1941
T T T T

A

[
»

cos0

1
+1

e'e” = urpu-
Vs =29 GeV

pure QED, O(a3)

— QED plus Z
contribution

Angular distribution becomes
slightly asymmetric in higher
order QED or when Z
contribution is included
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- The total cross section is obtained by integrating over 0, ¢ using

+1 16
/(1 +cos?0)dQ = 271'/ (1+cos”>0)dcos 6 = Tn'
-1

giving the QED total cross-section for the process €'~ = puu-

Aro?
O =
3S 10 3 T T T LML A L L ) L

_:_ ete” >yt~ E
) N v Jade ]
* Lowest order cross section i o Mark ) i

calculation provides a good 4 Piuto
description of the data ! = 'E o Taso E
= o 3
N—r — ~
b . 4

%aen

This is an impressive result. From
first principles we have arrived at an
expression for the electron-positron
annihilation cross section which is
good to 1%

T T
T |

ootl o by vy L
0 10 20 30

s(GeV)

e
o
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Spin Considerations (E > m)

*The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with S; = 11, i.e. in a total spin 1 state aligned along the
zaxis: |1,+1) or|l,—1)
« Similarly the muon and anti-muon are produced in a total spin 1 state aligned
along an axis with polar angle 0
|17 1>9

w
e.d. | Mgy - /-'
f/" gr === 11,1)

[Thd

- Hence MRR < (Y|1,1) where ¥ corresponds to the spin state, |1,1)g, of
the muon pair.

* To evaluate this need to express |1, 1}9 in terms of eigenstates of S

* In the appendix (and also in IB QM) it is shown that:
11,1y = 1(1 —cose)\l,—l)+%sin9|1,0)+%(1 +cos0)|1,+1)
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+Using the wave-function for a spin 1 state along an axis at angle 0

y=|1,1)g = 3(1 —cosO)|1,—1) + %sin9|l,0>+%(l +cos0)|1,+1)

can immediately understand the angular dependence

Mgr /!J_ 11,1)e

- -

e /r‘ ot == |17]> ==
pt

-1 cosO +1

[Mrg|* o< [(w]1,+1)[* = 7(1 +cos )

2 p- |171>9
e = ></‘-‘ + o= [1,—1) ==
s °

[MiR[* o< [(y]1,~1)]> = 7 (1 —cos )
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Lorentz Invariant form of Matrix Element

*Before concluding this discussion, note that the spin-averaged Matrix Element
derived above is written in terms of the muon angle in the C.o.M. frame.

1
<|Mfi|2> = Zx(|MRR|2+|MRL|2+|MLR|2+|MgL|) }3{'”
6 +

1
= Ze4(2(1+c056)2+2(1—cosG)Q)
+
= ¢*(1+cos’0) H

*The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

‘Inthe C.oM. p;=(E,0,0,E) pr=(E,0,0,—E)
p3 = (E,Esin®,0,Ecos0) p4=(E,—Esin6,0,—Ecos0)
giving: p1-p2 =2E% pi1.p3=E*(1—cos8); pi.ps=E>*(1+cos0)

*Hence we can write
2 o a(p1p3)® + (pi-pa)? a1+
(M) = 2¢ =2t ()

(p1.p2)? s>
*Valid in any frame !
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CHIRALITY

*The helicity eigenstates for a particle/anti-particle for E >> m are:

C —S S C

i i — ol i¢
w=vVE|% |iu =vE| S |;v=vE| % |;iv=VE[*
S€i¢ —cei¢ Cei(l) sei¢

0. 0

where s:sinz, Cc=Cos5

*Define the matrix 0010
o253 [0001) /01
r="7"rr=11000 —(10>

0100

In the limit £ > m the helicity states are also eigenstates of }’5

}/5uT=—|-uT; }’SulZ—ul; YSVTZ—VT; }/Svlz—i-vl
* In general, define the eigenstates of }’5 as LEFT and RIGHT HANDED CHIRAL
states UR; uy,; VR; %3

i.e. }/SuR = +Ug; ysuL = —ur; YSVR = —VR; '}’SVL =+tvL

*In the LIMIT E > m (and ONLY IN THIS LIMIT):
UR = Uy, up=Uu|; VR = V15 VL=V
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* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form ﬁy" u

* In general, the eigenstates of the chirality operator are:
Vugr = +ug; Yur=—ur; Yvg=—vg; Yvi=4vL
*Define the projection operators:

Pr=3(147); P =%1-7)

*The projection operators, project out the chiral eigenstates

Prugp =ugr; Prup =0; Poup=0; Prup=uy

Prvr =0; Prvp=vr; Prvp=vgr; Povp=0

‘Note P projects out right-handed particle states and left-handed anti-particle states

*We can then write any spinor in terms of it left and right-handed
chiral components:

v=yr+y =11+P)y+i(1-P)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieyyte
«Can decompose the spinors in terms of Left and Right-handed chiral components:
ieyyte = ie(V+VR)V" (¢r+9r)
= ie(YrY" OR+ VRV oL+ W Y Or+ W Y O1)

*Using the properties of }’5

(Pr=1 Y=y rPr=-ry
it is straightforward to show
VrY'oL=0; Y, Yor=0

* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

(Q8 on examples sheet)

(Q9 on examples sheet)

*For E >> m, the chiral and helicity eigenstates are equivalent. This implies that
for £ > m only certain helicity combinations contribute to the QED vertex !

This is why previously we found that for two of the four helicity combinations
for the muon current were zero
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Allowed QED Helicity Combinations

+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
+ In this limit, the only non-zero helicity combinations in QED are:

Scattering: “Helicity conservation”
N 2 NS o N N &
R R L L
Annihilation:

N 2

L R
N N
,R z 7, .
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Summary

* In the centre-of-mass frame the e*e- — p*u- differential cross-section is

do o?
= = N 2
1 4s( +cos”0)

NOTE: neglected masses of the muons, i.e. assumed E > my,

* In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

* CHIRAL states defined by chiral projection operators
_ 1 . _ 1
Pr=5(1+7); P=3(1-7)

* Inlimit £ > m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR RL LR LL
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Appendix : Spin 1 Rotation Matrices

*Consider the spin-1 state with spin +1 along the
axis defined by unit vector

i = (sinB,0,cos0) b4
*Spin state is an eigenstate of ﬁ§ with eigenvalue +1
(7i.5)lw) = +1]w) (A1)

*Express in terms of linear combination of spin 1 states which are eigenstates

of S,
w) = al1,1)+BI1,0)+¥1,~1)
with o’ +B* 47 =1
* (A1) becomes
(sin@S, +cos 0S;)(a|1,1) +B]1,0) +vy|1,—1)) = a|1,1) + B]1,0) + 7|1, —1)

A2
‘Write Sy in terms of ladder operators S, = %(S+ +S-) (A2)

where Sy |1,1)=0  S.[1,0) =+2[1,1) S.|]1,—1)=+2|1,0)
SIL1)=v21,0)  S_|1,0)=v2|1,-1)  S_|1,~1)=0
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from which we find Se|1,1) = %|170>
Sx|170> = \/L§(|171>+I17_1>)

Sil1,-1) = 75[1,0)
* (A2) becomes

[« B B Y
sin@ | —|1,0)+ —=|1,—1)+ —|1,1)+ —=|1,0) | +
A0+ L=+ FlL D+ —51,0)
acosB|1,1) —ycos6|1,—1) = all, 1)+ B|1,0) +y|1,—1)
- which gives ﬁsi;;+ac?s::a
sin
(7)== B
sin®

ﬁﬁ—}'cose =7y
* using a2+/32 —H/2 =1 the above equations yield
a:\%(1+cos9) B:%sinG }/:%(1—0059)
* hence
v =3(1 —0059)|1,—1>+%sin9|1,0)+%(1 +cos0)[1,+1)
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‘The coefficients o, 3,7 are examples of what are known as quantum
mechanical rotation matrices. The express how angular momentum eigenstate

in a particular direction is expressed in terms of the eigenstates defined in a
different direction

d, (9)

m

*For spin-1 (j = 1) we have just shown that

J
d1171(9) = %(1 +cos6) d(%’l(e) = \%sin@ dll [(0) = %(1 —cos )
*For spin-1/2 it is straightforward to show

1 0 1 0
di (0)=cos— d* i
2 2 -
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Particle Physics

Dr Lester

o A - \ £ it -Ae“ ¥ T
Handout 5 : Electron-Proton

Elastic Scattering
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Electron-Proton Scattering

@ In this handout aiming towards a study of electron-proton
scattering as a probe of the structure of the proton e-

& Two main topics: e-
¢ €°p — e7p elastic scattering (this handout)

¢ e p - e X deep inelastic scattering (handout 6)
@ But first consider scattering from a point-like

particle e.g. €. e
e U —>eu
i.e. the QED part of
(e7q > ewq)
& Two ways to proceed: H B
@ perform QED calculation from scratch (Q10 on examples sheet)
8e*
(IMfil*) = ————3 [(p1-p2)(P3.p4) + (P1.P4) (P2-P3)] (1)
(p1—p3)

@ take results from e*e~ = p*u~ and use “Crossing Symmetry” to
obtain the matrix element for ey~ — €U~ (Appendix |)

Dr Lester 150

158 /557




4 (p1.p4)* + (p1.p2)? 2) — 0 (52+”2>

| (|Mfi|?) =2
<| f| > (p1-p3)2 t2
* Work in the C.0.M: 1% -
p1=(E,0,0,E) p2=(E,0,0,—E) P ‘9/\’ w
p3=(E,Esin0,0,Ecos0) . P2
ps=(E,—Esin6,0,—FE cos0) W P4
giving P1-p2 =2E% p1.p3 =E*(1—co0s0); pi.ps=E*(1+cosh)
E*(1+cos0)> 4 4E* o
- (M%) = 24 e
(IM5l") ¢ E*(1—cos0)? 10}

Vs=1GeV

do 1 et [1+1(1+cos6)?]

== _ M2\ =
10~ e Ml = e s

do/dQ) (nb per steradian)

*The denominator arises from the propagator —ig,,tv/q2 il Vi=10Gey
here q2 = (p1 —P3)2 :‘E2(1 —cos6) g
10 . -
as g°> — 0 the cross section tends to infinity. Aoes o 008
Dr Lester 151
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- What about the angular dependence of  do et [1 + :11(1 +cos 9)2}
the numerator ? 4O~ 812s (1— C089)2

*The factor 1+ %(1 + cos 9)2 reflects helicity (really chiral) structure of QED

*Of the 16 possible helicity combinations only 4 are non-zero:

A A
-i cosO +I1' -i cos0 I+;
S, =0

do

—_ 1
dQ

i.e. no preferred polar angle spin 1 rotation again
152

Dr Lester

160 / 557




*The cross section calculated above is appropriate for the scattering of two
spin half Dirac (i.e. point-like) particles in the ultra-relativistic limit
(where both electron and muon masses can be neglected). In this case

4 (P1-pa)* + (p1.p2)°

(p1-p3)?

*We will use this again in the discussion of “Deep Inelastic Scattering” of

electrons from the quarks within a proton (handout 6).

(IMfil*) = 2e

» Before doing so we will consider the scattering of electrons from the composite
proton -i.e. how do we know the proton isn’t fundamental “point-like” particle ?

e- e m
*In this discussion we will not be able to use the

relativistic limit and require the general expression

for the matrix element (derived in the optional part of

Q10 in the examples sheet):
P P M

2 8e* 2 2 2702
(IMpi]") = ) [(p1-P2)(P3-pa) + (P1-pa) (P2-P3) — (p1.p3)M* — (p1.pa)m” +2m*M?] | (3)
Dr Lester 153
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Probing the Structure of the Proton

*In e'p — e7p scattering the nature of the interaction of the virtual
photon with the proton depends strongly on wavelength

+ At very low electron energies A> Ip: e-
the scattering is equivalent to that from a
“point-like” spin-less object

+ At low electron energies A ~ Ip : €
the scattering is equivalent to that from a
extended charged object

+ At high electron energies A < rp e-
the wavelength is sufficiently short to
resolve sub-structure. Scattering from
constituent quarks

+ At very high electron energies A K Ip :
the proton appears to be a sea of
quarks and gluons.
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Rutherford Scattering Revisited

* Rutherford scattering is the low energy 2} e
limit where the recoil of the proton can be e /
neglected and the electron is non-relativistic P1 > 0

+Start from RH and LH Helicity particle spinors (neglect proton recoil)
¢ S
e?s ec N = VE+m:
up =N [ u =N Pl_¢ _ ’
\%ler'q) ITV];Tm " s = sin(6/2); c=cos(6/2)
) 1
me § _E+me ¢
*Now write in terms of: o= |ﬁ| Non-relativistic limit: @ — 0
E+m, Ultra-relativistic limit: o — 1

c —s
efs efc
I:'> MTN( (XC) ulN( OCS. )
oe?s —aefc

and the possible initial and final state electron spinors are:

1 0 c -5
ur(p1) = Ne (8) u (p1) =Ne ( (1) ) up(p3) = Ne (Ofc) uy(p3) =Ne ( os )
0 —Q os —oc
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*Consider all four possible electron currents, i.e. Helicities R#R, L—L, LR, R—L

2"¢ ur(p3) Y ur(p1) = (E+me) a’+1)c,2as, 2ias,2ac} (4)

e__-'_.>.. .........

) (e
e‘;,.....f...e u(p3)Y*u (p1) = (E+m,) [ a’+1)c 2as,—2ias,2ac} (5)
Sy o0 T(pa)Pu(pr) = (E+me) [(1— a2)s,0,0,0] (6)
e_;,.,e u (p3)ytuy(p1) = (E +m,) [(a* —1)s,0,0,0] (7

*In the relativistic limit (o =1 ),i.e. £ > m
(6) and (7) are identically zero; only R»R and L—L combinations non-zero

°In the non-relativistic limit,
@y (p3) Y ur(p1) = (p3)Yu (p1) = (2m,){c,0,0,0]
ay(p3) Y u (p1) = =, (p3) Y ur(p1) = (2m.){s,0,0,0]

All four electron helicity combinations have non-zero Matrix Element

i.e. Helicity eigenstates = Chirality eigenstates
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*The initial and final state proton spinors (assuming no recoil) are:

(1) (]) Solutions of Dirac
ur(0) = \/2M, 0 u)(0) = /2M, 0 equation for a particle
0 0 at rest
giving the proton currents: jpTT = jpli = 2Mp (1707070)
Jptl = Jpi1 =0

*The spin-averaged ME summing over the 8 allowed helicity states

e 16M2 "3( B1— Ps
<‘M}i|>:ZE(I6M2 m;)(4c* +4s%) = \‘

where ¢*> = (p1 —p3)? = (0,51 — p3)* = —4|1D|2Sln (6/2)

M2m2e* Note: in this limit all
<| 2 ‘> _ p e angular dependence
fill — ‘ﬁ|4 sm4(9/2) is in the propagator

* The formula for the differential cross-section in the lab. frame was
derived in handout 1:

do 1 1 S
— = My; (8)
dQ  64r? (M+E1—ElcosG> My
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Here the electron is non-relativistic so E ~ m, < Mp and we can neglect
E/ in the denominator of equation (8)

do 1 5 m2e*

= _|Mu? =
dQ 647t2M[2,| i 6472|p|*sin*(6/2)

‘Writing 2 = 47 and the kinetic energy of the electron as Ex = p2/2me

2
ST
dQ Rutherford 16E12( sin* 6 / 2 (9)

* This is the normal expression for the Rutherford cross section. It could have
been derived by considering the scattering of a non-relativistic particle in the
static Coulomb potential of the proton V(7), without any consideration of the
interaction due to the intrinsic magnetic moments of the electron or proton.
From this we can conclude, that in this non-relativistic limit only the interaction
between the electric charges of the particles matters.
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The Mott Scattering Cross Section

* For Rutherford scattering we are in the limit where the target recoil is
neglected and the scattered particle is non-relativistic Ex << m,

* The limit where the target recoil is neglected and the scattered particle is
relativistic (i.e. just neglect the electron mass) is called Mott Scattering

* In this limit the electron currents, equations (4) and (6), become:
ur(p3) ¥ uy(p1) = 2E[c,s,—is,c] ur(p3) ¥ uy(p1) = E10,0,0,0]
Relativistic = Electron “helicity conserved”

« It is then straightforward to obtain the result:

2
- (d_") - 0529 (10)
dQ / o 4E2 sin 9/2 ,

N~ Y
Rutherford formula Overlap between initial/final
with Ex = E (E > m,) state electron wave-functions.
Just QM of spin "2

* NOTE: we could have derived this expression from scattering of
electrons in a static potential from a fixed point in space V(r)
The interaction is ELECTRIC rather than magnetic (spin-spin) in nature.

* Still haven’t taken into account the charge distribution of the proton.....
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Form Factors

*Consider the scattering of an electron in the static potential r= V(?)
due to an extended charge distribution.

*The potential at 7 from the centre is given by: d
QP(?/) 3 437
(%) 4dr|F—7| Ip()

*In first order perturbation theory the matrix element is given by: . 13/'

Mi = (V@) = [ BV @enies i= 17

// lqr Qp(_’/ - d3—*/d3—‘ // l[jr Qp(r) d3—'/d3?
4| —7| 47t|r—r’\
*Fix 7 and integrate over d37 with substitution R =7—7
Q — — -,
My = / lqR 47|R| dsR/ p(P)e T SF = (Mp) poin F (3

* The resulting matrix element is equivalent to the matrix element for scattering
from a point source multiplied by the form factor

F@) = [p(eia’s
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— — —————cos” = |F(q
(dQ)Mmt 4E2sin* 0 /2 2| (@)l

*There is nothing mysterious about form factors - similar to diffraction of plane

waves in optics. *The finite size of the scattering centre
introduces a phase difference between
plane waves “scattered from different points
in space”. If wavelength is long compared
to size all waves in phase and F(§%) = 1

For example:
point-like exponential Gaussian Uniform Fermi
p (?) sphere function
F(é.z) unity “dipole” Gaussian \/iiji-"ke \
(AN _
Dirac Particle Proton SLi 40Ca

*NOTE that for a point charge the form factor is unity.
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Point-like Electron-Proton Elastic Scattering

*So far have only considered the case we the proton does not recoil...
For E| > m, the general case is
Pl - (ElaOaOaEl)

s M,0,0,0
e- D1 R ‘ P2 = ( s Uy Uy )
P

) z
\ p3 = (E3,0,E3sin6,E3c080)
pa P P4 = (E4aﬁ4)

*From Eqn. (3) with m = m, = 0 the matrix element for this process is:

64
(M5 = (plg_—p3)4 [(p1-P2)(P3-P4) + (P1-P4)(P2-p3) — (P1.p3)M?] (1)

*Experimentally observe scattered electron so eliminate p4
*The scalar products not involving P4 are:
pi.p2=EM  p1.p3=EE3(1—cos8)  prp3=EM
From momentum conservation can eliminate P4: P4 =p1+DP2— D3
p3.pa = p3.p1+ p3.p2 — p3p3 = E1E3(1 —cos0) + EsM
p1-pa = pyPi +p1.p2 — p1.p3 = E\M — E1 E3(1 —cos 6)

|2 = mg ~0 i.e. neglect m,

p1.p1 = E} —|pi
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*Substituting these scalar products in Eqn. (11) gives

<|Mfl|2> = WMEIE:; [(El—E3)(1—COSG)+M(1+COSG)]
8e* .2 2
— sz&& [(E1 — E3)sin(6/2) +Mcos*(0/2)] (12)
» Now obtain expressions for q4 =(p —p3)4 and (E|—E3)
q* = (p1 —p3)2 = p% +p§ —2p1.p3 = —2E1E3(1 —cos0) (13)

= —4E|E;3sin*0/2 (14)
NOTE: ¢°> <0 |Space-like

* For (E1 —E3)start from
q-p2 = (p1 — p3).p2 = M(E) — E3)

and use (q+p2)2 = pi q= (Pl —P3) = (P4 —Pz)
g +p3+2qp> = p;
q2+M2+2q.p2 = M
— gp2 = —q°/2
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*Hence the energy transferred to the proton:

q* (15)

M
Because q2 is always negative E| — E3 > 0 and the scattered
electron is always lower in energy than the incoming electron

*Combining equations (11), (13) and (14):

E —E;=—

864 qz
Mg)?) = 2MEE; |Mcos® /2 — ——sin? 6 /2
M5l 16E2E2sin* 6/2 3[ cos”0/2 = 5y sin /]
MZ 4 2
= _—e cos29/2— sin” 6 /2
E\E3sin*6/2 2M2
*For E > m,we have (see handout 1)
d—G = 1 —E3 2|M .’2 _ &1
dQ ~ 6472 \ ME, fi =iz~
do Oc2 E3 ) 2
- — = 0/2— — 6/2
? @ 4E?sin* 02 E1 (COS / 2M2 sin” 6/ ) (16)
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Interpretation

@ So far have derived the differential cross-section for e p — e p elastic
scattering assuming point-like Dirac spin "z particles. How should we
interpret the equation?

7o Y R c0s20/2 — —sin’0/2
dQ  4EZsin*0/2 E / 2M? /
-Compare with (dG) o2 ) 9
dQ / vio T 4E2sin? 0 / 2

the important thing to note about the Mott cross-section is that it is equivalent
to scattering of spin 'z electrons in a fixed electro-static potential. Here the
term E3 /E] is due to the proton recoil.

\

do o? E;

2

2 q
L cos?0/2 — ——sin%0/2
dQ 4E231n 9/2E1 ( / 2M? / )

%_J

- Ma_gnetl_c |_nteract|_on : due to the
spin-spin interaction

2

D

the new term: o< Sin
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*The above differential cross-sectlon depends on a single parameter. For an electron
scattering angle @, both q and the energy, F3, are fixed by kinematics

*Equating (13) and (15) *Substituting back into (13):

—2M(E| — E3) = —2E 1 E3(1 —cos 0) 5 2ME?(1—cos0)
—) qg =—

N Es _ M M+E;(1—cos0)

Ei  M+E (1—cosb)

® eg.ep—>ep at E,.,=529.5 MeV, look at scattered electrons at &= 75°

For elastic scattering expect: E.B.Hughes et al., Phys. Rev. 139 (1965) B458
=0 N %
M + El (1 —COosS 6) zsoor (:{YDROGEN UNCORRECTED ) }{ ! t
Es = 938 x 529 _ 373 MeV 2000/ : *}

938 +529(1 — cos75°)
The energy identifies the scatter as elastic. %

i
Also know squared four-momentum transfer 8 '°°°\ .
0ol i ¥
2 % 938 x 529%(1 — c0s 75°) ’ s ]
2 2 syt'e
= =294 MeV R ]
1= 555+ 529(1 — cos 75°) © ° =

SCATTERED ELECTRON ENERGY (MeV}

/I!ov
g
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Elastic Scattering from a Finite Size Proton

*In general the finite size of the proton can be accounted for by introducing
two structure functions. One related to the charge distribution in the proton, Gg (qz)
and the other related to the distribution of the magnetic moment of the proton,
Gu(q®)
* It can be shown that equation (16) generalizes to the ROSENBLUTH FORMULA.

do a> E3(G:i+1Giy ,0 " 29)
— =— | =—— 2 cos“ = + 217Gy, sin” —
dQ 4E12sin49/2E1< (1+7) 2 )

2

with the Lorentz Invariant quantity: | 1 — q_ >0

AM?
* Unlike our previous discussion of form factors, here the form factors are a

function of q2 rather than é’z and cannot simply be considered in terms of the
FT of the charge and magnetic moment distributions.

But ¢° = (E) — E3)2 — g and from eq (15) obtain

Ry
2

So for ALC]W <1 wehave ¢*~—g> and G(¢*) ~G(g*)
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*Hence in the limit 612/4M2 < 1 we can interpret the structure functions in
terms of the Fourier transforms of the charge and magnetic moment distributions

Ge(¢?) ~ Ge (@) = [ ¥p(7)F
G () ~ (@) = [ ¢Tu(F)a'7

*Note in deriving the Rosenbluth formula we assumed that the proton was
a spin-half Dirac particle, i.e.

—

e -
aval

*However, the experimentally measured value of the proton magnetic moment
is larger than expected for a point-like Dirac particle:

- e 2
=2.79—-S8
H M
So for the proton expect

G (0) = / pAPF=1  Gu(0) = / W(F)dF =, = +2.79

 Of course the anomalous magnetic moment of the proton is already evidence
that it is not point-like !
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Measuring Gg(q?) and G,(q?)

*Express the Rosenbluth formula as:

2 2
do (da) (GEJFTGM—i—ZTGIZWtanzg)
0

dQ  \dQ (1+7) 2
where do 062 E 0 i.e. the Mott cross-section including
)y % 0= cos? — the proton recoil. It corresponds
dQ /, 4E12 sin* 0/2 E; 2 to scattering from a spin-0 proton.

-Atvery low g% T=—q¢*/4M*~0 -Athighg% 7>>1
do do 22 d_G d_0' ~ 2ﬂ 2.2
o (E)O ~ G (g% 10 ), 1+ 27tan > Gy(q°)

*In general we are sensitive to both structure 2

. A
functions! These can be resolved from s|g
SN~—
the angular dependeznce of the cross g
section at FIXED ¢ Ye slope = 21G2,
1 . GZ GZ
= intercept = ( E1++Tr A )
»
tan? 6 /2
Dr Lester 169
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® EXAMPLE: e p —> e p at E,.an= 529.5 MeV
*Electron beam energies chosen to give certain values of q2
*Cross sections measured to 2-3 %
PROTON
o g% =293MeV?
- i -
n
a
— I63I - K
n 04
©
2 i 7 \
3 I A
2 ;Z; L \ w —\//tanzeﬂ 1
> e :-'
gE) E IO-SZ:- —T" PROTON FORM FACTORS
‘g.‘ NE r ‘ o ® JUANSSENS et al. NOTE
Z% I R . .
a2 | 5200 »ooer o | Experimentally find
E; E E = LEHMANN et al. GM(qZ) = 2'79GE(q2)!
° " PROTON i i
R B 44 e E i.e. the electric and
2 1OF  scTions 39 £ ol and magnetic form
S, ;
2 factors have same
o I distribution
I.u 1 It 1 L A 1 1
200 400 600 800 0
INCIDENT ENERGY (MeV)
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Higher Energy Electron-Proton Scattering

* Use electron beam from SLAC LINAC: 5 < Epeam <20 GeV

*Detect scattered electrons using the
“8 GeV Spectrometer”

gETEE(‘:)TOS
. HIELDING
bending magnets

\\ -
\ 2\
\\\\,/\’\\\\\§ -
S

|

-+

|
Y

iy

SS
NS

HODOSCOPES 77-e DISCRIMINATOR

PLAN VIEW

P.N.Kirk et al., Phys Rev D8 (1973) 63

Dr Lester
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High 42 Results

* Form factor falls rapidly with q2
N *Proton is not point-like
I Point-ike proton , ] *Good fit to the data with “dipole form”:
.

Proton form factor
—————————

GL( 2) ~ G]l‘)’[ ~ !
E 279 (14+4¢2/0.71GeV?)?

* Taking FT find spatial charge and
magnetic moment distribution

p(r) ~ poe”"/*
with a~0.24 fm
*Corresponds to a rms charge radius

y * Although suggestive, does not
Pl imply proton is composite !

20 '
q*/GeV? * Note: so far have only considered
ELASTIC scattering; Inelastic scattering
R.C.Walker et al., Phys. Rev. D49 (1994) 5671 is the subject of next handout
AF.Sill et al., Phys. Rev. D48 (1993) 29

( Try Question 11)

Dr Lester
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Summary: Elastic Scattering

* For elastic scattering of relativistic electrons from a point-like Dirac proton:
do o? E 2
3 <0052 g . sin? &

dQ  4E7sin*0/2 E M2 2
- [ —
Rutherford (| Proton | | Electric/ Magnetic term
recoil Magnetic due to spin
scattering

* For elastic scattering of relativistic electrons from an extended proton:

do a> B3 (G:i+1Giy ,0 __ 9)
— = — cos” — 421Gy sin” —
dQ  4E2sin*6/2 E ( (1+7) 2 MPT 2

Rosenbluth Formula

* Electron elastic scattering from protons demonstrates that the proton is an
extended object with rms charge radius of ~0.8 fm

173
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Appendix | : Crossing Symmetry

* Having derived the Lorentz invariant matrix element for e'e~ = u*p-
“rotate” the diagram to correspond to €L~ — € |~ and apply the
principle of crossing symmetry to write down the matrix element !

ete” = pu- ey —ep
+ _ e— p/ p/ e_
e 2 p}, H 1 }

<8
S D
= 3 .
7, !
e/ Pl P4\ pr £}
5

* The transformation:
P1 = D3 P2 — —D5i P3 = P43 P4 — —D) H7p
Changes the spin averaged matrix element for

ee’ P up| M |leu e U
pip2 p3pa Pipy  DPipy

174
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*Take ME for e*e~ = u*u- (page 143) and apply crossing symmetry:

<‘Mf"2> _ 264 (pl-p3)2 + (pl-p4)2
; =

(p1.p2)?

/12 /o 1\2
.Py)”+ (p1-p3)
M2 :264(191174) 1-P2
- <’ fl|> (pll.pg)z

(1)

Dr Lester

175

183 /557

Particle Physics

e-

Dr Lester

Handout 6 : Deep Inelastic Scattering
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e~ p Elastic Scattering at Very High g

do

—6
dQ) elastic '\'_
10k \

=

*Due to the finite proton size, elastic scattering
at high g2is unlikely and inelastic reactions

* At high g2 the Rosenbluth expression for elastic scattering becomes
— = — Gy sin” — =———=>1
(dQ>elastic 4EZsin*@/2 E; \2M> M7 2 am?
*From e~ p elastic scattering, the proton magnetic form factor is
Gu(q?) = - )< g™*  athigh g2
M(q ) (1—|—q2/0.71GCV2)2 GM(q )°<q ‘ - Ig! q‘[ -
i
il e —W=2 GeV

» o We3 GeV
«—-W=3.5 Gev

‘‘‘‘‘‘

where the proton breaks up dominate. ol
2] e’ \,\
_ n /79( : \.
e > 03k \.ELAST!C
E \ SCATTERING
q \ Q2 2 \\, ‘
p X — N
P2 e I T S S
pa 0?/GeV?
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Kinematics of Inelastic Scattering

f the final state

*For inelastic scattering the mass o

p3 e
pi /r{
s 0

q\
} X
P4

the final state invariant mass My

P2
* For inelastic scattering introduce four new kinematic variables:
* Define: Q> -
X= Bjorken x (Lorentz
2p2.q
where Q2 = —q2 Q2 >0

M2 =p?=(q+p2)*=—-0*+2pr.q+M?

hadronic system is no longer the proton mass, M

*The final state hadronic system must
contain at least one baryon which implies

M3 = p; = (Ef — |P4]?)

>M

2
x,y,V,Q

Invariant)

Note: in many text
books W is often
used in place of My

*Here
=  Q*=2pg+M*—M; = (*<2pgq
. ] — p Proton intact
hence 0 <x <1 inelastic x=1 elastic My =M
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* Define: D2.q

3 _e
y= (Lorentz Invariant) i /p(
P2.P1 e, (7]

In the Lab. Frame: q\
pP1= (El,0,0,El) P2 = (M,0,0,0)
S p X
q=(E1 —E3,p1 — P3) )22)
_M(E-Ey) | B P
Y= ME, T E

So y is the fractional energy loss of the incoming particle

*In the C.o0.M. Frame (neglecting the electron and proton masses):
p1 = (E,0,0,E); p»=(E,0,0,—E); p3=(E,Esin6*0,E cos0*)
y=5(1—cos0") for E>M

1

2
* Finally Define: .
= VEM (Lorentz Invariant)

*In the Lab. Frame: V =FE; —Ej3
v is the energy lost by the incoming particle

187 /557

Relationships between Kinematic Variables

*Can rewrite the new kinematic variables in terms of the squared D1 D2
centre-of-mass energy, s, for the electron-proton collision ee— —p

s=(p1+p2)* =pi+p3+2p1.p2=2p1.p2 + M+
2p1.p2 =s—M?
*For a fixed centre-of-mass energy, it can then be shown that the four kinematic

variables Q2 P2.q

0*=—¢* xX= y= P24 v=—"=

: 2p2.q p2-p1 M
are not independent.
*i.e. the scaling variables x and y can be expressed as
Q2 M Note the simple
= — y= Y relationship between
2Mv s —M? yand v
and Xy = Q—2 = Q’= (s—Mz)xy
s —M?

*For a fixed centre of mass energy, the interaction kinematics are completely
defined by any two of the above kinematic variables (except y and v)

*For elastic scattering (x = 1) there is only one independent variable. As we saw
previously if you measure electron scattering angle know everything else.
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Inelastic Scattering

Example: Scattering of 4.879 GeV electrons from protons at rest

> Place detector at 10° to beam and measure the energies of scattered e-
 Kinematics fully determined from the electron energy and angle !

* e.g. for this energy and angle : the invariant mass of the final state

hadronic system W2 = M)Z( =10.06 —2.03E;3 (try and show this)
1500 i @ Elastic Scattering
= | E1 —  4.879GeV i *[ proton remains intact
> 10° ¥ ] W=M
O it 2_( . .
<. 1000} %1% Mﬂ i /0 Inelastic S”catt.ermg )
= .# NﬂﬁM Mﬁ ul ﬂﬂ” Hfﬁ / produce “excited states
ol ﬁn*l * of proton e.g. AT (1232)
o é 500 |- W = MA
g;‘itl‘geict:‘“‘i‘;‘g @ Deep Inelastic Scattering
L | ! ! ! ! ! \ | proton breaks up resulting

34 3.6 3.8 4.0 4.2 4.4

in a many particle final state

16 e 12 10 DIS = large W
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Inelastic Cross Sections

M.Breidenbach et al.,
Phys. Rev. Lett. 23 (1969) 935

*Repeat experiments at different angles/beam energies and determine
q* dependence of elastic and inelastic cross-sections

O/ OMott

e T T

PR IO el

TTT I

T T T T

L1l

) *Elastic scattering falls of rapidly
VM 1 with g* due to the proton not being
TTTWe3SGeVs point-like (i.e. form factors)

Inelastic scattering cross sections
only weakly dependent on qz

L1ty

07 \ El
- \ 1 +Deep Inelastic scattering cross sections
i \‘\ ‘ 1 almost independent of q2 !
03 \%Assgfmme 3 i.e. “Form factor” — 1
g . ]
i S ] - Scattering from point-like
I o~ objects within the proton !

3 4 5 6 7

Q?/GeV?
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Elastic — Inelastic Scattering

* Recall: Elastic scattering (Handout 5)

*Only one independent variable. In Lab. frame express differential cross
section in terms of the electron scattering angle (Rosenbluth formula)

do a> B (Gi+1GE 9 ., 0 2

—:2—4—3 (MCOSZ—%—ZTG%WSH’IZ— "L‘:Q—

dQ  4E?sin*0/2E1 \ (1+7) 2 2 AM2
Note: here the energy of the scattered electron is determined by the angle.

In terms of the Lorentz invariant kinematic variables can express this differential

cross section in terms of Q? (Q13 on examples sheet)
d 4ra? [GE+1G3 M2\ 1
dQ 0 (1+7) Q 2
which can be written as:
do  4rno? M?*y? 1
0 {fz(Qz) (1 5 ) + Eyzfl(Q2)]

* |nelastic scattering
*For Deep Inelastic Scattering have two independent variables. Therefore
need a double differential cross section
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Deep Inelastic Scattering

* It can be shown that the most general Lorentz Invariant expression
fore’p — € X inelastic scattering (via a single exchanged photon is):

d’c  4no? Kl_y_szz) B (x,0%)
X

(1) INELASTIC

+y2F1 (.X, Qz):|

WP~ O 0 SCATTERING
do  4rna? M*y? LI ELASTIC
of @ o (1 —y- ?> L(Q)+5y°A(Q )} SCATTERING

* NOTE: The form factors have been replaced by the STRUCTURE FUNCTIONS

F(x,0%) and FB(x,0%)

which are a function of x and Q?: can not be interpreted as the Fourier transforms
of the charge and magnetic moment distributions. We shall soon see that they
describe the momentum distribution of the quarks within the proton

* In the limit of high energy (or more correctly Q2 > sz2 ) eqn. (1) becomes:

F2(x7 Qz)
X

d’c  4ma?
dde2 - Q4

(1-y) +Y*Fi(x,0%) (2)

192 /557




* In the Lab. frame it is convenient to express the cross section in terms of the
angle, @, and energy, E3, of the scattered electron — experimentally well measured.

p3 e Es
P /(
e- 9 5
g\ e DX p
p } X
b2 P4 .
, jet
2 ) 0 E;
—4E\E3sin®0/2; x=-————; y=1—-—; V=E —E
Q" =ahiEysin0/2 x= oy TEy Y E| 17
*In the Lab. frame, Equation (2) becomes: (see examples sheet Q13)
d’c o? 1 280 2 b . 20
e = —F —+ = F in>—| | (3
" T E Bl @)eo § + i 0

Electromagnetic Structure Function |

| Pure Magnetic Structure Function |
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Measuring the Structure Functions

*To determine F|(x,Q?) and F,(x,Q?) for a given x and Q? need
measurements of the differential cross section at several different
scattering angles and incoming electron beam energies (see Q13
on examples sheet)

Example: electron-proton scattering I, vs. Q? at fixed x

v  olg°
x10° a2 .
0.5 T T T T T T T g [
.
04 1873
Q =z Qo
Fep o3t + 4o th ** # + 1 88
2 o+
0.2 4 2=z
N =
o b x=025 | =%
. 28
S g
0 1 1 1 l. 1 | 1 ;“=
0 2 4 6 8 3
Q?/GeV?

+ Experimentally it is observed that both /1 and F, are (almost)
independent of Q°
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Bjorken Scaling and the Callan-Gross Relation

*The near (see later) independence of the structure functions on Q2 is
known as Bjorken Scaling, i.e.

Fi(x, QZ) — Fi(x) F>(x, Qz) — B (x)

*It is strongly suggestive of scattering from point-like constituents
within the proton

*It is also observed that Fj(x) and F(x) + 1.5 < QUGeVIR <4
are not independent but satisfy the 2y t 5<QGeVicf <11
. F ¥ 12 < Q¥(GeVic)? < 16

Callan-Gross relation N

F>(x) = 2xFy (x)

°

*As we shall soon see this is exactly what is 1
expected for scattering from spin-half quarks.

%
. Y
”ﬂﬁ I “ﬁ

*Note if quarks were spin zero particles we would 05l
expect the purely magnetic structure function to m
be zero, i.e. F (x) =0
T Ty
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The Quark-Parton Model

*Before quarks and gluons were generally accepted Feynman proposed
that the proton was made up of point-like constituents “partons”

*Both Bjorken Scaling and the Callan-Gross relationship can be
explained by assuming that Deep Inelastic Scattering is dominated
by the scattering of a single virtual photon from point-like spin-half

constituents of the proton. D3 o
P a4
_ P A
© q\

q\ = 0
X = X
’ P2 Iy } P2 \\ }

P4

Scattering from a proton - Scattering from a point-like
with structure functions quark within the proton

* How do these two pictures of the interaction relate to each other?
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*In the parton model the basic interaction is ELASTIC scattering from a
“quasi-free” spin-"2 quark in the proton, i.e. treat the quark as a free particle!

*The parton model is most easily formulated in a frame where the proton
has very high energy, often referred to as the “infinite momentum frame”,
where we can neglect the proton mass and py = (EQ,0,0,EZ)

* In this frame can also neglect the mass of the quark and any momentum
transverse to the direction of the proton.

Let the quark carry a fraction g of the proton’s four-momentum.

M (E2,P2) : \7
P2

o Epatq
(§E2,EP2) P2

After the interaction the struck quark’s four-momentum is §p2 +q

(Eprtq)P=mi=0 = Eplig?+26pg=0  (E*p3=ml~0)

0? Bjorken x can be identified as the fraction of the
—_ &= 2p>.q =X proton momentum carried by the struck quark (in
a frame where the proton has very high energy)

197 /557

*In terms of the proton momentum

p2.q 0? p3 e
s=(p1 4—1’2)2 ~2p1.p2 y= X )4 /é(

p2p1 T 2p2.q o
*But for the underlying quark interaction
57 = (p1+xp2)* = 2xp1.pa = xs xpy 2N
_ pqq _ xp2°q _ p N~
Yq =

 pgpl XPa.pi p2 \
Xy = 1

(elastic, i.e. assume quark does not break up )
*Previously derived the Lorentz Invariant cross section fore 'y~ — ey~
elastic scattering in the ultra-relativistic limit (handout 4 + Q10 on examples sheet).
Now apply thisto € — €7Q
€qi k charge, i.e.
2ole? 2\ 2 q is quark charge,
Sq

d? &

. q
do 27ma’el 5 7
= [1 + (1 — y) } (where the last two expression
dQ2 Q4 assume the massless limit m=0)
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2

do 4na’e ¥

* This is the expression for the differential cross-section for elastic eq
scattering from a quark carrying a fraction X of the proton momentum.
* Now need to account for distribution of quark momenta within proton

* Introduce parton distribution functions such that g (x)dx is the number
of quarks of type g within a proton with momenta between x — x4 dx

® Expected form of the parton distribution function ?

Single Dirac Three static Three interacting +higher orders
proton quarks quarks

4 (x) q°(x)
I 1x I 1/3 1 X
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* The cross section for scattering from a particular quark type within the proton
which in the range x — x+dx is
2

do 4rna? y 5

— = 1—y)+=—| xe:gP(x)dx

* Summing over all types of quark within the proton gives the expression
for the electron-proton scattering cross section

d’c®  4mwo? y? 5
= 1—y)+=—= e qP(x
* Compare with the electron-proton scattering cross section in terms of
structure functions (equation (2) ):
d’c  4ma?
dde2 - Q4

2
(1-y) LX;Q )

+y*F (x, Qz)] (6)

% By comparing (5) and (6) obtain the parton model prediction for the
structure functions in the general L.I. form for the differential cross section

p 2\ p 2\ 2 p Can relate measured structure
F2 (x’ Q ) o 2xFl (x’ Q ) - xzeqq (x) C=> | functions to the underlying
q

quark distributions
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The parton model predicts:
‘Bjorken Scaling  Fi(x,0%) — Fi(x) F(x,0%) — F(x)
* Due to scattering from point-like particles within the proton
«Callan-Gross Relation F>(x) = 2xF;(x)
* Due to scattering from spin half Dirac particles where the
magnetic moment is directly related to the charge; hence

the “electro-magnetic” and “pure magnetic” terms are fixed
with respect to each other.

* At present parton distributions cannot be calculated from QCD
*Can’t use perturbation theory due to large coupling constant

* Measurements of the structure functions enable us to determine the
parton distribution functions !

* For electron-proton scattering we have:
p _ 2
Fy (x) =x)_egq” ()
q

*Due to higher orders, the proton contains not only up
and down quarks but also anti-up and anti-down quarks
(will neglect the small contributions from heavier quarks)

BN
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*For electron-proton scattering have:
4 1 4 1—
EP(x) = xzq:ef]qp(x) =X <§up(x) + §dp(x) + §ﬁp(x) + §dp(x))

*For electron-neutron scattering have:

en _ n _ 4 n 1 n 4'—n 1—n
F" (x) —xgef]q (x) —x(gu (x)+§d (x)+§u (x)+§d (x))

*Now assume “isospin symmetry”, i.e. that the neutron (ddu) is the same
as a proton (uud) with up and down quarks interchanged, i.e.

d"(x) =uP(x);  u"(x) = dP(x)
and define the neutron distributions functions in terms of those of the proton
u(x) =uP(x) =d"(x); d(x) =dP(x) =u"(x)
ax)=w(x)=d (x);  dx)=d"(x) =u"(x)

giving: | F,P(x) = 2xF;P(x) =x (gu(x) + éd(x) + gﬁ(x) + éa(x)) (7)

Fy"(x) = 2xF ™ (x) = x (gd(x) + éu(x) + gg(x) + éﬁ(x)) (8)
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-Inte?rating (7) and (18) :
[ s [ (Gt 4w+ glaeo 4] ) av= Ght g
[ Ere= [ (a0 + a1+ gluto) + w0l e = G+ g

1 . .
* _ — is the fraction of the proton momentum
fu / [xu(x) +xu(x)]dx carried by the up and anti-up quarks

Ja

Ju

Experimentally — T T T

fFep( Ydx ~0.18  7 2 (GeV/c)? < Q2 < 18 (GeV/c)?
- ! % ,
a0 g |
) fu%036 fd ~0.18 S §% i
* In the proton, as expected, the up quarks carry %2 f«’g &
twice the momentum of the down quarks " [Area = e |
*The quarks carry just over 50 % of the total 0.1 dp 41y "2‘ :
proton momentum. The rest is carried by 9JuT9Jd b .
gluons (which being neutral doesn’t contribute ol o 1 ™.,
. 0 0.2 0.4 0.6 0.8
to electron-nucleon scattering). %
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Valence and Sea Quarks

*As we are beginning to see the proton is complex... u =>

*The parton distribution function uP(x) = u(x) u % )
includes contributions from the “valence” %
quarks and the virtual quarks produced by d >

gluons: the “sea” u
*Resolving into valence and sea contributions:
u

u(x) = uy(x) + us(x) d(x) = dv(x) +ds(x)
u(x) = s (x) d(x) = ds(x)
*The proton contains two valence up quarks and one valence down quark

1
and would expect: / wy (x)dx = 2 / dy(x
0

*But no a priori expectation for the total number of sea quarks !

*But sea quarks arise from gluon quark/anti-quark pair production and
with m, = mg itis reasonable to expect

us(x) = ds(x) = us(x) = ds(x) = S(x)

*With these relations (7) and (8) become

o0 =5 (v i)+ s(0)) A = (v + guvin) + 9500
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Giving the ratio F5™x)  4dy(x)+uv(x)+10S(x)

FP(x)  4uy(x)+dy(x)+10S(x)

*The sea component arises from processes such as g — uu . Due to

the 1/q2 dependence of the gluon propagator, much more likely to produce

low energy gluons. Expect the sea to comprise of low enerqy q/ﬁ

*Therefore at low X expect the sea to dominate:
en
FZTOC) —1 as x—0
Fy"(x)
Observed experimentally
*At high X expect the sea contribution to be small
E5"(x)  4dy(x)+uy(x)

as x 1
FP(x)  duy(x) +dv(x) -

ern (x) 10 T T T

5 + ;‘S(x)dominates

cp
FZ (.X) 08 4 +¢.
4%

06 L ‘#’*': 4
o“‘w‘

ost- #,s
t

‘0‘{
°*?~  y(x) dominates —

Note: uy = 2dy would give ratio 2/3 as x — 1 R

Experimentally F;"(x)/F,"(x) — 1/4 as
w d(x)/u(x) =0 as x—1
This behaviour is not understood.

x—1

X

1.0
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Parton Distribution Functions

@ Ultimately the parton distribution functions are obtained from a fit to all
experimental data including neutrino scattering (see handout 10)

*Hadron-hadron collisions give information on gluon pdf g(x)

Fit to all data
— N T
R s
i 2 2
~ I xg Q“ =10 GeV
= 0.8 |

0.6

0.4

02 l{

! = ! |
00 0.1 02 03 04 05 06 0.7 08 09 1

Bjorken x

Note:

*Apart from at large X
uy (x) ~ 2dy(x)
“For x<0.2
gluons dominate
* In fits to data assume
ug(x) =u(x)
« d(x) > u(x)
not understood -
exclusion principle?

*Small strange quark
component s(x)

(Try Question 12)

206 / 557




Scaling Violations

*In last 40 years, experiments have probed the
proton with virtual photons of ever increasing energy e~

*Non-point like nature of the scattering becomes
apparent when }"Y ~ size of scattering centre

h 1
Ay= = ~ 0| ——— |fm
gl \lgl/GeV —
*Scattering from point-like quarks Rutherford

10 F o E

elastic

gives rise to Bjorken scaling: no
q? cross section dependence

IF quarks were not point-like, at

Resolved distance (fm)
>

high 4> (when the wavelength of .
the virtual photon ~ size of quark)
would observe rapid decrease in 02l o ]
cross section with increasing 42
*To search for quark sub-structure 0 HERA 1
want to go to highest g2 ep collider
° 1900 19‘20 19I4O 19‘60 19‘80 20‘00 2020
HERA Year
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HERA e*p Collider : 1991-2007

* DESY (Deutsches Elektronen-Synchroton) Laboratory, Hamburg, Germany

o 205 G-eV> < 820 GeV P Vs = 300 GeV

Halle OST (HERMES)
Hall EAST (HERMES)
Hall est (HERMES)

Halle WEST (HERA-B

Hail WEST (HERA-B)

Hallousst (HERA-B) Eletronen / Pasironen

—— Electrons / Positrons
Electrons / Positons
Protonen

«
~— Protons
Protons
Synchrotronstrahlung

* Two large experiments : H1 and ZEUS
* Probe proton at very high Q? and very low x
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Example of a High Q2 Event in H1

H1 Run 122145 Event 69506 Date 19/09/1995
* Event kinematics determined
from electron angle and energy
[@® = 25030 GeV?, y =0.56, M = 211 GeV| : :
e* >% p
] E(/GeV
jet
* Also measure hadronic
system (although not as
precisely) — gives some
redundancy @
s/
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F,(x,Q?) Results

) _ B[, = zeusno oo
* No evidence of rapid decrease of o% {% o000y — HiPDE20
cross section at highest Q2 S sht o2 - 1100
p— 4 x=0.0008
| 4 H1 (prel.) 99/00
_ x=0.0013 u ZEUS 96/97
- unark < 10 18m rilo_)\ 4 e0.0021 s BCDMS
¥
4 o
* For x > 0.05, only weak dependence RaJl W < 2 T e
. - (=9 4 x=0.0058
of F,on Q? : consistent with the 2o [t
expectation from the quark-parton I /»“”'k
x=0.013
model ‘“‘
. . . kT d
* But observe clear scaling violations, I
particularly at low x e gty s
gy B0y K x=0.08
2 o et 73
B (x,0%) # Fa(x) T et
1+ ¥ T =018
) ) i !;—{_uzs
ww‘:“
. *=0.65
0 % Il Il 1 1l 1

1 10 10” 10° 10* 10°

Q?/GeV?

Earlier fixed target data |
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Origin of Scaling Violations

* Observe “small” deviations from exact Bjorken scaling F> (x) — (x, Q2)

Y I & A
= N low x
R medium X
high x
> X » InQ?

* At high Q? observe more low x quarks

* “Explanation”: at high Q? (shorter wave-length) resolve
finer structure: i.e. reveal quark is sharing momentum with
gluons. At higher Q? expect to “see” more low x quarks

* QCD cannot predict the x dependence of F;(x,(0?)
* But QCD can predict the Q2 dependence of F>(x,Q?)
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Proton-Proton Collisions at the LHC

* Measurements of structure functions not only provide a powerful test
of QCD, the parton distribution functions are essential for the calculation
of cross sections at pp and pp colliders.

*Example: Higgs production at the Large Hadron Collider LHC ( 2009-)

*The LHC collides up to 7 TeV protons with 7 TeV protons
*However underlying collisions are between partons
*Higgs production the LHC dominated by “gluon-gluon fusion”

*Cross section depends on gluon PDFs
1,1
o(pp—HX)~ [ [ glx)glr)ols — H)dndr,

*Uncertainty in gluon PDFs lead to a 5 %
uncertainty in Higgs production cross section

*Prior to HERA data uncertainty was 125 %
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Summary

e
+ At very high electron energies A < 1) :

the proton appears to be a sea of

quarks and gluons.

+ Deep Inelastic Scattering = Elastic scattering
from the quasi-free constituent quarks

= Bjorken Scaling F|(x,0%) — Fi(x) |point-like scattering
= Callan-Gross  F>(x) = 2xFi(x) |Scattering from spin-1/2

+ Describe scattering in terms of parton distribution functions u(x),d(x), .
which describe momentum distribution inside a nucleon

+ The proton is much more complex than just uud - sea of anti-quarks/gluons

* Quarks carry only 50 % of the protons momentum - the rest is due to
low energy gluons

+ We will come back to this topic when we discuss neutrino scattering...
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Particle Physics
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Handout 7 : Symmetries and the Quark Model

>
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Introduction/Aims

* Symmetries play a central role in particle physics; one aim of
particle physics is to discover the fundamental symmetries of our
universe

* In this handout will apply the idea of symmetry to the quark model
with the aim of :
¢+ Deriving hadron wave-functions
¢+ Providing an introduction to the more abstract ideas of
colour and QCD (handout 8)
+ Ultimately explaining why hadrons only exist as qq (mesons)

qqq (baryons) or qqq (anti-baryons)

+ introduce the ideas of the SU(2) and SU(3) symmetry groups
which play a major role in particle physics (see handout 13)
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Symmetries and Conservation Laws

* Suppose physics is invariant under the transformation
v — IV/ = 01’/ e.g. rotation of the coordinate axes

*To conserve probability normalisation require
(Wly) = (V'ly') = (Uy|Uy) = (y[0'0ly)
= (U0 =1 i.e. U has to be unitary

*For physical predictions to be unchanged by the symmetry transformation,
also require all QM matrix elements unchanged

(y|H|y) = (V|H|y') = (y|UHU |y)

i.e. require U'AHO =H
xU UUTHU =UH = AU =UH
therefore [A,0]=0 U commutes with the Hamiltonian

* Now consider the infinitesimal transformation (€ small)
U=1+ieG
( G is called the generator of the transformation)
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*For 17 to be unitary
UU" = (14ieG)(1 —ieGT) = 1 +ie(G— G") + O(€?)
neglecting terms in €2 UUT =1 == G =Gt
i.e. G is Hermitian and therefore corresponds to an observable quantity G !
“Furthermore, [H,U]=0 = [H,1+ieG]=0 =[H,G]=0

d A
But from QM a(G) =i([H,G]) =0

i.e. G is aconserved quantity.

Symmetry <= Conservation Law

* For each symmetry of nature have an observable conserved quantity
Example: Infinitesimal spatial translation x — x4 €
i.e. expect physics to be invariant under W(x) — ' = y(x+¢)

V0 = vire) = v+ e (1+e ) i)
but  po=—ige = V¥'(x)=(1+iep)y(x)
The generator of the symmetry transformation is Px = Dx is conserved
*Translational invariance of physics implies momentum conservation !
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* In general the symmetry operation may depend on more than one parameter

U=1+i¢.G
For example for an infinitesimal 3D linear translation : F—TF+E
— U =1 +l§ﬁ ﬁ: (pra[ayapAZ)

» So far have only considered an infinitesimal transformation, however a finite
transformation can be expressed as a series of infinitesimal transformations

a =\"  ad
U(¢) = lim (I-H'—.G) = /*C

Example: Finite spatial translation in 1D: X — X+Xo with 0()60) = /obx

b A B d __,8
V() =vylx+x) = Uy(x)=exp (xo dx)"’(x) (px— l_ax)
d x5 d?

dy  x%d*y
= Vgt g

i.e. obtain the expected Taylor expansion
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Symmetries in Particle Physics : Isospin

*The proton and neutron have very similar masses and the nuclear
force is found to be approximately charge-independent, i.e.

*To reflect this symmetry, Heisenberg (1932) proposed that if you could
“switch off” the electric charge of the proton

There would be no way to distinguish
between a proton and neutron

*Proposed that the neutron and proton should be considered as
two states of a single entity; the nucleon

p= ((1)) "= <(1))

* Analogous to the spin-up/spin-down states of a spin-'% particle
ISOSPIN

* Expect physics to be invariant under rotations in this space

*The neutron and proton form an isospin doublet with total isospin I =2 and
third component I; =+ %,
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Flavour Symmetry of the Strong Interaction

We can extend this idea to the quarks:
* Assume the strong interaction treats all quark flavours equally (it does)
*Because 1, X my:

The strong interaction possesses an approximate flavour symmetry
i.e. from the point of view of the strong interaction nothing changes
if all up quarks are replaced by down quarks and vice versa.

* Choose the basis 1 0
u=(o) =)

» Express the invariance of the strong interaction under u < d as
invariance under “rotations” in an abstract isospin space

(#)-0(2)- () ()

The 2x2 unitary matrix depends on 4 cAomApIex numbers, i.e. 8 real parameters
But there are four constraints from [JT(J =1

=) 8 -4 =4 independent matrices
*In the language of group theory the four matrices form the U(2) group
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* One of the matrices corresponds to multiplying by a phase factor

o (40

not a flavour transformation and of no relevance here.
* The remaining three matrices form an SU(2) group (special unitary) with |detlU = 1

A

« For an infinitesimal transformation, in terms of the Hermitian generators G
A U=1+ieG
cdetU=1 = Tr(G)=0

* A linearly independent choice for G are the Pauli spin matrices

o=(Vo) @=(37%) @=(01)

* The proposed flavour symmetry of the strong interaction has the same
transformation properties as SPIN ! .
* Define ISOSPIN: T = %6— U = T
* Check this works, for an infinitesimal transformation
. 1. . i 1+1ies  Li(e) —ig)
U=1+-ie.0 = 1+=-(g0o1+&60r+&03) = L2 2 i
—|—2 +2(1 | +£02 4 £03) Lile; ties) 1_%183
Which is, as required, unitary and has unit determinan%

UTU =1+0(e?) detU =1+0(g?)
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Properties of Isopin

* Isospin has the exactly the same properties as spin
11, D) =iTs [, T3] =ily [T3,T1] =il
[T2,T5] =0 T =T +T; + T}

As in the case of spin, have three non-commuting operators, T\,1>,T3 and
even though all three correspond to observables, can’t know them simultaneously.

So label states in terms of total isospin / and the third component of isospin I3

| NOTE: isospin has nothing to do with spin — just the same mathematics

* The eigenstates are exact analogues of the eigenstates of ordinary
angular momentum |s,m) — |I,13)

with  T2|LL)=II+1)|I,) Ts|,5) =E|I,1)

* In terms of isospin:

1 0
u=(0)=15+5)  a=(})=14-D
d u
. — I 1=1, =+
1 1
2 T2

*Ingeneral 3= %(Nu —Ny)
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» Can define isospin ladder operators — analogous to spin ladder operators

e T Ty _ .
T_=T—il, o o o Iy T, =T1T+117

“TY TLE) = I+ ) =B+ D|LE+1) aru
T_|I,5) = 1UI+1) = BB - 1)1, —1)

Step up/down in I3 until reach end of multiplet T |[,+1) =0 T_|I,—I)=0

Thyu=0 T,d=u T-u=d T-d=0

+ Ladder operatorsturn u —d and d —u

* Combination of isospin: e.g. what is the isospin of a system of two d quarks,
is exactly analogous to combination of spin (i.e. angular momentum)

105, 1) — |1.13)
- Badditive: L =1"+1{%
« Iin integer steps from |[(1) _](2)| to |I(1) —f—I(z)\

* Assumed symmetry of Strong Interaction under isospin transformations
implies the existence of conserved quantites

* In strong interactions I3 and [ are conserved, analogous to conservation of
J;and J for angular momentum
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Combining Quarks

Goal: derive proton wave-function
* First combine two quarks, then combine the third
* Use requirement that fermion wave-functions are anti-symmetric

Isospin starts to become useful in defining states of more than one quark.
e.g. two quarks, here we have four possible combinations:

dd ud,du uu Note: @ represents two
—e @ — I3 states with the same value
| 0 +1 of 3

‘We can immediately identify the extremes ( I3 additive)
w= 5 DI =1L41) dd=|3 Bl -h =11
To obtain the |1,0> state use ladder operators
T_|1,+1) =v2[1,0) = T_(uu) = ud + du

= |1,0) = \%(ud%—du)

The final state, |0,0), can be found from orthogonality with |1,0)

= [0,0) = %(ud—du)
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* From four possible combinations of isospin doublets obtain a triplet of
isospin 1 states and a singlet isospin 0 state 22 =3 1

dd \/Li(ud—l—du) ui %(ud—du)
— - o—» I3 D = > I3
—1 T, 0 T. +1 0

« Can move around within multiplets using ladder operators
* note, as anticipated I3 = %(Nu —Ny)

- States with different total isospin are physically different — the isospin 1 triplet is
symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric

* Now add an additional up or down quark. From each of the above 4 states
get two new isospin states with Ié =L+ %

ddu uud
L 1 y 1 1
ddi ﬁ(”d+d”)d ﬁ(”d‘*‘d“/“ i %(ud—du)d ﬁ(ud—du)u
—o @ @ o3 D I
_2 L0 41 +3 -3 0 +1
2 3 +2 2 2 2

(6] [2]

* Use ladder operators and orthogonality to group the 6 states into isospin multiplets,
e.g. to obtain the | = % states, step up from ddd
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*Derive the I:% states from ddd = |%,—%>
ddd Lt Ty Iy
—e > - > I3
B A
T.|3,-3) = T.(ddd)=(T.d)dd+d(T.d)d+dd(T.)d
V313,-Y) = udd+dud+ddu
13.-3) = Jz(udd+dud+ddu)
T.]3,-1) = %T+(udd+dud+ddu)
213,41 = %(uud—I—udu+uud—|—duu+udu+duu)
1342) = Splmd tudutdu)
T+|%,+%> = %T+(uud+udu+duu)
V3 343 = %(uuu—}—uuu—i—uuu)
%’+%> ...... e

* From the @ states on previous page, use orthoganality to find |%,:I:%> states
* The |Z| states on the previous page give another |%,:|:%> doublet

226 / 557




*The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd
are grouped into an isospin quadruplet and two isospin doublets

20282=20(3®1) =

2e3)e(2®1)

=40202

*Different multiplets have different symmetry properties

3 +3) =

\

Y~

/

}

M,

|%7 ->:%(uud+udu+duu)
3.~4) = L(ddu-+ dud + udd)
2-3) —dda
|%’_%>=—%(2ddu—udd—dud)
13,41 = \LF(ZLtud udu — duu)
|%,_%>:%(udd—dud) }
|%,+%>:%(udu—duu)

A quadruplet of states which
are symmetric under the
interchange of any two quarks

M,

Mixed symmetry.
Symmetric for 1 = 2

Mixed symmetry.
Anti-symmetric for 1 «= 2

* Mixed symmetry states have no definite symmetry under interchange of

quarks | < 3 etc.
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Combining Spin

* Can apply exactly the same mathematics to determine the possible spin
wave-functions for a combination of 3 spin-half particles

3:+3) =111 )
3:4+5) = J5(ITL+ 11T+ 111)
3-b = UL 1) |
3-3) =11

3,-3) =—7 L1~ m—m)
3, +3) = 222111 =111 = 111)
33 = 75T =11])
L+hy=Lau -1 } Ma
2> T2 V2

}

A quadruplet of states which
are symmetric under the
interchange of any two quarks

M,

Mixed symmetry.
Symmetric for 1 «= 2

Mixed symmetry.
Anti-symmetric for 1 «= 2

» Can now form total wave-functions for combination of three quarks
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Baryon Wave-functions (ud)

* Quarks are fermions so require that the total wave-function is anti-symmetric under
the interchange of any two quarks

* the total wave-function can be expressed in terms of:
Y= ¢ﬂav0ur%spin écolour TNspace

* The colour wave-function for all bound qqq states is anti-symmetric (see handout 8)

* Here we will only consider the lowest mass, ground state, baryons where there
is no internal orbital angular momentum.

* For L=0 the spatial wave-function is symmetric (-1)-.

= écolournspace | anti-symmetric | - -
| Overall anti-symmetric |
—) (PﬂavourXSpin
* Two ways to form a totally symmetric wave-function from spin and isospin states:

@ combine totally symmetric spin and isospin wave-functions ¢ (S)x(S)
ddd  J(ddu+dud+udd) 5 (uud +udu+duu) wuu

A~ A° AT AT Spin 3/2

® 1 ® — I3 Isospin 3/2
_3 _1 0 +l _|_§

2 2 2 2
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® combine mixed symmetry spin and mixed symmetry isospin states
* Both ¢(Ms)x(Ms) and ¢(Ma)x(Ms) are sym. under inter-change of quarks 1 < 2
« Not sufficient, these combinations have no definite symmetry under 1 < 3,...
* However, it is not difficult to show that the (normalised) linear combination:

%q)(Ms)x(MS) + L¢(1\’1A)7((1V1A)

V2
is totally symmetric (i.e. symmetricunder 1 —2; 1+ 3; 23 )
n p -
—e— 1 o » I; |Spin1/2
_1 0 +1 Isospin 1/2
2 2

* The spin-up proton wave-function is therefore:

P 1) = 5.5 (Quud —udu—du) (2 17) = 111 = L11) + 5.5 (udu—du) (111 = |17)

p=-"-(2utultd| —utuldl —ululd?]+
2uld|ul—uldlu|l—-uldlul+
2d lutul—dlulul—dlulul)

NOTE: not always necessary to use the fully symmetrised proton wave-function,
e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

5

m—)
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Anti-quarks and Mesons (u and d)

*The u, d quarks and 4, d anti-quarks are represented as isospin doublets

X

u

)

i (0
—\1

)

d
d u I::> u —d — 1
01 t 01—> I - } o—> 3| d=— <O)
2 3 ~3 +3

*Subtle point: The ordering and the minus sign in the anti-quark doublet ensures
that anti-quarks and quarks transform in the same way (see Appendix I). This is

necessary if we want physical predictions to be invariant under u < d; u < d
» Consider the effect of ladder operators on the anti-quark isospin states

o= ()= (§3) () ()~

eg 1 00
*The effect of the ladder operators on anti-particle isospin states are:
Ti=—-d T.d=0 Tu=0 T.d=-u
Compare with Thu=0 T,d=u T-u=d T-d=0
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Light ud Mesons

* Can now construct meson states from combinations of up/down quarks

d u 7] —d
. f . > I3 - : —— I3
_1 1 _1 1
2 +3 2 +3
« Consider the gg combinations in terms of isospin i The bar indicates '
41, 1\1 S, 1\ 5 ithisis theisospin:
|17+1>—|§>+§>|§’+§>__ud i representation of |

|17—1> = |%7_%>|%7_%> =du

{ an anti-quark

To obtain the I3 = 0 states use ladder operators and orthogonality

T_|1,+1) = T_[-ud]
V2|1,0) = —T_[uld—uT_[d]
= —dd+un
= |1,0)= 5 (un—dd)
« Orthogonality gives: |0,0) = % (uﬂ+d3)
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*To summarise:

d u U d
—t—o—> I3 &) —+—eo— I
1 1 1 1

—2 T2 —2 2

|:> Triplet of [ = 1 states and a singlet [ = ( state

g sa-dd) g 5 (uti +dd)
—e ° — 3 b o > I3
-1 T, 0 T, +1 0

..................................

“You will see this writt 2R02=331
ou will see IS written as /

*To show the state obtained from orthogonality with |1,0> is a singlet use
ladder operators

T.10,0) = T+\%(uﬁ+d3) = % (—ud +ud) =0
similarly ~ 7_|0,0) =0

* A singlet state is a “dead-end” from the point of view of ladder operators
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SU(3) Flavour

* Extend these ideas to include the strange quark. Since s > Mu,Md don’t
have an exact symmetry. But 7715 not so very different from My ;Md - and can
treat the strong interaction (and resulting hadron states) as if it were
symmetric under u < d < s

* NOTE: any results obtained from this assumption are only approximate
as the symmetry is not exact.

* The assumed uds flavour symmetry can be expressed as
/

u (U Un U Uiz [(u
d | =U|d]| = Uy Ux Uy d
s s Usy Uz Usz s

* The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters
There are 9 constraints from UTU = 1

ﬂ Can form 18 -9 =9 linearly independent matrices
These 9 matrices form a U(3) group.

* As before, one matrix is simply the identity multiplied by a complex phase and
is of no interest in the context of flavour symmetry

* The remaining 8 matrices have detU = 1 and form an SU(3) group
« The eight matrices (the Hermitian generators) are: T — %;’L U = eioT
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*In SU(3) flavour, the three quark states are represented by:

-0

*In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows
us to write the first three matrices:

0 0 0
=% 0 m=(%20) n=(%0
000 000 000

010 0—i0 1
ie. ued| 41=(100| =i 00] 3=([0-10
000 0 00 0

= The third component of isospin is now written|l; = 1 1;
with Ly = —|—%u Id = —%d Ls=0
= /3 “counts the number of up quarks — number of down quarks in a state

= As before, ladder operators 7} = %(l] + ilz) d o ‘_Tj:_’ ou
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= Now consider the matrices correspondingtothe u~sandd < s

001 00 —i 10 O
ues| 4=1000)A=100 0 00 O
100 i0 0 00 —1
000 00 O 00 O
des ),6= 001 A=100 —i 01 O
010 0:¢ O 00 —1
1 00
* Hence in additionto A;= 0 —1 0 have two other traceless diagonal matrices
0 00
* However the three diagonal matrices are not be independent.
*Define the eighth matrix, )Lg, as the linear combination: Y= %ls
00 0 10 0 10 0 d u
=01 o|]+L[0o0 ofJ=L[01 0O ° T °
3 3 3
v3 00 —1 v3 00 —1 v3 00 -2 >
which specifies the “vertical position” in the 2D plane L= %13
“Only need two axes (quantum numbers)
to specify a state in the 2D plane”: (13,Y) S
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* The other six matrices form six ladder operators which step between the states

; Y
T =3(M =+ l.lz) d T u
Vizz(l4:|:l7t5) _|_%. p T:t_’. ;
Us = L (A i) A 75
with ;= %13 %2’8 U:l: Vi
and the eight Gell-Mann matrices 2\"‘/
3
010 0—i0 1 00 §
ued 100 i 00 A=0-10
000 0 00 0 00
001 00 —i
ues 000 O 00 10 0
000 00 O 00 -2
des 001 )] A7=[00 —i
010 07 O
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Quarks and anti-quarks in SU(3) Flavour
AY Quarks
d ! u I3u:+%u; I3d=—%d; Ls=0
@ p @
*The anti-quarks have opposite SU(3) flavour quantum numbers
Y Anti-Quarks
+2 15 ; — — —
Li=—5u; Bd=+5d; LKLs=0
[ ——
u -3 d
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SU(3) Ladder Operators

*SU(3) uds flavour symmetry contains ud, us SU(3) LADDER
and ds SU(2) symmetries OPERATORS
*Consider the u <~ s symmetry “V-spin” which has T, = %(/11 +iky)

the associated s — u ladder operator

Vi = 5(A £ils)

001 00 —i 001 i .
V=l +its) =1 {000 )+i[00 0] =[000| U:=2etit)
100 i0 0 000 d } u
001\ /0 1 N
with Vis=[1000]1]0 0 U Vv >
000/ \1 0 < +
\ [/
* The effects of the six ladder operators are: S
T.d=u, Tu=d; | Tyui=—d; T-d=—1u
Vis=u; Vou=s; | Viu=—-5;, V.s=—-u / \s
Us=d;, U.d=s, Urd=-5 U5=—d Vil Us
. - 7 1 \
all other combinations give zero T 5
i I
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Light (uds) Mesons

+ Use ladder operators to construct uds mesons from the nine possible ¢gg states

*The three central states, all of which have Y = (; I3 = 0 can be obtained using
the ladder operators and orthogonality. Starting from the outer states can reach

the centre in six ways T+|dﬁ> _ |uﬁ> B |d3> T |u3> _ |d3> B |uﬁ>
Vi|su) = |um) — |s5)  V_|us) = |s5) — |un)
Uy |sd) = |dd) —|s5)  U-|ds) = |s5) — |dd)
*Only two of these six states are linearly independent.

*But there are three states with Y=0,5=0

*Therefore one state is not part of the same
multiplet, i.e. cannot be reached with ladder ops.
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* First form two linearly independent orthogonal states from:

jui) —|dd)  |um) ~ |s3)  |dd) - |55)

* |f the SU(3) flavour symmetry were exact, the choice of states wouldn’t
matter. However, ms > m, 4 and the symmetry is only approximate.

- Experimentally observe three light mesons with m~140 MeV: nt, 77507 T

* Identify one state (the 7170) with the isospin triplet (derived previously)

Y = %(uﬂ—dﬁ)

* The second state can be obtained by taking the linear combination of the other
two states which is orthogonal to the 7T

v = a(|um) — |s5)) + B(|dd) — |s5))
with orthonormality: (y1|yn) =0; (yr|yn) =1

=—> | Yo = o (uti+dd —2s5)

* The final state (which is not part of the same multiplet) can be obtained by
requiring it to be orthogonal to Y1 and Y2

== |y3=Jz(uli+dd+s5)] [SINGLET

241 /557

x|t is easy to check that Y3 is a singlet state using ladder operators
Ty =T w3 =Uys =U_y3 =V yz3 =V_y3 =0
which confirms that Y3 = % (uti 4 dd + s5) is a “flavourless” singlet

*Therefore the combination of a quark and anti-quark yields nine states
which breakdown into an OCTET and a SINGLET

d u 25 L I
S o T R PN Gt
- g ’ s T N
@eeeeee | ........ ® %(Llu"'dd_zss)::
s u d -
R - &sd

- In the language of group theory: 33 =81
* Compare with combination of two spin-half particles 2®2 =31
TRIPLET of spin-1 states: |1,—1), [1,0), |1,+1)
spin-0 SINGLET: |0,0)

*These spin triplet states are connected by ladder operators just as the meson
uds octet states are connected by SU(3) flavour ladder operators

*The singlet state carries no angular momentum - in this sense the
SU(3) flavour singlet is “flavourless”
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PSEUDOSCALAR MESONS (L=0, S=0, J=0, P=-1)

KO(d5) e *Because SU(3) flavour is only approximate
the physical states with 5 =0, Y =0 can be
7 (d7) ; mixtures of the octet and singlet states.
= Empirically find: 0 — ﬂ(uu—dd)
n= T(uu—i—dd 255)
K~ (su) ® n' ~ 7(uu~|—dd+ss)
VECTOR MESONS (L=0, S=1, J=1, P=-1)
K*(ds) o *For the vector mesons the physical states
are found to be approximately “ideally mixed”:
pr(di); p0— % ()
K*’(sﬁ)'z" 9~ E
MASSES
7+ : 140MeV n0:135MeV | | p~:770MeV pg : 770MeV
K*:494MeV K°/K°:498MeV | |K**:892MeV K*0/K* :896MeV
N : 549MeV N’ : 958 MeV o :782MeV ¢ : 1020MeV
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Combining uds Quarks to form Baryons

* Have already seen that constructing Baryon states is a fairly tedious process
when we derived the proton wave-function. Concentrate on multiplet structure
rather than deriving all the wave-functions.

* Everything we do here is relevant to the treatment of colour

* First combine two quarks: dd ud  yu
d T u d T u °  Mmdu e
[ ] [ [ ] [ ] KX
» ® f— »

RN
s s sd + su
@SS

*Yields a symmetric sextet and anti-symmetric triplet: 3 X3 =6 3

(ud +du ud du)

Same “pattern”
® as the anti-quark
representation

| SYMMETRIC | | ANTI-SYMMETRIC

v
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*Now add the third quark:

VAAVAAVAS v A AV

*Best considered in two parts, building on the sextet and triplet. Again concentrate
on the multiplet structure (for the wave-functions refer to the discussion of proton
wave-function).

© Building on the sextet: 36 =10 8

3(uud+udu+duu i % 2uud—udu—duu

N/

Mixed
Decuplet Octet
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@ Building on the triplet:

«Just as in the case of uds mesons we are combining 3 x 3 and again
obtain an octet and a singlet
£ udu—duu
ud du) L (uds — usd + dsu — dus + sud — sdu)

\/_
f
A ® V e
\ Very Important for

following discussion

f COLOUR
Mixed TotaIIy 2
Symmetry Anti-symmetric
Octet Singlet

« Can verify the wave-function Viinglet = \/Lg (uds — usd + dsu — dus + sud — sdu)
is a singlet by using ladder operators, e.g.

T\ Wsinglet = % (uus — usu + usu — uus + suu — suu) =0

* In summary, the combination of three uds quarks decomposes into

3303=3R(603)=1068®8®1
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Baryon Decuplet

* The baryon states (L=0) are:
* the spin 3/2 decuplet of symmetric flavour and symmetric
spin wave-functions ¢(S)x(S)

BARYON DECUPLET (L=0, S=3/2, J=3/2, P= +1) Mass in MeV
A~ (ddd) A°(ddu) At (uud) AT (uuu)
L T PSR IS L A(1232)
¥ (dds) ):*O(uds) Z*‘*(uus)
R G 5(1318)
* ........ [ .‘.::* 5(1384)
E(ssd), & Z0(ssu)
0(1672)
Q7 (ss5)

* If SU(3) flavour were an exact symmetry all masses would be the same
(broken symmetry)
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Baryon Octet

* The spin 1/2 octet is formed from mixed symmetry flavour and

mixed symmetry spin wave-functions

o) (Ms)x(Ms) + Bo(Ma) x (My)

See previous discussion proton for how to obtain wave-functions
BARYON OCTET (L=0, S=1/2, J=1/2, P=+1)

n(ddu) p(uud) Mass in MeV
. .................. . 939
>~ (dds) 59 gs) =+ (uus) £(1103)
—e *—>
) - A(1116)
. .......... L ......... ‘ 5(1318)
E (ssd) =0(ssu)

* NOTE: Cannot form a totally symmetric wave-function based on the
anti-symmetric flavour singlet as there no totally anti-symmetric
spin wave-function for 3 quarks
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Summary

* Considered SU(2) ud and SU(3) uds flavour symmetries

* Although these flavour symmetries are only approximate can still be
used to explain observed multiplet structure for mesons/baryons

* In case of SU(3) flavour symmetry results, e.g. predicted wave-functions
should be treated with a pinch of salt as m; # my/d

* Introduced idea of singlet states being “spinless” or “flavourless”

* In the next handout apply these ideas to colour and QCD...
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Appendix: the SU(2) anti-quark representation

—d*

u*

Non-examinable
u )

* Define anti-quark doublet g = (_d> = <

*The quark doublet g = > transforms as ¢ =Ugq

Lt/ u Complex u’* u*
= —— =U*
(dl) v (d) conjugate dl* d
*Express in terms of anti-quark doublet

0—-1\_ . [0-1)\_
(1)7-u(Va)s

*Hence ¢ transforms as

L (01 0—-1)_
7=(50)v(17)a

Y
QU R
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*A special 2x2 unitary matrix can always be written in the form

_ [ c11 c12
v= ( —Cly €1y >
... provided that |c,|?*|c4,|?=1. This gives:

= 0 1 iy 0—-1)\_
9 o (—1 0 —C12 C11 1 0 q

_ ( ci C12)

— * *

—C12 ‘11
— Uq

*Therefore the anti-quark doublet g = (_‘ﬁi)

transforms in the same way as the quark doublet g = <Z,)

*NOTE: this is a special property of SU(2) and for SU(3) there is no
analogous representation of the anti-quarks
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Particle Physics

Dr Lester

Handout 8 : Quantum Chromodynamics
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The Local Gauge Principle

(see the Appendices A, B and C for more details)
* All the interactions between fermions and spin-1 bosons in the SM are specified
by the principle of LOCAL GAUGE INVARIANCE

* To arrive at QED, require physics to be invariant under the local phase
transformation of particle wave-functions

* Note that the change of phase depends on the space-time coordinate: X(Z‘,f)
*Under this transformation the Dirac Equation transforms as

Yoy —my=0| = |iy*(dy+igdux)y —my =0

*To make “physics”, i.e. the Dirac equation, invariant under this local
phase transformation FORCED to introduce a massless gauge boson, Au .
+ The Dirac equation has to be modified to include this new field:

iy (Ot igAy) Y —my =0

*The modified Dirac equation is invariant under local phase transformations if:

Ay — A=Ay —dux Gauge Invariance
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* For physics to remain unchanged — must have GAUGE INVARIANCE of the new
field, i.e. physical predictions unchanged for Ay —>A2L =Ay —dux

* Hence the principle of invariance under local phase transformations completely
specifies the interaction between a fermion and the gauge boson (i.e. photon):

iv"(dy +igA )y —my=0

—= QED'!

* The local phase transformation of QED is a unitary U(1) transformation

vy =0y ie. Yoy = q/eiqx(x) with U'U=1

Now extend this idea...
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From QED to QCD

* Suppose there is another fundamental symmetry of the universe, say
“invariance under SU(3) local phase transformations”
ig_i.é(x)

. . . ’_
* i.e. require invariance under ¥ — Y = Ye where

i are the eight 3x3 Gell-Mann matrices introduced in handout 7

é(x) are 8 functions taking different values at each point in space-time

v —) 8 spin-1 gauge bosons

1

V= <1//2> wave function is now a vector in COLOUR SPACE
Vs = [acD!

* QCD is fully specified by require invariance under SU(3) local phase
transformations

Corresponds to rotating states in colour space about an axis
whose direction is different at every space-time point

=) interaction vertex: — %igsla’}’”

* Predicts 8 massless gauge bosons — the gluons (one for each ) )

* Also predicts exact form for interactions between gluons, i.e. the 3 and 4 gluon

vertices — the details are beyond the level of this course
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Colour in QCD

*The theory of the strong interaction, Quantum Chromodynamics (QCD),
is very similar to QED but with 3 conserved “colour” charges

In QED:

* the electron carries one unit of charge —¢ o
* the anti-electron carries one unit of anti-charge +e \é
* the force is mediated by a massless “gauge 4
boson” - the photon
In QCD:
« quarks carry colour charge: 1, §, b _ Us
- anti-quarks carry anti-charge: 7,g,b \\@g
* The force is mediated by massless gluons

* In QCD, the strong interaction is invariant under rotations in colour space
rebyr—g b—g
i.e. the same for all three colours

- SU(3) colour symmetry

*This is an exact symmetry, unlike the approximate uds flavour symmetry
discussed previously.
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* Represent rg,b SU(3) colour states by:

1 0 0
r=101]; g=11]; b=1[0
0 0 1

* Colour states can be labelled by two quantum numbers:
+ I colour isospin

+ Y€ colour hypercharge
Exactly analogous to labelling u,d,s flavour states by /3 and Y
* Each quark (anti-quark) can have the following colour quantum numbers:

quarks Y5 anti-quarks Yf B
+3@b
_1 4
3 ? b
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Colour Confinement

* |t is believed (although not yet proven) that all observed free particles are
“colourless”

*i.e. never observe a free quark (which would carry colour charge)
sconsequently quarks are always found in bound states colourless hadrons
* Colour Confinement Hypothesis:

only colour singlet states can
exist as free particles

* All hadrons must be “colourless” i.e. colour singlets

* To construct colour wave-functions for
hadrons can apply results for SU(3) flavour
symmetry to SU(3) colour with replacement

u—r
d— g
s—b

* just as for uds flavour symmetry can /
define colour ladder operators
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Colour Singlets

* It is important to understand what is meant by a singlet state
* Consider spin states obtained from two spin 1/2 particles.

* Four spin combinations: T, T4, 11, 1

+ Gives four eigenstates of 3’2, S‘Z 2®2=3d1)
|1,+1> :1TT spin-1 1 spin-0
17_1 :ll

* The singlet state is “spinless”: it has zero angular momentum, is invariant
under SU(2) spin transformations and spin ladder operators yield zero

$4]0,0) =0

* In the same way COLOUR SINGLETS are “colourless” ye
combinations:
¢+ they have zero colour quantum numbers Ig =0,Y"=0
¢+ invariant under SU(3) colour transformations I¢
+ ladder operators 7, Uy, Vi allyield zero 3

* NOT sufficient to have I3C =0, Y¢ = 0 : does not mean that state is a singlet

259 /557

Meson Colour Wave-function

* Consider colour wave-functions for 4q
* The combination of colour with anti-colour is mathematically identical
to construction of meson wave-functions with uds flavour symmetry

YC
_ _ Ye
YC Y c gb. ........ T ....... Q rb +
8 r 5 I N L (rF+gg+bb
ot - Tb g BT G (7 -+ gg +bb)
I5 ! ...... | ...... : 5 ﬁ(rf+g§72b5).:’:’ I3 5
bT. ............... . bg

L | Coloured octet and a colourless singlet |

*Colour confinement implies that hadrons only exist in colour singlet
states so the colour wave-function for mesons is:

1= (17 +gg+bb)

* Can we have a g4q state ? i.e. by adding a quark to the above octet can we form
a state with Y = (; I5 = 0. The answer is clear no.

m=) Gqgq bound states do not exist in nature.
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Baryon Colour Wave-function

* Do qq bound states exist ? This is equivalent to asking whether it possible to

form a colour singlet from two colour triplets ?
* Following the discussion of construction of baryon wave-functions in

SU(3) flavour symmetry obtain
—(rg+
e ten J5(rg—gr)

V@V v A

* No qq colour smglet state
» Colour confinement ==bound states of qq do not exist

BUT combination of three quarks (three colour triplets) gives a colour

singlet state (p_7)

AV v el yes
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* The singlet colour wave-function is:

999 __ \%(rgb —rbg + gbr — grb+ brg — bgr)

C

Check this is a colour singlet...

*Ithas I5 =0, Y° =0 : anecessary but not sufficient condition
* Apply Iadder operators eg. T4 (recall T, g =r)
Tyl = \/6 (rrb —rbr+rbr —rrb+brr—brr) =0

Similarly T_yd% =0; Voyl? =0, Uyl =

% Colourless singlet - therefore qgq bound states exist !
=> | Anti-symmetric colour wave-function
Allowed Hadrons i.e. the possible colour singlet states _

@ 99, 999 Mesons and Baryons
® 9999, 99999 Exotic states, e.g. pentaquarks

To date all confirmed hadrons are either mesons or baryons. However, some
recent (but not entirely convincing) “evidence” for pentaquark states
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Gluons

* In QCD quarks interact by exchanging virtual massless gluons, e.g.

dp gr Jdb gr dp gr
:EZ: = 8/ + &\Q\ br
ar Qb oF Qb qr Qb

* Gluons carry colour and anti-colour, e.g.

RN

* Gluon colour wave-functions _ _
. b @ oot 'Y rb YC
(colour + anti-colour) are the same 89

as those obtained for mesons Bl L (r7+ gg +bb)
(also colour + anti-colour) 8r T -e8) rg o V3
ocTET + e gg_%g)j,,- I§ 5
“COLOURLESS” SINGLET - L ........ $bg
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* So we might expect 9 physical gluons:
OCTET: g, rb, gF, gb, b7, bg, % (r7 — g3), \/Lg(r?—l— g8 — 2bb)
SINGLET: % (rF+gg +bb)

* BUT, colour confinement hypothesis:

Colour singlet gluon would be unconfined.
It would behave like a strongly interacting
photon = infinite range Strong force.

only colour singlet states =
can exist as free particles

* Empirically, the strong force is short range and therefore know that the physical
gluons are confined. The colour singlet state does not exist in nature !

NOTE: this is not entirely ad hoc. In the context of gauge field theory (see minor
option) the strong interaction arises from a fundamental SU(3) symmetry.
The gluons arise from the generators of the symmetry group (the
Gell-Mann A matrices). There are 8 such matrices = 8 gluons.
Had nature “chosen” a U(3) symmetry, would have 9 gluons, the additional
gluon would be the colour singlet state and QCD would be an unconfined
long-range force.

NOTE: the “gauge symmetry” determines the exact nature of the interaction
=) FEYNMAN RULES
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Gluon-Gluon Interactions

* In QED the photon does not carry the charge of the EM interaction (photons are
electrically neutral)

* In contrast, in QCD the gluons do carry colour charge

=) [ Gluon Self-Interactions
* Two new vertices (no QED analogues)

triple-gluon -
vertex ;}a_w.m % qua\l;tétr:tg)l(uon

* In addition to quark-quark scattering, therefore can have gluon-gluon scattering

-
FE

e.g. possible _’j > X A

way of arranging ﬁ >

the colour flow —_— X x
—_—
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Gluon self-Interactions and Confinement

* Gluon self-interactions are believed to give

et q
rise to colour confinement
* Qualitative picture:
«Compare QED with QCD
*In QCD “gluon self-interactions squeeze
e q

lines of force into a flux tube”

* What happens when try to separate two coloured objects e.g. qq

*Form a flux tube of interacting gluons of approximately constant
energy density ~ 1GeV/fm

= V(r)~Ar

*Require infinite energy to separate coloured objects to infinity
*Coloured quarks and gluons are always confined within colourless states
*In this way QCD provides a plausible explanation of confinement — but
not yet proven (although there has been recent progress with Lattice QCD)
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Hadronisation and Jets

* Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at aq
high velocity —@ ‘—q'

ii) Colour flux tube forms q
between quarks — 0

iii) Energy stored in the q a q g
flux tube sufficient to ——0 &—0—
produce qq pairs

——0 &—0 e—0¢—0—

iv) Process continues
until quarks pair

up into jets of E@ @@ ®@ @ _

colourless hadrons

* This process is called hadronisation. It is not (yet) calculable.

* The main consequence is that at collider experiments quarks and gluons
observed as jets of particles

D i o
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QCD and Colour in e*e- Collisions

*e*e” colliders are an excellent place to study QCD

e* d | % Well defined production of quarks
Y * QED process well-understood

* no need to know parton structure functions
e~ q * + experimentally very clean — no proton remnants

* In handout 5 obtained expressions gor the ete™ — ,Lt+,u_ cross-section

2 do a
0_:47r_oc — = —(1+cos’0) S
3s dQ 4s CELLO
*In e*e~ collisions produce all quark flavours [ 3882Ecm=4680ev ﬁf B

for which /s > 2my
+ In general, i.e. unless producing a ¢¢q bound state,
produce jets of hadrons

* Usually can’t tell which jet /
came from the quark and /

came from anti-quark -
* Angular distribution of jets o (1 +cos’ ) ~ ]

Number of events

00¥ (2861) g€81 1o sAud “Ie 3@ puaiyagr'H

=) | Quarks are spin 2 ' |cos Bl
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* Colour is conserved and quarks are produced as 77, gg, bb
* For a single quark flavour and single colour

_ _ . 4mo?
ole’e” —qig;) = —=—0,
* Experimentally observe jets of hadrons: 5
o(e*e” — hadrons) =3 ) dna 0?
3s 1

u,d,s,..
Factor 3 comes from colours ”’

* Usual to express as ratio compared to G(€+€7 — ‘uﬂu*)

o(e"e” — hadrons) 3y 0
= q

R, =
u _ —
G(e+e - 'u+'u ) u,d,s,..
3- R N T T T T T T T .
W5 5y _u,d,s. RH:3X(%+3+$):2
| ludse: R, = %
i b ‘ C o 1l

Ll Sy | *Data consistent with expectation
[ N e with factor 3 from colour
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Jet production in e+e- Collisions

OPAL at LEP (1989-2000)

*e*e” colliders are also a good place to study gluons

ete — qg — 2jets ete” — ggg — 3jets e

e — qqgg — 4jets

e~

Experimentally:

*Three jet rate == measurement of O

*Angular distributions s gluons are spin-1

*Four-jet rate and distributions =& QCD has an underlying SU(3) symmetry
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The Quark — Gluon Interaction

*Representing the colour part of the fermion wave-functions by:

1 0 0
r=c¢1 = 0 g=0C = 1 b=C’§: 0
0 0 1
-Particle wave-functions u(p) — c;u(p)
*The QCD qqg vertex is written: q P1 U,a p3 q
(p3)ci{—3ig A"y }eiu(py) '

*Only difference w.r.t. QED is the insertion of the 3x3 Gluon a colouri —j
SU(3) Gell-Mann matrices
Isolating the colour part: a
1i
c;l"ci = c;r- 5 = ),]‘-’l-
a
3i
*Hence the fundamental quark - gluon QCD interaction can be written
— 1 1. _ 1.
”(P3)C;{—§lgs/1a7’“}ciu(l71) =u(p3){—zigsAj7" Ju(pr)
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Feynman Rules for QCD
@ External Lines incoming quark u(p) —> o
) outgoing quark u(p) —>—
spin 1/2 incoming anti-quark v(p) —<—o
outgoing anti-quark v(p) —<—
) incoming gluon e*(p) 2000
spin 1 outgoing gluon et (p)* o000
@ Internal Lines (propagators)
spin 1 gluon #S“b 'L.L_Q_Q_QQ.
q a b
a, b=1,2,...,8 are gluon colour indices
@ Vertex Factors u,a
. . 1 . .
spin 1/2 quark —zgs§l;‘iy“ l J

i, j=1,2,3 are quark colours,
A? a=1,2,.8 are the Gell-Mann SU(3) matrices
@ + 3 gluon and 4 gluon interaction vertices
@ Matrix Element -iM = product of all factors
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Matrix Element for quark-quark scattering

* Consider QCD scattering of an up and a down quark
u P1 p3 *The incoming and out-going quark colours are

labelled by i, j, k,1 ={1,2,3} (or {r,g,b})
* In terms of colour this scattering is
ik — jl
* The 8 different gluons are accounted for by
the colour indices a,b =1,2,...,8

*NOTE: the 8-function in the propagator ensures
a = b, i.e. the gluon “emitted” at a is the
same as that “absorbed” at b

* Applying the Feynman rules:
. — . a l a
—iM = [t (p3){—3igs A5y buu(p1)] q“ *5 b[ud(m){ SigsApy Yua(pa)

where summation over a and b (and p. and V) is implied.

* Summing over a and b using the d-function gives:

M= & ) Mk 7 guv[uu(pg)}/“uu(pl)][ud(m)Y uq(p2)]

Sum over all 8 gluons (repeated indices)
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QCD vs QED

_ D p
QED .

—iM = [(ps )iey u(py)] — S [a(pa)iey u(p)
1 _ _ p2 P4

M= —ezgguv[u(pm’“u(pl)][u(p4)7’vu(pz)] - -

QCD

M= _géflﬁ’llk lzgﬂv[”u(p3)7'u“u(l71)][”d(P4)’}’ ug(p2)]

* QCD Matrix Element = QED Matrix Element with:

€2 g2
e” — g5 |orequivalently |0t = — — g = =%
° L y Ax ST Ax

+ QCD Matrix Element includes an additional “colour factor”

C(ik — jl) = - Z Sk
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Evaluation of QCD Colour Factors

*QCD colour factors reflect the gluon states that are involved

010 001 000

Al=|100 At=[000 A=(001 AM=10-10
000 100 010 0 00
0-i0 00 —i 00 0

A2=1i 00 AS=(00 0 AT=100—i A8 = %
0 00 i0 0 0i 0

Gluons: rg, g7 b, bF gb,bg %_(W ) f(rr+gg 2bb)

—_
o]
o]

N——

© Configurations involving a single colour

' .Only matrices with non-zero entries in 11 position are involved

=1
Clrr—rr) = lelln—_lnln‘klnln)

Similarly find |C(rr — rr) = C(gg — gg) = C(bb — bb) =
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@® Other configurations where quarks don’t change colour eg. rb—rb

r I +Only matrices with non-zero entries in 11 and 33 position
j=1 are involved 18 ,.. 1 § 13
C(rb—rb) = 1 Y AfAg = 2(1117‘33)
a=1
1 1 -2 1
b =5 b = z(%%)—‘a

Similarly  C(rb—rb)=C(rg —rg) =C(gr— gr) =C(gb — gb) =C(br— br) =C(bg — bg) = ——
© Configurations where quarks swap colours  e.g. 7g — gr

r g *Only matrices with non-zero entries in 12 and 21 position
ji=2 are involved 1S ... 1 )
Clrg—gr) = 1 ZAQ]AU = Z(M]llfz"‘;%llzz)
5 o5 a=1
Gluons rg, gr B 1(.(_-)+1) B T(ij)T(kl)
97" =1’ - g ) R—

1
C(rb—br)=C(rg—gr)=C(gr—rg)=C(gb—bg) =C(br—rb) =C(bg — gb) = 3
O® configurations involving 3 colours  e.g. rb — bg

*Only matrices with non-zero entries in the 13 and 32 position
*But none of the A matrices have non-zero entries in the
13 and 32 positions. Hence the colour factor is zero

% colour is conserved
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Colour Factors : Quarks vs Anti-Quarks

* Recall the colour part of wave-function:
* The QCD qqg vertex was written:

_ 1.
i(p3)cH{—Lig: A"V beu(p1) a
*Now consider the anti-quark vertex
- The QCD qqQg vertex is:

(p1)e] {—Ligs A%y Yejv(ps)

P1

1 0 0
r=c=1(0 g=c=|1 b=c3=10
0 0 1

P3

Note that the incoming anti-particle now enters on the LHS of the expression

a
1 i J
‘va,.. T a __qa
cl-)L Cj=¢; lzj —JLU

A5

*For which the colour part is

i.e indices ij are
swapped with respect
to the quark case

* Hence

V(p1)e]{—%igs AV Yev(p3) =V(p1){—ig ALy }v(p3)
» c.f. the quark - gluon QCD interaction

(p3)ei{—igsA“P Yeu(pr)

= u(p3){—%igs Ay Yu(py)
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* Finally we can consider the quark — anti-quark annihilation

SIN V(p2)ep{—3igs Ay Yewu(p)

c,t),acl- =

P QCD vertex:

with i

Ol

V(p2)ei{—Lig Ay Yeiu(pr) =V(p2){—Lig ALy* hu(p)
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» Consequently the colour factors for the different diagrams are:

q i j q e.g. 1
8 C(rr—rr) =3
C(lk—>]l EZZ )’lk C(rgﬁrg):—%
a=1 1
a7y 9 C(rg—gr)=3
q i J q
) C(rr —r7) = %
g —= ~3J C(rf—gg) =13
q
e C(rF—r7) = §
C(ik — ji) EZZA]{I C(r§—>r§):%
g - C(r7F—g8) = —¢
Colour index of adjoint spinor comes first
279 / 557
Quark-Quark Scattering
jet

Consider the process 1 +d — u -+ d which can occur in the
high energy proton-proton scattering

* There are nine possible colour configurations
of the colliding quarks which are all equally P
likely.

* Need to determine the average matrix element which
is the sum over all possible colours divided by the
number of possible initial colour states jet

3
11 .. 5
(IMpil?) = ). IMpilij— k)|
3 % i,j.kl=1

* The colour average matrix element contains the average colour factor
3

(P =5 ¥ IClj— k)P

I,Jk,I=1

*For 499 — 49 1117, . rb-1b,.. rb-br,..

<|C|2> :% [3>< (%>2+6x <_é>2+6x (%)2] :g
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*Previously derived the Lorentz Invariant cross section forep~ — e u~
elastic scattering in the ultra-relativistic limit (handout 6).
do  2ma?

2\’
90 1+(1+ZL
QED i’ +(«+s)]
“For ud — ud in QCD replace O — O and multiply by (|C|?)

C]2 2 Never see colour, but
1+ 1+—=— < enters through colour factors.
N

do 227

QcD =5

Can tell QCD is SU(3)

‘Here S§ is the centre-of-mass energy of the quark-quark collision
*The calculation of hadron-hadron scattering is very involved, need to
include parton structure functions and include all possible interactions

e.g. two jet production in proton-antiproton collisions

ot ol e

qq9 — 499 q8 — q8 88 — 88 qq — 8¢ q99 — 99
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e.g. pp collisions at the Tevatron

* Tevatron collider at Fermi National Laboratory (FNAL)
* located ~40 miles from Chigaco, US
» started operation in 1987 (ran until 2010)

* PP collisions at Vs = 1.8 TeV  c.f. 14 TeV at the LHC -

Two main accelerators:
* Main Injector
* Accelerated 8 GeV p
to 120 GeV
calso p to 120 GeV
* Protons sent to
Tevatron & MINOS
Main Injector * p all went to Tevatron

120 GeV p * Tevatron

* 4 mile circumference

- accelerated p/p from
120 GeV to 900 GeV
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* Test QCD predictions by looking at production of pairs of high energy jets

pp — jetjet+ X
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* Measure cross-section in terms of

P 0 P * “transverse energy” Er = Ej,sin6
- “pseudorapidity” n=In [cot (g)}
...don’t worry too much about the details here,
what matters is that...
’; 107
@ — QCD Prediction * QCD predictions provide an
2 JETRAD Program excellent description of the data

d?o
dETdT]

[ 6=57-15

Ll

*NOTE:
- at low E; cross-section is
dominated by low x partons

i.e. gluon-gluon scattering
« at high E; cross-section is
dominated by high x partons
i.e. quark-antiquark scattering

(1002) 98 97 "A9Y "sAyd ‘uoneloqe|od 0a

P B
50 100 150 200

S I I A AN
250 300 350 400 450 500

ET (GeV)
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Running Coupling Constants

+
QED | - “bare” charge of electron screened -Q % @

by virtual e*e- pairs ° ©+Qo ( >
* behaves like a polarizable dielectric @
* In terms of Feynman diagrams: ﬁ @

Ja

N{
* Same final state so add matrix element amplitudes: M =M+ M, +M3+...
* Giving an infinite series which can be summed and is equivalent to 2
a single diagram with “running” coupling constant valg)
2 2
o(Q), (2
2 2 0 2
a(@*) = a(gh) /1= “ 2 (&, q
2
3n 5
2 2
Note sign Q> 0 a(q)
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a(Qz) i * Might worry that coupling becomes
) : infinite at 2
. | ( 0 > 3n
1 n P —_——
! 2
| )  1/137
1 | i.e. at Q ~ 10 GeV
137 b * But quantum gravity effects would come
In Q'z in way below this energy and it is
OPAL Collaboration, Eur. Phys. J. C33 (2004) hlghly unllkely that QED ”as |S” Wou'd
B O rorn e s wn be valid in this regime
B s, omrastan |

* In QED, running coupling increases
F a0 ] very slowly

-Atomic physics: Q% ~ 0
1/o0 = 137.03599976(50)
*High energy physics:
1/0(193GeV) = 127.4£2.1

L L 1 1 Il Il 1 1
S0 25 50 75 100 125 150 175 200
Q/GeV
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Running of O

Q

Similar to QED but also have gluon loops

CD

Vs .

ng — + § = % + % +..
\ AN

NG \ N\~

Fermion Loop Boson Loops

* Remembering adding amplitudes, so can get negative interference and the sum
can be smaller than the original diagram alone
* Bosonic loops “interfere negatively”

as(Q%) = 05(Qp) / [1 +Bas(Q5)In (g—i)]

0
11N, —2 _
with B— M N, =no. of colours
127 Nf = no. of quark flavours

N.=3;Nj=6 == B>0
== | decreases with (2

Nobel Prize for Physics, 2004
(Gross, Politzer, Wilczek)
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0-4'_ T T T T TTT
* Measure Og in many ways: 7 — hadrons
* jet rates osl
- DIS N Qcp
« tau decays o) ]‘)/IS Prediction
* bottomonium decays ozf ¢ lu=0
o+, ~ o ]
* As predicted by QCD, 0‘1:’ Y(bb) Decay b—f
Ol decreases with Q2 7 ete” —3jets]
0.0 | 1 | \‘ | I I \‘
1

2 5 10 20 50 100 200
1 (GeV)

* At low Q% Ols is large, e.g. at 0% = 1GeV? find Ols ~ 1
*Can’t use perturbation theory ! This is the reason why QCD calculations at

low energies are so difficult, e.g. properties hadrons, hadronisation of
quarks to jets,...

* At high Q% : Ol is rather small, e.g. at Q% = M% find 05~ 0.12
=) | Asymptotic Freedom

-Can use perturbation theory and this is the reason that in DIS at high Q°
quarks behave as if they are quasi-free (i.e. only weakly bound within hadrons)

288 /557




Summary

* Superficially QCD very similar to QED
* But gluon self-interactions are believed to result in colour confinement
* All hadrons are colour singlets which explains why only observe

Mesons Baryons

* A low energies 0Og ~ 1
== Can’t use perturbation theory !

Non-Perturbative regime

* Coupling constant runs, smaller coupling at higher energy scales
05(100GeV) ~ 0.1
=» Can use perturbation theory

Asymptotic Freedom

* Where calculations can be performed, QCD provides a good description
of relevant experimental data
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Appendix A1 : Electromagnetism

(Non-examinable)
* In Heaviside-Lorentz units g, = g = ¢ = 1 Maxwell’s equations in the
vacuum become

= =

=2 = = = aB = = = = - aE
VE=p; VAE=——; V-B=0; VAB=J+—

ot ot
* The electric and magnetic fields can be expressed in terms of scalar and
vector potentials a;‘»
E:—E—VQ); B=VAA [(26)]

* In terms of the 4-vector potential A* = (q?) ,f_{) and the 4-vector current
ju = (pjj} Maxwell’s equations can be expressed in the covariant form:
aquV — jv
where FHV is the anti-symmetric field strength tensor
E. 0 —B; B,
E, B, 0 —B;
E, -By, B, 0

FHY = QHAY — 9VAH =

«Combining [E@) and (E8))
Ju(IHAY — QVAH) = ¥
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which can be written  O?A* — 9 (9,AY) = j* (30)]
where the D’Alembertian operator
22 -
2 \% 2
0°=0y0" == -V
Y or?
-Acting on equation [@3)]) with o, gives

avjv - ava’ua‘uAv - a‘ua\/avA‘u — O

P = -
= a—lt) +V.J=0 | Conservation of Electric Charge |

*Conservation laws are associated with symmetries. Here the symmetry
is the GAUGE INVARIANCE of electro-magnetism

Appendix A2 : Gauge Invariance (Non-examinable)
* The electric and magnetic fields are unchanged for the gauge transformation:
— — — — a
A—X=A+Vy, ¢—o¢ = —8—7;
where ¥ = x(t,f) is any finite differentiable function of position and time
* In 4-vector notation the gauge transformation can be expressed as:
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* Using the fact that the physical fields are gauge invariant, choose X to be
a solution of 20
0%y = —dyA*

* In this case we have
!l _ 2. _
Ay =M (Ap+duyx) =0 A, +07x =0
* Dropping the prime we have a chosen a gauge in which

IuAH = |The Lorentz Condition | -
* With the Lorentz condition, equation [B8)) becomes:

DAk = (2]

* Having imposed the Lorentz condition we still have freedom to make
a further gauge transformation, i.e.

where A(t,)?) is any function that satisfies

02A =0 -

* Clearly [88)) remains unchanged, in addition the Lorentz condition still holds:
OHAY = O (A +OyA) = A, +T*A =0 A, =0
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Appendix A3 : Photon Polarization

* For a free photon (i.e. jH =()) equation [@2)) becomes (Non-examinable)

O2AH =0 [39)]
(note have chosen a gauge where the Lorentz condition is satisfied)
* Equation ([@)] has solutions (i.e. the wave-function for a free photon)
Al = gh(q)e 0

where gl is the four-component polarization vector and ¢ is the photon
four-momentum

0= D2A‘u — _q28pe—iq.x
— q2:O

* Hence equation [B#) describes a massless particle.
* But the solution has four components — might ask how it can describe a

spin-1 particle which has three polarization states?
* But for (A8) to hold we must satisfy the Lorentz condition:
0= dyAH =gy (e!e 1) = el ay(e7'1") = —igHq e '1*

Hence the Lorentz condition gives qu et =0 -

i.e. only 3 independent components.
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* However, in addition to the Lorentz condition still have the addional gauge
freedomof Ay —>AL =Au+duA  with (@] 0O>A =0

Choosing A =ige 4"  whichhas [O?A=¢’A=0
Ay — Ay =Au+A = e +iade
= g e i4x 4 ia(—iqu)e_iq‘x
= (eu+ aq“)e_iq'x
* Hence the electromagnetic field is left unchanged by
& — 8;1 =&, +aqy

* Hence the two polarization vectors which differ by a mulitple of the photon
four-momentum describe the same photon. Choose a such that the time-like
component of €, is zero,i.e. & = 0

* With this choice of gauge, which is known as the COULOMB GAUGE, the
Lorentz condition [@5)) gives
£:4=0 o)

i.e. only 2 independent components, both transverse to the photons momentum
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* A massless photon has two transverse polarisation states. For a photon
travelling in the z direction these can be expressed as the transversly

polarized states:

' =(0,1,0,0); &' =(0,0,1,0)

* Alternatively take linear combinations to get the circularly polarized
states
1 1
Bo_ - no_ ;
8__ﬁ(0’1’_l,0)’ 8+——%(0,1,l,0)
* |t can be shown that the €, state corresponds the state in which the
photon spin is directed in the +z direction, i.e. S, = +1
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Appendix A4 : Massive Spin-1 particles

(Non-examinable)
*For a massless photon we had (before imposing the Lorentz condition)
we had from equation [Eg))

O2AH — 9k (dyAY) = j#
* The Klein-Gordon equation for a spin-0 particle of mass m is
(O%2+m?)p =0
suggestive that the appropriate equations for a massive spin-1 particle can
be obtained by replacing 002 — 02 + 2

* This is indeed the case, and from QFT it can be shown that for a massive spin
1 particle equation [§8)) becomes

(0% +m?*)B* — 9H(9yB¥) = j*
* Therefore a free particle must satisfy

(0% +m?)B* — 9" (dyB) =0 (3]

296 / 557




+Acting on equation [@@) with J, gives
(0% +m*)9yB* — dyot(yBY) = 0
(0% +m?)dyB* —O*(yB*) = 0

mduBr = 0 G9)]

* Hence, for a massive spin-1 particle, unavoidably have 8uBﬂ = () ; note this
is not a relation that reflects to choice of gauge.

*Equation [B#)) becomes

(O +m?)B* =0 ((39)]
* For a free spin-1 particle with 4-momentum, p)u , equation @) admits solutions
_ —ip.x
By = ¢gue™'?
* Substituting into equation (@8)) gives

* The four degrees of freedom in €H are reduced to three, but for a massive particle,
equation (@) does not allow a choice of gauge and we can not reduce the
number of degrees of freedom any further.
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* Hence we need to find three orthogonal polarisation states satisfying

pusf =0 @)

* For a particle travelling in the z direction, can still admit the circularly
polarized states.

1 1
u . i u .
e =—(0,1,—-i,0); &*=——2(0,1,i,0
* Writing the third state as [These are used on page 478]
g = ——(a,0,0,8)

v 02+ B2
equation @) gives oFE — fBp, =0
1
|:> 8;,1 - _(p270707E)
m
* This longitudinal polarisation state is only present for massive spin-1 particles,
i.e. there is no analogous state for a free on-shell photon.
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Appendix B : Local Gauge Invariance

(Non-examinable)
* The Dirac equation for a charged particle in an electro-magnetic field can be
obtained from the free particle wave-equation by making the minimal substitution

P—P—qA; E—E—q¢ (9= charge) ([ see page 121)|
In QM: idy — idy —gA,  and the Dirac equation becomes
Y (idy —qAp) Y —my =0 ()]

* In Appendix A2 : saw that the physical EM fields where invariant under the
gauge transformation

/o 2
* Under this transformation the Dirac equation becomes
Y (idy — gAu +qoux)y —my =0
which is not the same as the original equation. If we require that the Dirac

equation is invariant under the Gauge transformation then under the gauge
transformation we need to modify the wave-functions

v — Y = yeldX

A Local Phase Transformation
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* To prove this, applying the gauge transformation :
A=Ay =Au=dut Y —y = ye
to the original Dirac equation gives
Y (idy — gAy +qoux) We'% —mye't =0 [(42)]
* But iy (ye'%) = i Iy — q(Iux)e' % y
* Equation [#) becomes
Ve X (idy — gAu +qduX — qouX) Y — myet =0
= P (idy — qAu) Y —myedt =0
= P (i — gAYy —my =0

which is the original form of the Dirac equation
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Appendix C : Local Gauge Invariance 2

(Non-examinable)
* Reverse the argument of Appendix B. Suppose there is a fundamental
symmetry of the universe under local phase transformations

y(x) — ¥ (x) = p(x)e )
* Note that the local nature of these transformatio_;ns: the phase transformation
depends on the space-time coordinate x = (,X)

* Under this transformation the free particle Dirac equation
itoyy —my =0
becomes iv" oy (I,Ue"qx ) — ml;/eiq% =0
ie' Xyt (dyy+iqudyy) —myed% =0
iYH(Ou +igdux )y —my =0

Local phase invariance is not possible for a free theory, i.e. one without interactions

* To restore invariance under local phase transformations have to introduce
a massless “gauge boson” AH which transforms as

and make the substitution

301557

Appendix D: Alternative evaluation of colour factors

“Non-examinable”
but can be used
to derive colour
factors.

* The colour factors can be obtained (more intuitively) as follows :

1
u u  write C(ik— jl)==cic2

2

*Where the colour coefficients at the two
vertices depend on the quark and gluon
colours

— 1
ci =1 b CI—W r

d . 2 P d r - r
| rb 5 (17— 3)

*Sum over all possible exchanged gluons conserving
colour at both vertices

C1

302/ 557




@ configurations involving a single colour
e.g. rr — rr: two possible exchanged gluons

r C1 r r C1 r
ﬁ(r?—gg) T(I’l’-l-gg 2]917)
r s r r s r
— = L
C(rr—rr) =15 (5+ l) 3

6
e.g. bb — bb: only one possible exchanged gluo

b €1 b
—h = — 2
T(rr+gg 2bb) a=0==—7
b o>~b
_ 1 2 2\ _1
- C(bbabb)—f(%%)_g
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@ other configurations where quarks don’t change colour
r €1 r
Cl = L 1 . _ i
V6 (17 + g8 —2bb)
b b
2
2= _% 1 1 2 1

©)] Configurations where quarks swap colours

r 9

g cir=cy=1

—_

g r C(}"g—>g}’):§
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Appendix E: Colour Potentials ___ .

*Previously argued that gluon self-interactions lead to a +Ar long-range
potential and that this is likely to explain colour confinement

*Have yet to consider the short range potential — i.e. for quarks in mesons
and baryons does QCD lead to an attractive potential?

*Analogy with QED: (NOTE this is very far from a formal proof)

QED S —-€ e e~ —e e
(04 (04
r r
e "¢ e e’ +e*~e*
| Repulsive Potential | Static | Attractive Potential |
QCD * by analogy with QED expect potentials of form
q q q q
(04 (04
I - V(r)= +CTS I - V(r)= —CTS
q q q q

* Whether it is a attractive or repulsive potential depends on sign of colour factor
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* Consider the colour factor for a qq system in the colour singlet state:
V= %(r?-l—g?-i—bz)
with colour potential (V7)) = (y|Vocp|¥)
= (V) = ((7lVocolr) + ...+ (7lVacolbb) + .
*Following the QED analogy:
(r#lVacplrr) = ~C(rr — 1) =2

which is the term arising from 7 — rr

r r
‘Have 3 terms like 17 — 17, bb — bb,... and 6 like 1T — gg, I — bb, ...

1 1 1 1
(Vgg) = —g% BxCUF—rF)+6xC(rF— gg)| = 5 {3 X = +6x ]

3 r 3 2
=) <qu> — _f% NEGATIVE = ATTRACTIVE

3 r

*The same calculation for a qd colour octet state, e.g. ¥g gives a positive
repulsive potential: C(rg — rg) = _%

*Whilst not a formal proof, it is comforting to see that in the colour singlet
qq state the QCD potential is indeed attractive. (question 15)
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* Combining the short-range QCD
potential with the linear long-range
term discussed previously:

Vocp = —

4 o

A
3r+r

* This potential is found to give a good
description of the observed charmonium (cc)
and bottomonium (bb) bound states.

Mass, GeV/c?

4.0

w
o

3.0

10.5F

10.0F

sy
Y(10575)
asssiia

bb

31(10355)

(10235) (10255) (10270)

2p o) N
Y(10025) Xo States
25

1p (9875) (o895) (9915)

NOTE:

c, b are heavy quarks
sapprox. non-relativistic
«orbit close together
sprobe 1/r part of Vqcp

Agreement of data with
prediction provides strong
evidence that VQcp has the
Expected form

— | yat60) T Y-decay
CC | wwssa
(4030) Hadronic
L s decay
$(3770)
| — - oM - L =~pb
(@580~ 380 ST ~——_ _(as66)
1 AN ~x(@10 "=
i H x3a15) 7V~
/ IR
/ e
s
/ e
/ /e
/l ¥(3097)
| m(2081)
=
N L
[ 1= o+ 1* 2

X(9460)

9.5 Ms (_l_)
g p P, ",
1 0 1+ 2+t
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Particle Physics

Dr Lester

Handout 9 : The Weak Interaction

and V-A
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Parity

* The parity operator performs spatial inversion through the origin:
l[//()_C;l“) = PW(f7t) = W(_)_C’at)
-applying Ptwice: PPy(Xt) = Py(—X,t) = y(X,1)
SO ﬁp = I — ﬁ_l = p
*To preserve the normalisation of the wave-function
(W) = (V'ly') = (y|PPly)
pPip=1 — P Unitary
«Butsince pp—7] p=pt = P Hermitian

which implies Parity is an observable quantity. If the interaction Hamiltonian
commutes with P , parity is an observable conserved quantity

o If W(f,t) is an eigenfunction of the parity operator with eigenvalue P
ISW(f,I):P‘I’(fJ) - pPW(fat):PPW(Evt):leII(}J)
since PP =1 PP=1
= Parity has eigenvalues P = +1

* QED and QCD are invariant under parity
* Experimentally observe that Weak Interactions do not conserve parity
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Intrinsic Parities of fundamental particles:

Spin-1 Bosons

*From Gauge Field Theory can show that the gauge bosons have P = —1
Py=P,=Py+ =Py- =P =—1

Spin-'2 Fermions

*From the Dirac equation showed (handout 2):
Spin %2 particles have opposite parity to spin ' anti-particles
sConventional choice: spin ¥ particles have P = +1
Pe,:P‘u,: T,:Pv:Pq:—Fl
and anti-particles have opposite parity, i.e.
Poo =P+ =P+ =Py =F;=—1
* For Dirac spinors it was shown (handout 2) that the parity operator is:

0
0
-1
0 -

— O oo

SO —O

1
A 0
p:W: 0
0

310/ 557




Parity Conservation in QED and QCD

*Consider the QED process € ( — €7( e- P1 m P3 e
*The Feynman rules for QED give:
. _ . —8uv .
—iM o[t (p3)ieY  ue(p1)]—5 [tq(pa)iey ug(p2)]
1 p2 D4

*Which can be expressed in terms of the electron and
quark 4-vector currents: 2 2 q v q

wv €L
M —?guvje Jg = _?]e-Jq
with Je = ﬁe(p_z)}’”ue(p]) and Jg= aq(l?ﬁr)?’”’/‘q(pZ)

* Consider the what happen to the matrix element under the parity transformation
. }3 N
¢+ Spinors transform as uls pu—= '}’O”

¢+ Adjoint spinors transform as
a=u' L (Pl = u P = P =

i — iy

+Hence Je= ﬁe(l’3)7“”e(1’1) L ﬁe(p3)'}’0?’u'}’0”e(l71)
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* Consider the components of the four-vector current

L PP Pu == since Py =1
Jf £, m’OYkYOM = —ﬁ}'k'}’()}’ou = —ﬁ}/ku = —j’e‘ since PPYF = —yk0

*The time-like component remains unchanged and the space-like components
change sign . A
Qi 0 P % P X o
Similarly Jg — Jg Jqg— —Jg k=123
* Consequently the fouAr-vector scalar product

Jedg = 0009 — ibis — J0Jg — (=J)(=J8) = Je-dg  k=1,3

P
or j*—ju

oy P
M= v

i) jﬂl.jv

| QED Matrix Elements are Parity Invariant |

) | Parity Conserved in QED |

* The QCD vertex has the same form and, thus,

| Parity Conserved in QCD |
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Parity Violation in 3-Decay

* The parity operator P corresponds to a discrete transformation x — —x, efc.
* Under the parity transformation:

— P —
Vectors r —ﬁ> T
change sign p— —p (px = %, etc.) NoteBisan
- P = . ’ axial vector
Axial-Vectors { L— L (L=7FAP) dB o T AFd3T
unchanged - P L=
g i (Fe<L)

*1957: C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:
OCo -0 Ni* +e~ +V,
* Observed electrons emitted preferentially in direction opposite to applied field

—
—

H i
(E,p)

If parity were conserved:
expect equal rate for

(E,—P) producing e~ in directions
along and opposite to the
nuclear spin.

g ﬁ -
B — B

[ moree-in, c.f. ~ |

* Conclude parity is violated in WEAK INTERACTION _
= that the WEAK interaction vertex is NOT of the form . Y" uy
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Bilinear Covariants

* The requirement of Lorentz invariance of the matrix element severely restricts
the form of the interaction vertex. QED and QCD are “VECTOR” interactions:
F=wre
* This combination transforms as a 4-vector (Handout 2 appendix V)
* In general, there are only 5 possible combinations of two spinors and the gamma
matrices that form Lorentz covariant currents, called “bilinear covariants”:

Type Form Components “Boson Spin”
¢ SCALAR v 1 0
¢+ PSEUDOSCALAR V7Y’ ¢ 1 0
¢+ VECTOR vyHe 4 1
¢ AXIALVECTOR W}y ¢ 4 1
¢+ TENSOR vty —v'rH)e e 2

* Note that in total the sixteen components correspond to the 16 elements of
a general 4x4 matrix: “decomposition into Lorentz covariant combinations”

* In QED the factor Suv arose from the sum over polarization states of the virtual
photon (2 transverse + 1 longitudinal, 1 scalar) = (2J+1) + 1

* Associate SCALAR and PSEUDOSCALAR interactions with the exchange of a
SPIN-0 boson, etc. — no spin degrees of freedom
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V-A Structure of the Weak Interaction

* The most general form for the interaction between a fermion and a boson is a
linear combination of bilinear covariants

* For an interaction corresponding to the exchange of a spin-1 particle the most
general form is a linear combination of VECTOR and AXIAL-VECTOR

*The form for WEAK interaction is determined from experiment to be
VECTOR - AXIAL-VECTOR (V-A)

e P1 i P3 y
© ey, (Y — VR ue
W V- A

* Can this account for parity violation?
* First consider parity transformation of a pure AXIAL-VECTOR current

jAZV_{}’“YS(P with y5:i’}’0’}’1}’2’}’3§ 7’5?’0:_707’5
I =THPO PP = P Y e
B=" -0 PP =-vPro =1
K=" -0PPPPo=40rro=+1 k=123 [or g2 5,
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* The space-like components remain unchanged and the time-like components
change sign (the opposite to the parity properties of a vector-current)

0o P00 w P . o P o ox Py
JA »—Jas JA >+ J45 Jv >+ Jvs Jy r—Jy

~

* Now consider the matrix elements
M Ly 0.0 &k ok
o< guvi Jy = i — Y, Jijs
k=13
* For the combination of a two axial-vector currents
. P 0 0 N ok .
Jarjar — (=) (=) = Y, (G (3) = jar-jaz
k=1,3
» Consequently parity is conserved for both a pure vector and pure axial-vector
interactions

* However the combination of a vector current and an axial vector current
. . P .0 .0 o ¢k : .
vidixz — (N (=)= Y (=) (5) = —jvi-jaz
k=1,3
changes sign under parity — can give parity violation !
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* Now consider a general linear combination of VECTOR and AXIAL-VECTOR
(note this is relevant for the Z-boson vertex)

Vi u o N1=01ev* +aar"Y)vi =gvii +8afi
Suv
P —m?
¥2 4 ¢ U jo=0,(gvy* +8a7" Y )W2 =gvjy +8aj)

Myi o< ji.jo =gy iy -7y +8aii-J5 +evea(ji - Jjs +jt-7y)
*Consider the parity transformation of this scalar product
. . }3 2 .V .V 2 .A .A .V .A .A .V
Ji-d2 = 8y i -J> +8aJi-J2 —8vealii -7 +Ji-Jz)
* If either g, or gy is zero, Parity is conserved, i.e. parity conserved in a
pure VECTOR or pure AXIAL-VECTOR interaction

8VEA

* Relative strength of parity violating part ©< 2 3
8v T 8x

Maximal Parity Violation for V-A (or V+A)
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Chiral Structure of QED (Reminder)

* Recall (Handout 4) introduced CHIRAL projections operators
Pr=301+7); P=3(1-7)

project out chiral right- and left- handed states

* In the ultra-relativistic limit, chiral states correspond to helicity states
* Any spinor can be expressed as:

=21+ W+ i1 =P )y =Py +Py=yr+y
*The QED vertex V}’“(I) in terms of chiral states: 9 H 14
Vo =YryHor + WY oL + W Or + WL Y OL

conserves chirality, e.g.
Ve¥'or = W (7)Y 5(1-7)9
= W00 -7r)9
= LW +P)0-7)e =0

*In the ultra-relativistic limit only Vil Ly Ul &y
two helicity combinations are
non-zero
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Chiral and Helicity Structure of the Weak Interaction

* The charged current (W+) weak vertex is:

7 %7’”(1 -7)

e

H Ve

w

* Since %(1 — }/5) projects out left-handed chiral particle states:
V%’}/‘u(l — 7)o = yrter (question 16)
*Writing Y = W, + ¥; and from discussion of QED, VY oL =0 gives
Vit (1-7)90 =¥, 7 o1

Only the left-handed chiral components of particle spinors
-:» and right-handed chiral components of anti-particle spinors
participate in charged current weak interactions

* At very high energy (E > m) , the left-handed chiral components are
helicity eigenstates :

p— LEFT-HANDED PARTICLES
%(l—yS)u = > Helicity = -1
11 _ —) R RIGHT-HANDED ANTI-PARTICLES
(-7 = > Helicity = +1
319/557
In the ultra-relativistic limit only left-handed
-I» particles and right-handed antiparticles
participate in charged current weak interactions

e.g. In the relativistic limit, the only possible electron — neutrino interactions are:

€ T o~ v, e+\/§e Ve\W

'l

* The helicity dependence of the weak interaction «=>  parity violation

w 9%

Ve

eg. Vo+e — W™ p
——
RH anti-particle LH particle RH particle LH anti-particle
— —) —) _ _ —) —) —
- - e e = — Ve
Pv, DPe —Pe —Pv,

Valid weak interaction Does not occur
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Helicity in Pion Decay

*The decays of charged pions provide a good demonstration of the role of
helicity in the weak interaction

Ve
T T
.
EXPERIMENTALLY: I'(m™ v
(T —eVe) 53,104

(= —u=vy)
*Might expect the decay to electrons to dominate — due to increased phase
space.... The opposite happens, the electron decay is helicity suppressed

* Consider decay in pion rest frame.
* Pion is spin zero: so the spins of the v and u are opposite
* Weak interaction only couples to RH chiral anti-particle states. Since
neutrinos are (almost) massless, must be in RH Helicity state
* Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state

< ——) —

V‘u < . > ‘LL
 But only left-handed CHIRAL particle states participate in weak interaction
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*The general right-handed helicity solution to the Dirac equation is

c
s
ur =N |7 i c=cos s=sin?
1 ‘WC with 5 and 5
B
peme’s 1 0-1 0
* project out the left-handed chiral 1 1 0 1 0-—1
part of the wave-function using b= E(l - 7’5) =2y -1 0 1 0O
0-1 0 1
¢
. ﬂ el(})s ~
g = (1 ) 2 ] = 30 )
—e?s
In the limit m < E this tends to zero
c
* similarly | 17 el 1 15
s

Inthe limit m << E , Pruy — ug
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E+m

RH Helicity RH Chiral LH Chiral

*In the limit E >> m, as expected, the RH chiral and helicity states are identical
*Although only LH chiral particles participate in the weak interaction
the contribution from RH Helicity states is not necessarily zero !
— Pa— —) _
v)u < . > ‘u,
m, = 0: RH Helicity = RH Chiral |

*Hence ur = Pruy + Py = 3 (1 + %) ug + 5 (1 _ 1l )ML

m, # 0: RH Helicity has
LH Chiral Component

* Expect matrix element to be proportional to LH chiral component of RH Helicity
electron/muon spinor

M o< 1 1— |l_j| — ml“l from the kinematics
Si 2 My + mli of pion decay at rest

* Hence because the electron mass is much smaller than the pion mass the decay
T~ — e V., is heavily suppressed.
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Evidence for V-A

*The V-A nature of the charged current weak interaction vertex fits with experiment

EXAMPLE charged pion decay (question 17)
['(n~ —eV,)

= (1.23040.004) x 1074
M — v, )%

*Theoretical predictions (depend on Lorentz Structure of the interaction)
o . F(ﬂ'_ — e_Vg) - 4
V-A (W (1= 9°)6) or V+A (WP (1+7°)9) == [ — ) = 1% 10
Scalar (¥¢) or Pseudo-Scalar (¥y°¢) — [(7"—eVe) o

*Experimentally measure:

EXAMPLE muon decay

Vu Measure electron energy and angular
_ - distributions relative to muon spin
'u Ve . . .
direction. Results expressed in terms
of general S+P+V+A+T form in
e~ “Michel Parameters”
e.g. TWIST expt: 6x10° u decays €

Phys. Rev. Lett. 95 (2005) 101805 p = 0.75080 4+ 0.00105
V-A Prediction: p =0.75
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Weak Charged Current Propagator

* The charged-current Weak interaction is different from QED and QCD
in that it is mediated by massive W-bosons (80.3 GeV)
* This results in a more complicated form for the propagator:
* in handout 4 showed that for the exchange of a massive particle:
massless massive

1 1
—_ H _—
7 g2 —m?
In addition the sum over W boson polarization states modifies the numerator
& W-boson propagator g
: 2 A%
spin1 W* ! [&tv —quqv/mw} M
2
‘]2 — My,
* However in the limit where q2 is small compared with my = 80.3GeV
the interaction takes a simpler form.

® W-boson propagator ( q2 <K m%v)

8uv uv
ms, «

*The interaction appears point-like (i.e no q2 dependence)
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Connection to Fermi Theory

*In 1934, before the discovery of parity violation, Fermi proposed, in analogy
with QED, that the invariant matrix element for p-decay was of the form:

My = Grguv [ v][wy vl
where Gg = 1.166 x 1075 GeV 2
*Note the absence of a propagator : i.e. this represents an interaction at a point
* After the discovery of parity violation in 1957 this was modified to

My — %guku—f YWY (1- 1)yl

(the factor of V2 was included so the numerical value of Gy did not need to be changed)
* Compare to the prediction for W-boson exchange
8uv — Quq\//m —1
My = AP - VI Y (-1

My

which for q < mW becomes:

2
My = g S PP (1= Y )WI7 (1= 7))

G]: g%V Still usually use GF to express strength
- = T 9.0 of weak interaction as the is the quantity
\@ SmW that is precisely determined in muon decay
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Strength of Weak Interaction

* Strength of weak interaction most precisely measured in muon decay

2
v -Here g% <my (0.106GeV)
B 2 v * To a very good approximation the W-boson
u q € propagator can be written
B —i [g,uv —CZuCZV/m%V} N 8uv
e ~Y
aomi g
2 2 2
« In muon decay measure gy /My Gr 8w
-Muondecay =  Gp =1.16639(1) x 1075GeV 2 V2 8mi,
* To obtain the intrinsic strength of weak interaction need to know mass of
W-boson: my = 80.403 +0.029 GeV (see handout 14)

o gy 8miGp 1
- W = =
4 42m 30
The intrinsic strength of the weak interaction is similar to, but greater than,

* the EM interaction ! It is the massive W-boson in the propagator which makes
it appear weak. For q2 > m%v weak interactions are more likely than EM.
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Summary

* Weak interaction is of form Vector — Axial-vector (V-A)

%%7“(1—75)

* Consequently only left-handed chiral particle states and right-handed
chiral anti-particle states participate in the weak interaction

mm) | MAXIMAL PARITY VIOLATION

* Weak interaction also violates Charge Conjugation symmetry

* At low q2 weak interaction is only weak because of the large W-boson

mass 5
Gr _ 8w

V2 8my

* Intrinsic strength of weak interaction is similar to that of QED
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Particle Physics

Dr Lester

e N\ /A S N &5
Handout 10 : Leptonic Weak Interactions and
Neutrino Deep Inelastic Scattering
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Aside : Neutrino Flavours

* Recent experiments (see Handout 11) == neutrinos have mass (albeit very small)

* The textbook neutrino states, Ve, Vi, V7, are not the fundamental particles;
these are Vi, V2, V3

* Concepts like “electron number” conservation are now known not to hold.

* So whatare Ve, Vy, V¢ ?

* Never directly observe neutrinos — can only detect them by their weak interactions.
Hence by definition V, is the neutrino state produced along with an electron.
Similarly, charged current weak interactions of the state V, produce an electron

- Ve, Vi, Vr = weak eigenstates

2 Ve

* Unless dealing with very large distances: the neutrino produced with a positron
will interact to produce an electron. For the discussion of the weak interaction

continue to use V¢, Vy;, V¢ as if they were the fundamental particle states.
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Muon Decay and Lepton Universality

*The leptonic charged current (W?) interaction vertices are:

Ve Vi \
e~ u- T~
w W w
* Consider muon decay: p3 Ve
D 2 Ve
H q -
P2 Ne™
*It is straight-forward to write down the matrix element
(e) (1)
8w 8w - _
My = gmzw [@(p3) Y (1—7)u(p1)]guv[@(p2)y" (1— 7 )v(ps)]
w

Note: for lepton decay q2 < m‘z;v so propagator is a constant l/m%V
i.e. in limit of Fermi theory

«Its evaluation and subsequent treatment of a three-body decay is rather tricky
(and not particularly interesting). Here will simply quote the result
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TR
*The muon to electron rate GyrGgpm 1 g
I(p—evv)= ———* = —  with Gg= ¥
(u T ) o,
G.GEim?
*Similarly for tau to electron I'(7 — evV) = _FF 7
19273
*However, the tau can decay to a number of final states:
VT v‘[ v‘L’
v, v 7
T I oo u
e U d

Br(t — evv) =0.1784(5) Br(t — uvv)=0.1736(5)
*Recall total width (total transition rate) is the sum of the partial widths

1
r_;n_%
«Can relate partial decay width to total decay width and therefore lifetime:
['(t —evv)=TBr(t —evv)=Br(t —evv)/t;
Therefore predict 19273 19273

Ty = ——— Tr = ————=Br(t —evv)
H e M 5 T e (T 1,5
GrGpmy, Gy Gpmz

332557




All these quantities are precisely measured:
my, = 0.1056583692(94) GeV 1, = 2.19703(4) x 1075
m; = 1.77699(28) GeV 7r = 0.2906(10) x 107125
Br(t — evv) =0.1784(5)
Gf mz Tu
G—{:‘ it

— Br(t — evv) = 1.0024 £0.0033

-Similarly by comparing Br(T — evV) and Br(t — uvv)

e
—& = 1.000£0.004
GF

*Demonstrates the weak charged current is the same for all leptonic vertices
Ve Vi \

_ 8w _ 8w _ 8w
e U T

w w w
=m) | Charged Current Lepton Universality
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Neutrino Scattering

In handout 6 considered electron-proton Deep Inelastic Scattering where
a virtual photon is used to probe nucleon structure

*Can also consider the weak interaction equivalent: Neutrino Deep Inelastic
Scattering where a virtual W-boson probes the structure of nucleons
=) additional information about parton structure functions
+ provides a good example of calculations of weak interaction cross sections.
* Neutrino Beams:
*Smash high energy protons into a fixed target == hadrons
*Focus positive pions/kaons
“Allow them to decay 71+ — u*v, + K* — utv, (BR~64%)
*Gives a beam of “collimated” Vi

*Focus negative pions/kaons to give beam of V#

Magnetic T p— Absorber = rock

focussing

—
Proton beam |:| |

target

Vu

»
“* Vu  Neutrino
beam
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Neutrino-Quark Scattering

*For Vi -proton Deep Inelastic Scattering the underlying process is Vud — U u

/Pi(li vy Pl u p3 u-
P1 %
2 o

\2W Wela

P } X d
v u
P2
P4 P2 P4
*In the limit 6]2 < m%v the W-boson propagator is ~ ig#v/m%‘,
*The Feynman rules give:

ity = | =i S0 = )| A | ) (0= )|

2

Myi = ;1—W%Vguv [@(p3) (1= P )ulpy)] [apa) 17 (1= ¥ )ulp2)]

*Evaluate the matrix element in the extreme relativistic limit where the
muon and quark masses can be neglected
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*In this limit the helicity states are equivalent to the chiral states and
FA=Pu(p) =0 30=7)u(pr) =uy(p)

= M;=0 for ur(p1) and u(p2)

*Since the weak interaction “conserves the helicity”, the only helicity combination
where the matrix element is non-zero is

2
Myi = 3 gu [0 (P2 s (p1)] [ ) )

NOTE: we could have written this down straight away as in the ultra-relativistic
limit only LH helicity particle states participate in the weak interaction.

* Consider the scattering in the C.o0.M frame

9*
- d

<
=
y
'S
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Evaluation of Neutrino-Quark Scattering ME

*Go through the calculation in gory detail (fortunately only one helicity combination)
*In the Vﬂd CMS frame, neglecting particle masses:

p3 ‘u plz(E,(),O,E),

P1 0" = (E,0,0,—E
VH <€ d p2 )My My )

, (
/ P2 p3 = (E,Esin0*,0,E cos 0*)
u P4 ps=(E,—Esin0*,0,—E cos0")
+Dealing with LH helicity particle spinors. From handout 3 [[@89)), for a
massless particle travelling in direction (0, ¢):

—S
ce'? .
“i\/E( s ) c=cosg; s = sin

—ce'?
*Here (ela(Pl) = (030)3 (627¢2) = (71:70)’ (937¢3) = (9*70)’ (947¢4) = (TC— 9*775)
giving:

0 -1 s .
up))=VE ( 0 ) ; ul(Pz)\/E< ! ) ; ul(P3)\/E( ‘;) tuy(pa) =VE (cs)
-1 0 > ¢

D
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*To calculate

Myi= 5, 0-guv [, () (p0)] [ ()7 (p2)]

need to evaluate two terms of form
V0 = vIY0 = yion+ y5 0+ v o3+ yids
' = v o=vieit o vio+vid
V7o = VP70 =—i(vioa— v 05+ v — wid1)
VYo = VY0 =yi0s - v+ yio - yig

*Using 0 . . B
u(p1) = VE ( 0 ) ; “L(pz)—\/f< ? ) ; Ml(P3)—\/E( E) ; uy(pa) =VE (cs)

-1 0 —c s

—. i (p3)y*u(p1) =2E(c,s,—is,c)
i, (pa)Y’uy(p2) =2E(c,—s,—is,—c)
g g%8
— Mfi=#4E2(c2+s2+s2+c2):L2 §=(2E)?

W My,
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* Note the Matrix Element is isotropic _

gi "
My ==%s 0*
2

4= R
> p—
we could have anticipated this since the o~
u

helicity combination (spins anti-parallel)
has §; = O = no preferred polar angle

* As before need to sum over all possible spin states and average over
all possible initial state spin states. Here only one possible spin combination
(LL—LL) and only 2 possible initial state combinations (the neutrino is always

produced in a LH helicity state)
1 2 2 The factor of a half arises because
(Mg = ~ - 8w ¢ half of the time the quark will be in
Si 2 mz a RH states and won’t participate in
w the charged current Weak interaction

*From handout 1, in the extreme relativistic limit, the cross section for any
2—-2 body scattering process is

do 1

= — (|M#?
do* eam2s M)
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2
do 1 2 1 1 [g%s g% R
= M = () ()
dQ* 64712§ 647$ 2 \ m3, 8v27m3,
2
using &:g—v‘g ‘ dO' _ G—l%f
V2 8my, dQ* 47?2
* Integrating this isotropic distribution over dQ*
Gzs
— Oyq = ?F (1)

scross section is a Lorentz invariant quantity so this is valid in any frame
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Antineutrino-Quark Scattering

Vu P1 p3

+  eIn the ultra-relativistic limit, the charged-current

u u ) ; . .

interaction matrix element is:
W g5 _ _
PO = 50 [ 40— ¥0is)] 1009 50— 7t
w
\%
u P2 P4 d

* In the extreme relativistic limit only LH Helicity particles and RH Helicity anti-
particles participate in the charged current weak interaction:

- M= jn—W%Vg#v Vi (p1)Y*vi(p3)] [, (pa) Y u;(p2)]

* In terms of the particle spins it can be seen that the interaction occurs in a
total angular momentum 1 state

J=1
“+
” "
= — 6 %
Vu >

¢ u - Z = J=1
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*In a similar manner to the neutrino-quark scattering calculation obtain:
dovy _ %1(1 +cos8*%)?
dQ* dQ* 4
*The factor %(1 +cos 9*)2 can be understood
in terms of the overlap of the initial and final
angular momentum wave-functions

* Similarly to the neutrino-quark scattering calculation obtain:

* Integrating over solid angle: dQ=d¢sm9d9—>d¢d(cos9)
/(1 +cos 9*)2dQ* = /(1 +cos 9*)2d(cos G:j.dq) = 2717/J1rl (1+cos 9*)2d(cos 0") = 1677:
Ggs
—) Oyqy = ﬁ
*This is a factor three smaller than the neutrino quark cross-section
GVq . 1
Ovq 3
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(Anti)neutrino-(Anti)quark Scattering

*Non-zero anti-quark component to the nucleon = also consider scattering from g

*Cross-sections can be obtained immediately by comparing with quark scattering
and remembering to only include LH particles and RH anti-particles

Vu P! u D3 u—gvu ut
w lq
d P2 v pa U u u
................................................ e T
ot m
9*

S, =0
dovg _ G2 . - doy,
do*  an? 4o
Gis 25
Ovg = — Ova T
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Differential Cross Section do/dy

* Derived differential neutrino scattering cross sections in C.0.M frame, can convert
to Lorentz invariant form

p2.
v D1 P3 _ * As for DIS use Lorentz invariant y= 1
K u u DP2-p1
* In relativistic limit y can be expressed in terms
w l q of the C.o.M. scattering angle
y=3(1—cos6*)
d \4 u * In lab. frame E3
* Convert from d(g* — %—;’ using 1
do dcos@*, do dcos0* do do
== | = | pro. =4n
dy dy dcos6* dy dQ* dQ*
do G: .

-Already calculated (1)

a2’

* Hence: dO'Vq dO'Vq G% A

dy dy /8
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and doy, _ dovg _ Glz?
dQ* dQ* 1672
dy  dy
from  y=3(1—cos6*) — 1—y=1(14cos6")

(14cos0*)%§

becomes

G2
= 4—;(1 +cos 0*)2§

and hence doy, doyg GIZ:

— — 1 —v)28
O O —(1=y)°8

* For comparison, the electro-magnetic eiq — eiq cross section is:
do,+, 271:05

A e [1+(1—y)%]$

%K_JH—J
DIFFERENCES: Interaction Helicity
+propagator Structure
— A~
[Wenk] dove _dog G,z
dy /4
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Parton Model For Neutrino Deep Inelastic Scattering

ps K P
P1
Vu P1 /'6{ Vu S /:9(
— \q
q\ } , d
P X D2 3 }X
P2 4 A s

Scattering from a proton — Scattering from a point-like
with structure functions quark within the proton

* Neutrino-proton scattering can occur via scattering from a down-quark or
from an anti-up quark
*In the parton model, number of down quarks within the proton in the
momentum fraction range x — x+dx is d” (x)dx Their contribution to
the neutrino scattering cross-section is obtained by multiplying by the
V“d — W~ u cross-section derived previously
do'? G},
= —F54P (x)dx
dy /4
where § is the centre-of-mass energy of the Vud
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Similarly for the U contribution

do"? G
_ —“Fa 2—p
= —358(1 —y)u"(x)dx
o = SR
* Summing the two contributions and using § = xs
d’c¥?  Gi

-

Tdy = s [dP(x) + (1 —y)zﬁp(x)}

* The anti-neutrino proton differential cross section can be obtained in the
same manner:

d’c'? G2 -
oy = 2 (10 + )
* For (anti)neutrino — neutron scattering:
d2GVn G2 B
oy = ?st [d”(x) +(1 —y)zu”(x)]
d2o-Vn G2 .
Ty = ?st [(1 —y)2u" (x) +dn(x)}

347 /557

*As before, define neutron distributions functions in terms of those of the proton
u(x) =uP(x) =d"(x); d(x) =dP(x) =u"(x)
ax)=w(x)=d (x);  dx)=d"(x) =u"(x)

dj;vyp = G;‘%sx [d(x) + (1 =) %a(x)] @
dj;vyp = G;%SX [(1=y)%u(x) +d(x)] 3)
djx(z‘;" - G?%sx [u(x) + (1 = y)*d(x)] (4)
d;odvy" = G?%Sx [(1—y)%d(x) +7(x)] (5)

* Because neutrino cross sections are very small, need massive detectors.
These are usually made of Iron, hence, experimentally measure a combination
of proton/neutron scattering cross sections
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* For an isoscalar target (i.e. equal numbers of protons and neutrons), the mean
cross section per nucleon:

d2o.vN 1 d2O-Vp dZGVn
dxdy :E( dxdy dxdy)
dZGVN G2 B N
— xdy = ﬁsx [u(x)—l—d(x)—l—(l —y)z(u(x)—kd(x))}
*Integrate over momentum fraction X
do'V G2
= _F 1—y)2 6

dy 27rs[fq+( ) f2)] (6)

where fq and fq are the total momentum fractions carried by the quarks and

by the anti-quarks within a nucleon
1

1 —
Fy= fut fu= | 3la) +d@)ass o=y fu= [ [l +d0) d

*Similarly

dO-VN G2
(A} ™
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+1250 tons
*Magnetized iron modules
*Separated by drift chambers

Study Neutrino Deep
Inelastic Scattering

Vu
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Example Event:

Energy Deposited
‘Measure energy of X
Hadronic

Ex

{ +— shower (X)

1

Y-PROJ  WIN=-2000.p MAX= 2000.0

Position

*Measure muon momentum
from curvature in B-field

Ey

* For each event can determine neutrino energy and y !

Ey=(1-y)E, =— y=( —E—v)
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Measured y Distribution

*CDHS measured y distribution

Ey=90-200 GeV

oV
.V

el (6261) LD "sAud‘z “|e 1@ 30049 op '

» Shapes can be understood in
terms of (anti)neutrino -

(anti)quark scattering
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Measured Total Cross Sections

* Integrating the expressions for %—g (equations (6) and (7))

G

G3s
o'V —

fq+%f6} GVN [ fq"‘fq}

v ep 2 2 2
(Ey,0,0,+Ey) (m,,0,0,0) s = (Ey +mp)” — Ey = 2Eym, +mj, = 2Eym,,

- DIS cross section o< lab. frame neutrino energy

* Measure cross sections can be used to determine fraction of protons momentum
carried by quarks, fq , and fraction carried by anti-quarks, fq

Find:  fy~0.41;  f7~0.08 T Ty
* ~50% of momentum carried by gluons _osf, E
. 14 s . . = F E
(which don’t interact with virtual W boson) gos; s % %#'%%E‘@ ﬁ' _— i,
*If no anti-quarks in nucleons expect U {
"N 3 Tk i
— = oaf

o*N TR s ki i

*Including anti-quarks ®oal CEECI R : ol
é [3] © CCFRR [¥]] A GGM-PSV [13] & BNL-7Ht é

c"N 2 T E = il

GVN oo 0 ‘ 10 ' 20 ‘ 30 50 ‘ 100 150 200 ‘2"50‘ - ‘3‘00‘ - ‘.’1;0

Ey [GeV]
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Weak Neutral Current

* Neutrinos also interact via the Neutral Current. First observed in the Gargamelle
bubble chamber in 1973. Interaction of muon neutrinos produce a final state muon

vu+N—>v+hadr0ns , +e’—>Vu+e*

8¢l (£261) 99¥ W 'sAud “[e 3o HeseH 1’4
1Z1 (€261) 99 1o "sAud “|e 3o MaseH 'r'd

* Cannot be due to W exchange - first evidence for Z boson
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Summary

* Derived neutrino/anti-neutrino — quark/anti-quark weak charged current (CC)
interaction cross sections

* Neutrino — nucleon scattering yields extra information about parton
distributions functions: . —
* V couples to dandui; V couples to # and d

=) investigate flavour content of nucleon

* can measure anti-quark content of nucleon
Vg suppressed by factor (1 —y)? compared with Vg
Vq suppressed by factor (1 — y)2 compared with Vg

* Further aspects of neutrino deep-inelastic scattering (expressed in general
structure functions) are covered in Appendix Il

* Finally observe that neutrinos interact via weak neutral currents (NC)
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Appendix |

*For the adjoint spinors U = uT)p consider

S == - )P = s (1=P)P = PL (1 +9) =a3 (1+7))
V-7 =0 = a3(1+7)=0

Using the fact that }’5 and 7” anti-commute can rewrite ME:

2
M= g i) 4047 atp)] [0 30+ 7t

m) M;y=0 for ﬁT(PS») and ﬁT(P4)

356 /557




Appendix Il: Deep-Inelastic Neutrino Scattering

Py _ K Py _u
Vu Izl /'é( V# Izl /79(

\oW \oW
’ } X b } X
p D4 p P4

Two steps:
* First write down most general cross section in terms of structure functions

* Then evaluate expressions in the quark-parton model
QED Revisited

*In the limit s > M? the most general electro-magnetic deep-inelastic
cross section (from single photon exchange) can be written (Eq. 2 of handout 6)

d’c,+ 47ra x, 0%
dde§ - {(1 y) % +y2F1 (x, Qz):|

* For neutrino scattering typlcally measure the energy of the produced muon
E, = Ey(1 —y) and differential cross-sections expressed in terms of dxdy

d’c  |dQ?| d%c . d’c
dxdy | dy |dxdQ? 7 dxdQ?

Using Q% = (s —M?)xy~sxy =—>
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¢ In the limit s > M? the general Electro-magnetic DIS cross section can be written

2P 47ra s
dxdy Q

*NOTE: This is the most general Lorentz Invariant parity conserving expression

* For neutrino DIS parity is violated and the general expression mcludes an additional
term to allow for parity violation. New structure function F3(x,0?)

[(1=y) Fa(x,0%) +y*xFi (x,0%)]

- d>c"?  Gis y
vup — U X = ZF (1 =y EYP (x, 0?) + y2xFP (x. 0? — 2\ xEYP (x. 02
up — H dy 27 [(1 V) Fy 7 (x,Q7) + y xF (x,Q)+y(1 2>xF3 (x,Q)}

*For anti-neutrino scattering new structure function enters with opposite sign

= d*c"? G} v v v
Vap = WX [T = 52 [0 -0 BT @) 102 (,0%) —y (15 ) o7 (6, 07)|

*Similarly for neutrino-neutron scattering

- d?c"" G}
Van = HX |15 = 5 [ -0 B @)+ (. 0%) 4y (1= 5 ) o (5, 07)|
Vun — X | [ S0 G (1) pe 0%) 4 e (5,0~ (1~ 3) o (1,09)
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Neutrino Interaction Structure Functions

*In terms of the parton distribution functions we found (2) :
d’c'? G 5
= —sx|d(x)+ (1 —y)ulx
Ty = 7 [0+ -]
*Compare coefficients of y with the general Lorentz Invariant form ({{&358)) and
assume Bjorken scaling, i.e. F(x, Qz) — F(x)

40 OO [y B0 43 () 4y (1= 3) 37 o)

dxdy 27
‘Re-writing (2) d%?cV? G2
writing (2) d;ly = 2—71;5 [2xd (x) + 2x74(x) — dxyia(x) + 2xy*u(x)]
and equating powers of y
2xd+2xu = b
—dxu = —F+xF;
2u = F—xF)2
gives: FyP = 2xF"? = 2x[d(x) +u(x)]

xFy P = 2x[d(x) —u(x)]
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NOTE: again we get the Callan-Gross relation F> = 2xF]
No surprise, underlying process is scattering from point-like spin-1/2 quarks

* Substituting back in to expression for differential cross section:
d’cY?  Gis v\ oy y
— B\ (1—y+ L B (1-2) "
dxdy | 2nm K vt JERT 4y (1-5) 70
* Experimentally measure F, and F3 from y distributions at fixed x

+ Different y dependencies (from different rest frame angular distributions)
allow contributions from the two structure functions to be measured

1

“Measurement”

*Then use FZVP = 2x[d(x) +u(x)] and F3VP =2[d(x) —u(x)]
mm) Determine d(x) and U(x) separately

360 /557




* Neutrino experiments require large detectors (often iron) i.e. isoscalar target
YN = 20BN = 5 (B + Fy") = alu(x) +d(x) +7(x) +d (x)]
xFyN = % (xF3vP —|—xF3"") = x[u(x) +d(x) —u(x) — d(x)]
* For electron — nucleon scattering:
Fy? = 2xF(" = x[§u(x) + §d(x) + gu(x)
F§" = 2xF{" = x[gd(x) + §u(x) + §
*For an isoscalar target
FN = % (erp —|—F2€") = 15—8x[u(x) +d(x) +u(x) +d(x))]

- FVN 18FeN

*Note that the factor 158 (qu + qd) and by comparing neutrino to
electron scattering structure functions measure the sum of quark charges

Experiment: 0.29 +£0.02
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Measurements of F,(x) and F;(x)

CDHS Experiment Vy +Fe — u= +X

VN _ = g
F ) . 1= EYY = x[u(x) +d(x) +u(x) +d(x)]
5k 10 < Q% <20 Gev¥c > _
5 [xFN = xu(x) +d(x) —u(x) — d(x)]

VN { O}m'sexwmm g —

“““ Fz""«zmc) e | R = FYN —xFyN = 2x[ti+d]
4 N

10 ) *! (stac- MIT) Er * Difference in neutrino structure

» ---- = functions measures anti-quark

FRSSRR SS N (sea) parton distribution functions
- QED pIs: |2
........................ <
4
05 410
) =
! =
[} ©
©o
3 k%
\ : S
a 1 1 a ©
0 \ 2 050 075

Sea dominates so expect xF;

to go to zero as q(x) = G{x) Sea contribution goes to zero

W
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Valence Contribution

* Separate parton density functions into sea and valence components
u(x) = uy (x) +us(x) = uy (x) + S(x)
d(x) =dy(x) +ds(x) = dy(x) + S(x)
(x) = us(x) = S(x)

= | B = [u(x) +d(x) —(x) — d(x)] = uy (x) +dy (x)

- RN () = I (a (3) + iy () e = N+ N
0 0

* Area under measured function F3VN (x) gives a measurement of the total
number of valence quarks in a nucleon !

1
expect / F3"N(x)dx =3 | “Gross - Llewellyn-Smith sum rule”
0

Experiment: 3.0+0.2

....................................................................................................................................................................................................

*Note: FZVP = Fz"”; FZV” =F": F3Vp = F3"”; F3V” = F3VP and anti-neutrino
¢ structure functions contain same pdf information
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Particle Physics

Dr Lester

Handout 11 : Neutrino Oscillations
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Neutrino Flavours Revisited

* Never directly observe neutrinos — can only detect them by their weak interactions.

Hence by definition V, is the neutrino state produced along with an electron.
Similarly, charged current weak interactions of the state V, produce an electron

Ve; Vu, V¢ = weak eigenstates
*For many years, assumed that Ve, Vi, V1 were massless fundamental particles

*Experimental evidence: neutrinos produced along with an electron always
produced an electron in CC Weak interactions, etc.
2

‘Experimental evidence: absence U~ — e Y BR( u —e Y < <1071

Suggests that v, and v, are distinct
particles otherwise decay could go via: ~ — m
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Mass Eigenstates and Weak Eigenstates

*The essential feature in understanding the physics of neutrino oscillations is to
understand what is meant by weak eigenstates and mass eigenstates Vi, V2

* Suppose the process below proceeds V|a two fundamental particle states

w

et

=0

p
) et e
1.e.
// Vi /
W ANNN\ W
8W
V2 et e
/ V2 / W+

and  WTAANAN
g_WUeZ

V2
* Can’ t know which mass eigenstate (fundamental particleV], V> ) was involved
* In Quantum mechanics treat as a coherent state Y =V, = U, V| + U, V;
* V. represents the wave-function of the coherent state produced along with an

electron in the weak interaction, i.e. the weak eigenstate

:

:

366 /557




Neutrino Oscillations for Two Flavours

* Neutrinos are produced and interact as weak eigenstates, V., Vy,

* The weak eigenstates as coherent linear combinations of the fundamental
“mass eigenstates” Vi, V2

*The mass eigenstates are the free particle solutions to the wave-equation and
will be taken to propagate as plane waves

vi(t)) = ‘V1>eiﬁ1 X—iEqt Vo (1)) = |v2>eiﬁ2.f—iE2t

*The weak and mass eigenstates are related by the unitary 2x2 matrix

Ve [ cos@ sin6 Vi )
Vu) \ —sinf cosO Vo

4 . d . 4 .
u ¢ = u 4L ou ¢

414 aw 8W i
5\, ﬁcose Vi ﬁ31n9 Vs

* Equation (1) can be inverted to give

Vi) [ cos@ —sinf Ve
vo)  \ sin@ cos@ Vu (2)
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*Suppose attime ¢ = ( a neutrino is produced in a pure V. state, e.g.in a
decay u — de™v,

|lw(0)) = |v,) =cosB]|v)+sinO|v,)
*Take the z-axis to be along the neutrino direction

*The wave-function evolves according to the time-evolution of the mass
eigenstates (free particle solutions to the wave equation)

ly(t)) = cos 8|V e~ P14 sin O] v, )e P2
where p;.x =Eit — p;.X = Eit —|pi|z
* Suppose the neutrino interacts in a detector at a distance L and at a time T
0 = pix =ET — |pi|L

gives | |W(L,T)) =cosB|v))e ™ +sinB|v,)e %

* Expressing the mass eigenstates, V1>, |V2>, in terms of weak eigenstates (eq 2)

\W(L,T)) = cosB(cos B|v,) —sinO|vy))e ™ +sin O(sinB|v,) + cos O|v,))e 2

\W(L,T)) = |Ve)(cos® Be ™1 +sin® Be~92) + |v, ) sin B cos B(—e 91 + ¢ 7192)
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* If the masses of |V1>, |V2> are the same, the mass eigenstates remain in phase,
¢1 = ¢2 , and the state remains the linear combination corresponding to |ve>

and in a weak interaction will produce an electron
* If the masses are different, the wave-function no longer remains a pure |V,)
2
P(Ve—=vy) = [(vuly(L,T))]
= cos?@sin® O(—e ' 47 02)(—e 01 4 Ti02)

- ‘llsin226(2 —2cos(¢1 — ¢))

= sin’20sin’ (¢1 ; ¢2)
* The treatment of the phase difference
Api2 = ¢1 — ¢ = (E1 — E2)T — (|p1] — [p2|)L

in most text books is dubious. Here we will be more careful...

* One could assume |p1| = |p2| =Dp inwhich case

Ap1r = (E\ —E)T = [(p? +m})' /2 — (p? +md) /2] L L~ (c)T
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2\ 1/2 2\ 1/2 2_ 2
m m miy—m
Agip =p (1+p—21> —(1+p—22) L%#L

* However we have neglected that fact that for the same momentum, different mass
eigenstates will propagate at different velocities and be observed at different times

* The full derivation requires a wave-packet treatment and gives the same result
* Nevertheless it is worth noting that the phase difference can be written

p1|* = |p2|?
Ad1, = (E) — E» T—(— L
Er =BT = | L Tl

Ei+E T—m3
Adpa = (Ei — E») [T_ <L) L] N (M) L
1]+ |p2 1]+ P2

* The first term on the RHS vanishes if we assume E] =E; or B =[5

m%—m%L: AmZL

in all cases AQr = E
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* Hence the two-flavour oscillation probability is:

Am3, L
P(V, — Vu) — sin%20 sin? (%) with Am%1 = m% —m%

* The corresponding two-flavour survival probability is:

Am3,L
P(Ve — V,) = 1 —sin®20 sin’ (%)

ce.g.  Am? ooosev2 sin?26 = 0.8, E, = 1GeV
1 T T T T T

wavelength
4nE
Afosc -

Am?

371557

Neutrino Oscillations for Three Flavours

* It is simple to extend this treatment to three generations of neutrinos.
* In this case we have:

Ve Uel UeZ UeS Vi
\% = Uu] U[J,Z U,u,3 V2
Uri U Ugs V3

d . + + d +

e e e e
uﬁ_@ " u% o

gT“; Ve 61\[ Vi %) Ues 8% V3

e3\/§

“S:

<
Il

* The 3x3 Unitary matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata
matrix, usually abbreviated PMNS

* Note : has to be unitary to conserve probability

*Using viv=1 = U '=Uu"=Ww"H"
Vi e*l ;:1 ) Ve

- %
gives 1'% = /.12 © Vu
*
V3 3 Ups Ugs Vz
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Unitarity Relations

* The Unitarity of the PMNS matrix gives several useful relations: vut=1 =

Uet U2 Ues Ug Uy Uz 100
Unt Uz Ups UpoUpUs | =010
Un Un Us ) \Uj Uz Uk 001
gives: UaU), +UnpUps +UsU; = 1 (U1)
UnUp +UnUpn +UsUp; = 1 (U2)
UeUpyy +Ue2Upr +Ue3Ups 0 (U4)
UaUg) +UUp +UsU;z; = 0 (U5)

UnU; +UnUsr+Ui3U;; = 0 (Us)
* To calculate the oscillation probability proceed as before...

Consider a state which is producedat =0 asa ’Ve> (i.e. with an electron)

lW(t =0)) = |Ve) = Uet|V1) + Ue2|v2) +Ue3|v3)
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*The wave-function evolves as:

(W(1)) = Uet|vi)e P1* + U |Va)e 'P2* 4+ Ugs|vz)e 73

where p;.x = E;t — p’l)_c’ =Eit — |ﬁ|Z i z axis in direction !
i of propagation

-After a travellingadistance L e
(W(L)) = Uei|Vi)e " 4+ Upp| va)e 2 + Ugs|v3)e ™93
where ‘Pi =pix=Eit — |ﬁ|L = (E,' — |ﬁl|)L
*As before we can approximate m2
O~ —-L
2Ei
*Expressing the mass eigenstates in terms of the weak eigenstates
W(L) = Ua(Uf|ve) +Ups| V) +Ufi|ve))e ™™
+ Ue(Uh|Ve) + Upa| Vi) + U5 | ve) e
+ Uas(US|Ve) +Ups V) + Ugs | ve) e
*Which can be rearranged to give
Y(L) = Ualhe ™ +Ualne™ +UsUse™™)|ve)
+ (UaUpie 4+ UnUgpe ™ +UsUjze ™) ) (3)

+ (UeIU;Ie_M)I + Ue2U1>:kze_i¢2 + Ue3U;3e_i¢3)‘VT>
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*From which
2
P(Ve = vu) = [(vuly(L))]
= |U61U;1e_i¢1 + Ueru*ze—ﬂPz + Ue3U;3e_i¢3 |2

*The terms in this expression can be represented as:

et u-
/ Vi /
W ANNN~ > —r AN, W
U wl
et u-
/ Vi /
WHANANN~ > —r A, W
Ue> )
et u-
/ V3 /
WHTANNN > e GaVAVAY Wt
Ues 3

*Because of the unitarity of the PMNS matrix we have (U4):

UelU/jl + Uer‘IjZ +Ue3U;;3 - O
and, consequently, unless the phases of the different components are different, the
sum of these three diagrams is zero, i.e., require different neutrino masses for osc.
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*Evaluate
P(Ve = V) = |UaUje ™ +UnUgpe 2 + UpsUjze ™%
using |21 +22+232 = a1 P+ |2 + | +2R (215 + 21 +2225)  (4)

which gives:
P(Ve—= V) = |UaUp |’ +UaUpp|* + |UeaUps |+ (5)

2R(Ua1U;j Uy Upze ™0 79%) 4 U Uy U Upze ™ "1 =%) + U Uiy UyUyze™ (927 9))
*This can be simplified by applying identity (4) to |(U4)]?

Ue1Upy1 +UeaUpip + UesUpis|* = 0
= [Ue1 Uy >+ |Uer[:2|2 + |Ue3U[:3|2 =
—2R(Ua U1 UpyUpz + Ut Uy UsUps + UedUpoUgsUps)

*Substituting into equation (5) gives

P(Ve - Vu) = 2m{Ue1U[IIU:ZU,LLZ[e_i((bI_%) — 1]}
+ 293{U61U;1U8*3Uu3 [e—i(¢1—¢3) —1]} (6)
+ 2R%{UeU;pU3Up3 [efi(¢2*¢3) —1]}
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* This expression for the electron survival probability is obtained from the
coefficient for |V,) in eqn. (3):

P(Ve—= Vo) = [(vely(L))[
= |UaUle ™ +UnUke 2 + UpsUle 2
which using the unitarity relation (U1)

|Ueer*1 +Ue2U:2 +Ue3U:3|2 =1

can be written

P(Ve — Ve) =1 + 2|Ue1|2|Ue2|2<ﬁ{[e_i(¢l—¢z) — 1]}
+ 2\Un |PUas PR {[e 01— %) — 1]} (7)
+ 2\Un U PR{[e 2% — 1]}

* This expression can simplified using

R{e70=0) _ 1} = cos(gr—¢)—1
= —2sin’ (M) with ¢; ~ m_tz

2

) ) TSI WR— :
) (m —m )L :Phase of mass
—  _2gip? | X2 U™ : : :
- S1 AE ieigenstate iat z=L:
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: 2 _ 2 2

(m3 —m?)L _ Am3, L
4E 4E
NOTE: Ay} = (¢»—@1)/2 is a phase difference (i.e. dimensionless)

*Define: Ap =

*Which gives the electron neutrino survival probability

P(Ve — Ve) =1 —4|Uel‘2‘U32|2 sin2A21 —4|Uel|2|Ue3|2Sin2A31 —4’U62‘2|Ue3|28in2A32

«Similar expressions can be obtained for the muon and tau neutrino survival
probabilities for muon and tau neutrinos.

* Note that since we only have three neutrino generations there are only two
independent mass-squared differences, i.e.

2 2 _ 2 2 2 2
m3 —my = (m3 —my) + (my —mj)
and in the above equation only two of the A,-j are independent

* All expressions are in Natural Units, conversion to more useful units here gives:
Am3, (eV?)L(km) E(GeV)
E(GeV) Am?2(eV?)

Ay =1.27 and | Aose(km) = 2.47
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CP and CPT in the Weak Interaction

* In addition to parity there are two other important discrete symmetries:

Parity P: |F— -7

Time Reversal T : t— —t

Charge Conjugation | (': Particle 4= Anti-particle

* The weak interaction violates parity conservation, but what about C ? Consider
pion decay remembering that the neutrino is ultra-relativistic and only
left-handed neutrinos and right-handed anti-neutrinos participate in WI

7r_ T

Vi o« - W— 0=,
m Not Allowed | LH V |
F
(
Vu<_. » U™ N+‘-.—’V“

Not Allowed )

* Hence weak interaction also violates charge conjugation symmetry but appears
to be invariant under combined effect of C and P
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CP transforms:
RH Particles <> LH Anti-particles

LH Particles <=> RH Anti-particles
* If the weak interaction were invariant under CP expect

F(at —p'vy)=T(@ —pvy)

* All Lorentz invariant Quantum Field Theories can be shown to be invariant
under CPT (charge conjugation + parity + time reversal)

== Particles/anti-particles have identical mass, lifetime, magnetic moments,...
Best current experimental test: g0 — Mo < 6 X 10~ myo

* Believe CPT has to hold:
if CP invariance holds == time reversal symmetry
if CP is violated == time reversal symmetry violated

* To account for the small excess of matter over anti-matter that must have
existed early in the universe require CP violation in particle physics !

* CP violation can arise in the weak interaction (see also handout 12).
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CP and T Violation in Neutrino Oscillations

* Previously derived the oscillation probability for V. — vV,
P(Ve—vy) = 2R{UaU,;;U;Up2 [e91792) _ 1]}

+ 2R{Ua U UsUpsle 0 =%) — 1]}
+ 2R{UelU;nUsU,3 [e~1(02793) 1]}

*The oscillation probability for Vi — Ve can be obtained in the same manner or
by simply exchanging the labels (¢) < (1)

P(vy—Ve) = 2R{UnU;UpUale @79 — 1]}
+ 2R{UnU; U0 [e—i(¢1—¢3) —1]}
+ 2R{Un2UU, 13U [e—i(¢2—¢3) 1]}

* Unless the elements of the PMNS matrix are real (see note below)
P(Ve = V) # P(Vy — Ve) ()

*If any of the elements of the PMNS matrix are comrglexz neutrino oscillations

(8)

are not invariant under time reversal f — —f

:NOTE: can multiply entire PMNS matrix by a complex phase without changing the oscillation
prob. T is violated if one of the elements has a different complex phase than the others :

381557

Consider the effects of T, CP and CPT on neutrino oscillations

Ve = Vu - Yu— Ve : Note C alone is not sufficient as it :

CP — — i transforms LH neutrinos into LH
Ve = Vu R Ve = Vu : anti-neutrinos (not involved in

P — — i
T Weakinteraction)

°If the weak interactions is invariant under CPT
P(Ve = Vy) =P(Vy — V,)
and similarly P(vy —Ve) =PV, = V) (10)

~>

*If the PMNS matrix is not purely real, then (9)
P(Ve = vy) # P(vy — Ve)
and from (10) P(Ve = vy) #P(Ve — V)

*Hence unless the PMNS matrix is real, CP is violated in neutrino oscillations! |

: Future experiments, e.g. “a neutrino factory”, are being considered as a way to _
investigate CP violation in neutrino oscillations. However, CP violating effects are !
well below the current experimental sensitivity. In the following discussion we will :
take the PMNS matrix to be real. (question 22)
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Neutrino Mass Hierarchy

* To date, results on neutrino oscillations only determine

| = |2 — |
* Two distinct and very different mass scales:
» Atmospheric neutrino oscillations : |Am2|atmos ~25%x1073 €V2
* Solar neutrino oscillations: |Am2|solar ~8x%x10%eV?2

*Two possible assignments of mass hierarchy:

m 2 —_—m
3 Amsolart —_ m%
Amgtmos
2
Amatmos
2 —_— my
Amsolar 1— mi —_— N3

°In both cases: Am%] ~8x 10 3eV? (solar)
|Am3, | & |Am3,| ~ 2.5 x 1073eV?  (atmospheric)

*Hence we can approximate Am%l ~ Am%2

383 /557

Three Flavour Oscillations Neglecting CP Violation

*Neglecting CP violation considerably simplifies the algebra of three flavour
neutrino oscillations. Taking the PMNS matrix to be real, equation (6) becomes:

P(v, — Vu) = —4U U1 Ue2Up2 sin2A21 —4U1 U1 U303 sin2A31 —4UUp2Ue3Uy3 sin? A3

2 2 2
JU -

4E 4E

‘Using: Az) &~ Azp  (dGeep38s)p)
P(Ve — V) & =AU Uy UpUyo sin* Aoy — 4(Ue1 Uyt + UepUpn ) U3 Uz sin® Az
‘Which can be simplified using (U4) UelUﬁ1 + Uerﬁz + U, ;3 =0
m=p | P(Ve — Vi) & —4Ue U1 UepUpa sin® Agy +4UZ U sin’ Az

«Can apply A3; = A3 to the expression for electron neutrino survival probability

P(V, — V,) = 1 —4UA U sin® Ay — AU US4 sin® Az — 4U%UZ% sin® Az,

~ 1 —4UAZUZ sin Ay — 4(UZ +US)UZ sin® Asy

e

“Which can be simplified using (U1) U4 +U5+U5 =1

) |P(v, — V,) ~ 1 —4ULUZsin? Ay — 4(1 — UZ)UZ sin® Az,

e e3
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* Neglecting CP violation (i.e. taking the PMNS matrix to be real) and making the
approximation that |Am3,| = |Am3,| obtain the following expressions for
neutrino oscillation probabilities:

P(ve—>ve)~1—4U U sm2A21—4(1—U )U3sm Az | (1)
) & 1 —4U; Upysin® Ay — 4(1 — Uy )Upssin® Agy | (12)

P(vy — vo) = 1 —4U4 UL sin? Ay —4(1 —UL)UXsin® Azy | (13)

P(Ve = Vy) = P(Vy — Ve) & —4Ue1 Uy UppUyo sin 2 Ao +4U Uu3 sinAszy | (14)
)~ —4U, U7 U Uy sin 2 Ao +4U UT3 sin”As, | (15)

P(vy = Vi) =P(ve = vy) = —4UM1U71U‘L¢2U12 sin” Ay +4U? 3UT3 sin” Ax| (16)

P(vy — vy) =

P(Ve —v)=P(ve — Ve

*The wavelengths associated with sin A21 and sin A32 are:

"""" ————  4nE . 4T ——
SOLAR Aai=-—5 and A3y = —>5 |“ATMOSPHERIC”

Amy Amz,

“Long”-Wavelength “Short”-Wavelength
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PMNS Matrix

* The PMNS matrix is usually expressed in terms of 3 rotation angles 0,, 0,3, 03
and a complex phase §, using the notation Sij = sin Glj, Cij = COS Gij

Uet Uz Ues 1 0 O ci3 0 s3e™® cr2 512 0
Uul Uuz U,J3 = 0 Cc23 823 X 0 1 0 X —S12 C12 0
Urt Uy Uz 0 —s23 c23 —s13¢"® 0 13 0 01
%_J
Dominates: “Atmospheric” “Solar”
* Writing this out in full:

C12€13 $12€13 . sj3e10

U= | —si2c23 — C12S23@ 12023 — $12523513€"°  sa3c13

$12823 — 012623S13€ —C12523 —S12€23S136’i6 €23C13

* There are six SM parameters that can be measured in v oscillation experlments

|Amy1|? = |m2 —my 2| | 61> | Solar and reactor neutrino experiments

|Am32|2 |m3 — m2| 023 | Atmospheric and beam neutrino experiments

013 | Reactor neutrino experiments + future beam

0 | Future beam experiments
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Neutrino Experiments

*Before discussing current experimental data, need to consider how neutrinos
interact in matter (i.e. our detectors)
Two processes:
» Charged current (CC) interactions (via a W-boson) = charged lepton
* Neutral current (NC) interactions (via a Z-boson)
Two possible “targets”: can have neutrino interactions with
» atomic electrons
* nucleons within the nucleus

Vy /- Vy s
CHARGED CURRENT w 14

e ve n p

Vy \Y, Ve \%7i
NEUTRAL CURRENT 7 7

e e N N
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Neutrino Interaction Thresholds

* Neutrino detection method depends on the neutrino energy and (weak) flavour
*Neutrinos from the sun and nuclear reactions have E, ~ 1MeV

«Atmospheric neutrinos have E, ~ 1GeV

*These energies are relatively low and not all interactions are kinematically
allowed, i.e. there is a threshold energy before an interaction can occur. Require
sufficient energy in the centre-of-mass frame to produce the final state particles

O Charged current interactions on atomic electrons (in laboratory frame)

Vi 0 s=(pv +Pe)2 = (Ey +me)2_E\2/
pv = (Ey,0,0,Ey) Require: § > m%
De = (m670’070) 4 2
niy ne
_ - Ey> | — ) —1| =2
e Ve Y (me) 2
*Putting in the numbers, for CC interactions with atomic electrons require
Ey, >0 Ey, > 11GeV Ey. >3090GeV
N— i
-

High energy thresholds compared to
typical energies considered here
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® charged current interactions on nucleons (in lab. frame)

Vi - 5= (Pv +pn)2 = (Ev +mn)2 _E\Z/
Require: §> (my +mp)2
w
2 2 2
ms, —m:) +m; +2m,my
- Ev>( p n) 14 p
n p 2my,

*For CC interactions from neutrons require

Ey,>0 Ey, > 110MeV Ey,. >3.5GeV

* Electron neutrinos from the sun and nuclear reactors E, ~ 1MeV which
oscillate into muon or tau neutrinos cannot interact via charged current
interactions — “they effectively disappear”

* Atmospheric muon neutrinos E, ~ 1GeV which oscillate into tau neutrinos
cannot interact via charged current interactions - “disappear”

*To date, most experimental signatures for neutrino oscillation are a deficit of
neutrino interactions (with the exception of SNO) because below threshold for
produce lepton of different flavour from original neutrino
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*In Handout 10 derived expressions for CC neutrino-quark cross sections in
ultra-relativistic limit (neglecting masses of neutrinos/quarks)
*For high energy muon neutrinos can directly use the results from p|pages40p

— 2
Vye T
w with  s=(Ey+m,)*> —E2~2m.E,
_ 2m 2E ! Cross section increases :
e Ve o, ,— — eGF v linearly with lab. frame :
Vue T i neutrino energy
*For electron neutrinos there is another lowest order diagram with the same final
state Ve e Ve \
w Z
e v, e e

It turns out that the cross section is lower than the pure CC cross sectlon due to
negative interference when summing matrix elements |MCC -I-MNc| < |MCC|

Oy,e ~ 0. 6Gv .

*In the high energy limit the CC neutrino-nucleon cross sectlons are laraer due
to the higher centre-of-mass energy: s = (E, + mn) E ~ 2muEy
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Neutrino Detection

* The detector technology/interaction process depends on type of neutrino and energy

REACTOR V,

>

| SOLAR V| | ATMOSPHERIC/BEAM V|
2

< T T T T T T Gy N = 0 222mPGFEV

o [ _ Vu - . - geerestessesstesetistinietitenee E
2 0 v,N>p X | 0 i Deep Inelastic :
£ Fo_ . = E : Scattering '
G [ V.p=e'n Sigarasessensassanassand 2 : :
L0 : ' VN=X A S ) 33M (=
T 10%F { N7 3w

W '

©

% ] o — 2meGiEv  CConly
; Vue~ = T i Threshold 11 GeV
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Atmospheric/Beam Neutrinos Ve, Vi, Ve, Vi : Ey > 1GeV

© Water Cerenkov: e.g. Super Kamiokande
@ Iron Calorimeters: e.g. MINOS, CDHS (see handout 10)
*Produce high energy charged lepton - relatively easy to detect

Solar Neutrinos v, . E, <20MeV

© Water Cerenkov: e.g. Super Kamiokande
-Detect Cerenkov light from electron producedin V,+¢ — V,+e
*Because of background from natural radioactivity limited to Ey > 5MeV
*Because Oxygen is a doubly magic nucleus don’tget Vo.+n—e +p
® Radio-Chemical: e.g. Homestake, SAGE, GALLEX
*Use inverse beta decay process, e.g. Ve +"1Ga— e+ Ge
*Chemically extract produced isotope and count decays (only gives a rate)

Reactor Neutrinos V. : Ey <5MeV

O Liquid Scintillator: e.g. KamLAND

* Low energies = large radioactive backaround

« Dominant interaction: V,+p — e +n

* Prompt positron annihilation signal + delayed signal
from n (space/time correlation reduces background) ~100ps

* electrons produced by photons excite scintillator which produces light
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1) Long Baseline Neutrino Experiments

« Initial studies of neutrino oscillations from atmospheric and solar neutrinos
= atmospheric neutrinos discussed in examinable appendix
* Emphasis of neutrino research now on neutrino beam experiments
* Allows the physicist to take control — design experiment with specific goals
* In the last few years, long baseline neutrino oscillation experiments have started
taking data: K2K, MINOS, CNGS, T2K
Basic Idea:
* Intense neutrino beam
* Two detectors: one close to beam the other hundreds of km away
* Measure ratio of the neutrino energy spectrum in far detector (oscillated)
to that in the near detector (unoscillated)
Partial cancellation of systematic biases
Am*=0.002 eV*

250 T T T ,9 1.2 LI R B LB B B )
200 - n § ' ++ ++ Depth of minimum
ad
08 [t . . o2
Near Detector 0 |- f T os + ++++++ + ++ + - ) 5in20
(unoscillated) 100 -t N 04 ++ _/
/50’ + T ] 0.2 —t_r’,_lé/ Position of min.
Far Detector o1 o L T, Am?
(oscillated) 0 10 20 0 5 1o e
Ereco (GeV) Ereeo (GEV)
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MINOS

*120 GeV protons extracted from the MAIN INJECTOR at Fermilab (see p. 271)
 2.5x10"3 protons per pulse hit target == very intense beam - 0.3 MW on target

Soudan Mine;
Minnesota

Two detectors:

* 1000 ton, NEAR Detector at
Fermilab : 1 km from beam

* 5400 ton FAR Detector, 720m
underground in Soudan mine,
N. Minnesota: 735 km from beam
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The MINOS Detectors:

« Dealing with high energy neutrinos Ey > 1GeV
* The muons produced by V, interactions travel

several metres

- Steel-Scintillator sampling calorimeter

* Each plane: 2.54 cm steel +1 cm scintillator

» A charged particle crossing the scintillator
produces light — detect with PMTs

[I [[/ Steel

- Plastic
scintillator

i Alternate layers
e have strips in
xly directions
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*Neutrino detection via CC interactions on nucleon

Example event:

Signal from
hadronic
shower

*The main feature of the MINOS detector is the very good neutrino energy resolution

Ey =E, +Ex

*Muon energy from range/curvature in B-field
*Hadronic energy from amount of light observed
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MINOS Results

« For the MINOS experiment L is fixed and observe oscillations as function of Ey

* For |Am§2| ~2.5%x103eV? first oscillation minimum at E, = 1.5GeV

* To a very good approximation can use two flavour formula as oscillations
corresponding to |Am%1| ~8x1073eV? occurat E, =50MeV, beam contains
very few neutrinos at this energy + well below detection threshold

MINOS Collaboration, Phys. Rev. Lett. 101, 131802, 2008

L B e e e e o T
150,_ MINOS Far Detector ] %) 1'5,_
no oscillations l/f' | g L
+ * Far detector data =1 - p
%) No oscil = T ]
— No oscillations = T
(100~ N o 1 =]
= 3 —— Best oscillation fit 8 H =T 1
n L
NC back d (@]
..q‘_:; | = ackgroun 2
i e} ¥ .
Lﬁ 50 B = o5lt + MINOS data
L o H Best oscillation fit
=
r & —— Best decay fit
—— Best decoherence fit |
| RS SRR R o

P A_ e PR I
5 10 15 203050 % 5 10 15 203050
Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV)

|Am3,| = (2.434£0.12) x 1073 eV?
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2) Solar Neutrinos

SuperK, SNO
chlorine —_—

T gallium
@ 12E "3
EVE E
o “,ll C .
é 1010 m 7Be ;i
e E
T VE E
> 10 3
L E 3
> £ i
T,NE 3
*The Sun is powered by the weak " 3 E
. R M E I
interaction — producing a very 2 : 3
large flux of electron neutrinos T, ;

10
Neutrino Energy/MeV

2x 1038 vy,s7!
«Several different nuclear reactions in the sun = complex neutrino energy spectrum
p+p—d+et+v,| Ey <0.5MeV pte +p—d+ve

7 AT
Be+e —'Li+v,
B —% Be* +et +v,| Ev~5MeV SHet p—4 Het et + v,

All experiments saw a deficit of electron neutrinos compared to experimental
prediction — the SOLAR NEUTRINO PROBLEM

* e.g. Super Kamiokande
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Solar Neutrinos I: Super Kamiokande

+ 50000 ton water Cerenkov detector

» Water viewed by 11146 Photo-multiplier tubes

* Deep underground to filter out cosmic rays
otherwise difficult to detect rare neutrino

interactions
Mt. lkenoyama, Japan
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«Detect neutrinos by observing Cerenkov radiation from charged particles
which travel faster than speed of light in

*Can distinguish electrons from muons from pattern of light - muons produce
clean rings whereas electrons produce more diffuse “fuzzy” rings
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- Sensitive to solar neutrinos with E, > SMeV
* For lower energies too much background from natural radioactivity (8-decays)
« Hence detect mostly neutrinos from 8B —8 Be* 4 ¢t 4 v,

*Detect electron Cerenkov rings from Ve e Ve
Vo.+e — V,+e

Ve

. w
In LAB frame the electron is produced z
preferentially along the V, direction e v e -
e
S.Fukada et al., Phys. Rev. Lett. 86 5651-5655, 2001
= w : w Results:
K] . .
= Ve from + Clear signal of neutrinos from the sun
S background due to the sun .
¥ 0.2} | natural radioactivity <. * However too few neutrinos
© -deca
g (p-docsy) DATA/SSM = 0.45:0.02
c
o
& SSM = “Standard Solar Model” Prediction

0.1 boressrsten Foreit s ommnsesstaseopsanss

The Solar Neutrino “Problem”

5< E, <20MeV

1 05 0 0.5 1
cosO, .

1 ©
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Solar Neutrinos ll: SNO

*Sudbury Neutrino Observatory located in a deep mine in Ontario, Canada

i : + 1000 ton heavy water (D,0) Cerenkov detector
* D,0 inside a 12m diameter acrylic vessel
» Surrounded by 3000 tons of normal water
* Main experimental challenge is the need for
very low background from radioactivity
* Ultra-pure H,0 and D,O
* Surrounded by 9546 PMTs

Transparent
acrylic vessel

L >~_  Ultra-pure

PMTs H,0 and D,0
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* Detect Cerenkov light from three different reactions:

- | CHARGE CURRENT | Ve e
.« Detect Cerenkov light from electron
* Only sensitive to V, (thresholds) w
* Gives a measure of V.flux J p
|CC Rate = ¢(v,)| (np)
- | NEUTRAL CURRENT | Ve Ve
. Neutron capture on a deuteron gives 6.25 MeV
« Detect Cerenkov light from electrons scattered by 7 Z ;
» Measures total neutrino flux 4 n
NC Rate o< ¢ (Ve) + @ (V) + 0 (vz) (np) p
Ve ........................................ e_vx ........................................ v
ELASTIC SCATTERING | x
+Detect Cerenkov light from electron 7
*Sensitive to all neutrinos (NC part) — but
larger cross section for v, _ _
€ Ve € e

ES Rate o< ¢ (v,) +0.154(0 (V1) + 0 (V7))
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* Experimentally can determine rates for different interactions from:
+ angle with respect to sun: electrons from ES point back to sun
» energy: NC events have lower energy — 6.25 MeV photon from neutron capture
* radius from centre of detector: gives a measure of background from neutrons

SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett. 89:011301, 2002
600,

L ©)

[
o
TTT T
€

S B E
T
Events per 500 keV

Events per 0.05 wide bin

T T
12 13—20
€Os B, Tewr (MeV)

* Using different distributions .
obtain a measure of numbers CC:1968 + 61| (P(Ve)

of events of each type: ES: 264 = 26 |oc ¢(ve) +0.154[9 (vy) + ¢ (Ve)]
NC: 576 = 50 o< ¢(V,)+@(vy)+¢(vr)
‘ Measure of electron neutrino flux + total flux !
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*Using known cross sections can N 39
convert observed numbers of events " ve only) 50

H A
into fluxes § of... NC constrains |2 =
. . “ta. o
*The different processes impose S s total flux) B
different constraints = 23
* Where constraints meet gives 2 NS Sp
separate measurements of Ve i ~~~~~~ g2
and Vy + V¢ fluxes T R = 83
DI RN 2z o3 Sa
DL . = 17a

SNO Results: o 23 456

0(ve) = (1.840.1) x 106 cm25~! #(ve)/10°em™25™!

d(Vy)+(ve) = (3.44£0.6) x 10 6cm257!
SSM Prediction:

d(ve) =5.1x10"0cm=2s7!

+Clear evidence for a flux of Vy and/or V; from the sun
*Total neutrino flux is consistent with expectation from SSM
*Clear evidence of V, — Vv, and/or V., — V; neutrino transitions
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Interpretation of Solar Neutrino Data

* The interpretation of the solar neutrino data is complicated by MATTER EFFECTS
* The quantitative treatment is non-trivial and is not given here
* Basic idea is that as a neutrino leaves the sun it crosses a region of high
electron density
* The coherent forward scattering process ( Ve — V¢) for an electron neutrino

Ve e V. Ve
w z CcC + |NC
e v, € e
is different to that for a muon or tau neutrino
Vuz Vir
z NC
e e

«Can enhance oscillations — “MSW effect”

* A combined analysis of all solar neutrino data gives:
Am%,  ~8x 1075eV?, sin? 26 ~ 0.85

solar
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3) Reactor Experiments

*To explain reactor neutrino experiments we need the full three neutrino expression
for the electron neutrino survival probability (11) which depends on U.,1, U, U,3

*Substituting these PMNS matrix elements in Equation (11):
P(ve —V,) =~ 1—4U4U2%sin’ Ay —4(1 —UZ)UZsin® Agy
= 1- 4(C12C13)2(S12C13)2 Sin2 A21 — 4(1 — S%3)S%3 Sin2 A32
= 1—cf3(2s10c12)?sin’ Ao — (2¢13513) sin® As
= 1- COS4 913 SiIl2 2912 sin2 A21 — sin2 29]3 sin2 A32
*Contributions with short wavelength (atmospheric) and long wavelength (solar)

*For a 1 MeV neutrino .
E(GeV)

)'OSC k - 2.477 ? 9 | — ISOI Ev I: lMeV
(km) Am2(eV?) 108 13 i
= A2 =30.0km Zoel- ﬂﬂn Asolar | _

132 =0.8km 04— WU Uuu |

*Amplitude of short wavelength 0.2 - sin? 2913I
oscillations given by 0 J Aatmos ,
in? 0 10 20 30 40 50
S 2913 Distance/km
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Reactor Experiments | : CHOOZ

*Two nuclear reactors, each producing 4.2 GW France
* Place detector 1km from reactor cores
* Reactors produce intense flux of V,

Detector

[ EEEEXEXENNEEEXX]

I P PP?PPTPTEREY
P
Detector i ! ‘ T ‘ I ‘
150m underground
« Anti-neutrinos interact via inverse betadecay V.,+p — et +n
* Detector is liquid scintillator loaded with Gadolinium (large n capture cross section)
 Detect photons from positron annihilation and a delayed signal from photons
from neutron capture on Gadolinium
efte —y+y
n+Gd — Gd* - Gd+y+7v+...
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*At 1km and energies > 1 MeV, only the short wavelength component matters

P(Ve — Ve) = 1- COS4 013 Sin2 20, Sin2 App — sin22613 sin2 Azpp~1— Sil‘l2 203 Sil‘l2 Az
CHOOZ Raw Data Background subtracted Compare to effect
§ ] +++ S0 of oscillations
ot ++  Reactor ON =r « V, signal > W
T 4 ++ ° fesor ot w Prediction L Si1122913 1
- >
- + —) 5 Z o6 i
w0 b ++ 100 0.4} . i
N +++ +++ n “ 02 913 =15 b
i erton T gy 0 T
g 0 0 g o L + . + % Energy/MeV
Positron Energy/MeV Positron Energy /MeV
* Data agree with unoscillated prediction both in terms of rate and energy spectrum
CHOOZ Collaboration,
Ndata/Nexpect = 1.01 £0.04 M.Apollonio et al.,
Phys. Lett. B420, 397-404, 1998
* Hence sin%260;; must be small !
' — R S
—> [sin*2613 <0.12—-0.2| Exactlimit depends on A3,
* From atmospheric neutrinos (see appendix) can exclude 03 ~ z

2
+ Hence the CHOOZ limit: sin22913 < 0.2 can be interpreted as sin? 013 < 0.05

O
)
I
n
it

PN G
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Reactor Experiments Il : KamLAND

* 70 GW from nuclear power (7% of World total) from reactors within 130-240 km
* Liquid scintillator detector, 1789 PMTs
* Detection via inverse beta decay: V,+p — et +n

Followed by et +e — Y+v prompt
n+p—d+ }/(Z.ZMCV) delayed

O
)
I
n
it

DAy
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sin?
1

* For MeV neutrinos at a distance of -~

2913 =0.15 Ev =2MeV
i Y [T M

130-240 km oscillations due to Tostl i
Am2, are very rapid Zoe
2o,
* Experimentally, only see average 04
effect 5 Ml m m w
(sin®Az) =0.5 02 i
% 50 100 150 200 250
* Here: Distance/km
P(V.—V,) = 1— cos* 6135in%26), sin® Ay; — sin” 26,3 sin® Ay
v o

= cos* 613+ sin* B;3 — cos* ;3 5in> 26,5 sin” Ay

Q

COS4 913(1 — Sin2 2912 Sin2 Azl) neglect Sil’l4 913

» Obtain two-flavour oscillation formula multiplied by cos? 013

« From CHOOZ cos* 013 > 0.9

(Try Question 21)
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Survival Probability

KamLAND RESULTS:

Observe: 1609 events
Expect: 2179+89 events (if no oscillations)

KamLAND Collaboration, Phys. Rev. Lett., 221803, 2008

T o Data-BG-GeoV,
- — Expectation based on osci. parameters
Ir * determined by KamLAND
0.8
L | +
0.6 T
04F
0.2F
0'.|.. I 1 daless

PETEN BTSTSATEN ATSTAEN SN ATSTETATSN STU AN ATRUATST S SR A
20 30 40 50 60 70 80 90 100
Ly/E, (km/MeV)

* Clear evidence of electron
anti-neutrino oscillations
consistent with the results
from solar neutrinos

* Oscillatory structure clearly
visible

* Compare data with expectations
for different osc. parameters
and perform 2 fit to extract
measurment
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Combined Solar Neutrino and KamLAND Results

* KamLAND data provides strong constraints on |Am3 |

* Solar neutrino data (especially SNO) provides a strong constraint on 01>

Solar

. KamLAND
Neutrinos

B 95%C.L.
99% C.L.

B 99.73% C.L. KamLAND
* bestfit

""" 99% C.L.
— 99.73% C.L.
best fit

107! |
2
tan"0 ,

Combined

|Am3,| = (7.59£0.21) x 107%eV? | | tan® 0), = 0.4770.05
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Recent work ...

* Increasing evidence for non-zero value of non-zero 0,3
= T2K: Vi — Ve appearance (2.5 o)
= MINOS: Vu — V. appearance (2 6)
= Double-CHOOZ: V. disappearance (2 o)

sin?20;3 ~ 0.04 — 0.08?

* in 2013/2014 Daya Bay experiment (see question 21) measured:

sin®26;3 =0.092 =+ 0.016
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Atmospheric Neutrinos

« High energy cosmic rays (up to 1020 eV) interact in the upper part of the Earth’ s

atmosphere
* The cosmic rays (~86% protons, 11% He Nuclei, ~1% heavier nuclei, 2% electrons )

mostly interact hadronically giving showers of mesons (mainly pions)
*Neutrinos produced by:
nt—utvy, T — UV
L et VeVy L, e VeVu
Flux ~ lem 2sr!s™!
Typical energy : E, ~ 1GeV
*Expect N(vﬂ —|—V“) 5
N(ve+V,)

*Observe a lower ratio with deficit of V /Vu
coming from below the horizon, i.e. large
distance from production point on other
side of the Earth
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Super Kamiokande Atmospheric Results

*Typical energy: E, ~ 1GeV (much greater than solar neutrinos — no confusion)
* Identify Ve and Vy interactions from nature of Cerenkov rings
» Measure rate as a function of angle with respect to local vertical

* Neutrinos coming from above travel ~20 km
* Neutrinos coming from below (i.e. other side of the Earth) travel ~12800 km

v from |§ from Above A%

2140 | g3s0 PR i
2 o 3 300 —
= E - £
Z100 F =30 b Y
Z 80 f 2400
S 60 F S150 £
= 40 E 7'100

20 _ 50 F

Y TN I T P T I TP Below

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
cost cosO

* Prediction for V. rate agrees with data
* Strong evidence for disappearance of V for large distances

* Consistent with V; — V¢ oscillations
* Don’ t detect the oscillated V; as typically below interaction threshold of 3.5 GeV
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Interpretation of Atmospheric Neutrino Data

*Measure muon direction and energy not 1
neutrino direction/energy fo_s
‘Don’ t have E/0 resolution to see oscillations 26l
+Oscillations “smeared” out in data 2 """"""" - = oal
«Compare data to predictions for |Am '
P P |Am”| SN S 0.0003¢V) eV2
“"".. -1

cosO

—
n
=]

Number of Events
N \
[—]
[—]

1— Lsin?20— [o003ev2] |

e T T N \‘\H 1M 1‘
cosH
* Data consistent with: ’
i) | Ll MT
H u h H\

Sln zeatmos ~ 1
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Summary of Current Knowledge

SOLAR Neutrinos/KamLAND |
KamLAND + Solar: |Am3 | ~ (7.6 +£0.2) x 1073 eV?
SNO + KamLAND + Solar:  tan® 01, ~ 0.47 £0.05

== | sinBp ~0.56; cosBO;p ~0.82

Atmospheric Neutrinos/Long Baseline experiments |

MINOS: |Am3,| ~ (2.4 £0.1) x 103 eV?
Super Kamiokande: sin2 26,3 > 0.92
) 1
cos 03 ~sinbryy3 ~ —
V2
CHOOZ + (atmospheric) | 2014 Daya Bay |
sin’20,3 < 0.15 sin226;3 =0.092 =+ 0.016

*Currently no knowledge about CP violating phase 6
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* Regardless of uncertainty in 03

Uet Uz Ues c12 512 ?
Uyt Upp Upz | = | —s12¢23 C1223 523
Uri Uy Ugs $12823  —C12823 €23
*For the approximate values of the mixing angles on the previous page obtain:
Ug Usp Ues 0.85 0.53 0.1¢?
Upit Upp Uyz | = | —0.37 0.60 0.71
Uy Uy Uy 0.37 —-0.60 0.71

*Have approximate expressions for mass eigenstates in terms of weak eigenstates:

Vv; I
vs) = () + 1ve))
2~ -3 2
1V2) & 0.53 Vo) +0.60(|via) — [vi)) |Am3,| 2.5 X 107 eV

[Vi) &~ 0.85|V,) —0.37(|vy) —|vyg)) | V2 ——

I |Am,| ~ 8 x 1075 eV?
V1
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Final Words: Neutrino Masses

* Neutrino oscillations require non-zero neutrino masses
* But only determine mass-squared differences — not the masses themselves
* No direct measure of neutrino mass — only mass limits:

my(e) <2eV; my(u) <0.17MeV; my(7) < 18.2MeV

Note the €,lL,T refer to charged lepton flavour in the experiment, e.g.
mv(e) < 2eV refers to the limit from tritium beta-decay

« Also from cosmological evolution infer that the sum

me < few eVé

* 10 years ago — assumed massless neutrinos + hints that neutrinos might oscillate !
* Now, know a great deal about massive neutrinos

* But many unknowns: 03, § , mass hierarchy, absolute values of neutrino masses
* Measurements of these SM parameters is the focus of the next generation of expts.
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Appendix: 3-Flavour Treatment of Atmospheric Neutrinos

non-examinable
* The energies of the detected atmospheric neutrinos are of order 1 GeV

* The wavelength of oscillations associated with |Am3,| =8 x 1075eV? is

121 — 3 1000 km E. ............................................. E"(-éé.v-)--.";
*If we neglect the corresponding term in the - Aosc(km) =2.47 YRV
expression for P(v, — v,) - equation(16)  ~  Am(eVT)

P(vy = Vi) ~ —4UUnUnUsnsin® Ay +4U3Uz% sin Az
2 772 2
4U;3Uzsin” Az

— -2 2 4 )
= 4sin” 63 c0s” Ox3cos” O3 sin” A3y
= cost 03 sin® 2653 sin® Az

*The Super-Kamiokande data are consistent with Vu — Vz which excludes

the possibility of cos* ;3 being small
« Hence the CHOOZ limit:  sin”260;3 < 0.2 can be interpreted as sin® ;3 < 0.05

: NOTE: the three flavour treatment of atmospheric neutrinos is discussed below. :
: The oscillation parameters in nature conspire in such a manner that the
two flavour treatment provides a good approximation of the
observable effects of atmospheric neutrino oscillations
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3-Flavour Treatment of Atmospheric Neutrinos

, hon-examinable
*Previously stated that the long-wavelength oscillations due to Am21 have little

effect on atmospheric neutrino oscillations because for a the wavelength for
a 1 GeV neutrino is approx 30000 km.
* However, maximum oscillation probability occurs at 1/2
* This is not small compared to diameter of Earth and cannot be neglected
* As an example, take the oscillation parameters to be
01, = 32°;, 63 =45°;, 013 =17.5°
- Predict neutrino flux as function of cos0
» Consider what happens to muon and electron neutrinos separately

muon neutrinos only electron neutrinos only

=1.
=1.

v ﬂux/vu flux at cosO:
|
Y ﬂux/v“ flux at coso

cosd
. Am%1 has a big effectat cos@ ~ —1
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non-examinable
* From previous page it is clear that the two neutrino treatment of oscillations
of atmospheric muon neutrinos is a very poor approximation
* However, in atmosphere produce two muon neutrinos for every electron neutrino

» Need to consider the combined effect of oscillations on a mixed “beam”
with both Vy and V.

1 23V, +1/3 V,

1.

0.8

0.6

0.4H

0.2}

v ﬂux/v” flux at cosO

° 1

cosd

+ At large distances the average muon neutrino flux is still approximately half the
initial flux, but only because of the oscillations of the original electron neutrinos

and the fact that sin®26; ~ 1

* Because the atmospheric neutrino experiments do not resolve fine structure,
the observable effects of oscillations approximated by two flavour formula
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Particle Physics

Dr Lester

Handout 12 : The CKM Matrix and CP Violation
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CP Violation in the Early Universe

* Very early in the universe might expect equal numbers of baryons and anti-baryons
* However, today the universe is matter dominated (no evidence for anti-galaxies, etc.)
* From “Big Bang Nucleosynthesis” obtain the matter/anti-matter asymmetry
np—ng n _
E="L""B~"B~107°
ny ny
i.e. for every baryon in the universe today there are 10° photons
* How did this happen?

* Early in the universe need to create a very small asymmetry between baryons and
anti-baryons

e.g. for every 10° anti-baryons there were 10°+1 baryons
baryons/anti-baryons annihilate =)
1 baryon + ~10° photons + no anti-baryons

* To generate this initial asymmetry three conditions must be met (Sakharov, 1967):
© “Baryon number violation”, i.e. np —ng is not constant
® “C and CP violation”, if CP is conserved for a reaction which generates
a net number of baryons over anti-baryons there would be a CP
conjugate reaction generating a net number of anti-baryons
© “Departure from thermal equilibrium”, in thermal equilibrium any baryon
number violating process will be balanced by the inverse reaction
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» CP Violation is an essential aspect of our understanding of the universe
* A natural question is whether the SM of particle physics can provide the
necessary CP violation?
* There are two places in the SM where CP violation enters: the PMNS matrix and
the CKM matrix
» To date CP violation has been observed only in the quark sector
* Because we are dealing with quarks, which are only observed as bound states,
this is a fairly complicated subject. Here we will approach it in two steps:
* i) Consider particle — anti-particle oscillations without CP violation
«ii) Then discuss the effects of CP violation
* Many features in common with neutrino oscillations — except that we will be
considering the oscillations of decaying particles (i.e. mesons) !
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The Weak Interaction of Quarks

* Slightly different values of G measured in 1 decay and nuclear B decay:

gy

GH = (1.1663240.00002) x 1075GeV~2 G = (1.136+0.003) x 10-5GeV 2

* In addition, certain hadronic decay modes are observed to be suppressed, e.g.
compare K~ — "V, and 71~ — U~V . Kaon decay rate suppressed factor 20
compared to the expectation assuming a universal weak interaction for quarks.

d Vi S Vu
>\/\/\A< K- >\/W\;<
i no i w
» Both observations explained by Cabibbo hypothesis (1963): weak eigenstates are

different from mass eigenstates, i.e. weak interactions of quarks have same
strength as for leptons but a u-quark couples to a linear combination of s and d

d\ [ cos6. sinb, d
s)  \ —sin0, cosb, s
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GIM Mechanism

* In the weak interaction have couplings between both #d and us which
implies that neutral mesons can decay via box diagrams, e.qg.

cos6, W~
d —_— NN U
K° luly AVu

S *Historically, the observed branching

<sin G'V\V{X\‘ < ut was much smaller than predicted

* Led Glashow, llliopoulos and Maiani to postulate existence of an extra quark
- before discovery of charm quark in 1974. Weak interaction couplings become

u u c c
cos;;mg\/—“%<d sinOZ?TW:<s —sinl;;\’/—w—‘éid cosOCH?%;<s

* Gives another box diagram for K’ — ,uﬁuf
—sinf6, W~

M =< gév cos 6, sin 6,

d —>— N\ \N\—>— My =< —gﬁ, cos 6, sin 6,
K? - cly AV «Same final state so sum amplitudes
S <N« ut \M|? = M +M;|*> ~ 0

cos6. wt «Cancellation not exact because m, 7 M,
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i.e. weak interaction couples different generations of quarks

u u u
= -
K / cos:z—;l"< sin 6, 8% s
V2 d V2 d V2

(The same is true for leptons e.g. e*v4, e v,, e v3 couplings — connect different generations)

* Can explain the observations on the previous pages with 6, = 13.1°
-Kaon decay suppressed by a factor of tanZ 0, ~ (.05 relative to pion decay

sd_Jeosd]

..............................................................................................

Vu
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CKM Matrix

* Extend ideas to three quark flavours (analogue of three flavour neutrino treatment)

d Viud Vus Vub d By convention CKM matrix
O )= | Ve Ve Vi | 5] definedseactingon
4 Via Vis Vi b ; quarks wi %€ 73

Weak eigenstates | CKM Matrix | Mass Eigenstates

r— N
( Cabibbo, Kobayashi, Maskawa )

* e.g. Weak eigenstate d is produced in weak decay of an up quark:
8w

V2 d Vil _d Vissh s Vir S5 b
u —>—1{: =u + u —)—q: + u —)—1{:
w wt wt wt

* The CKM matrix elements V,-j are complex constants
* The CKM matrix is unitary

* The Vij are not predicted by the SM - have to determined from experiment
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Feynman Rules

+ Depending on the order of the interaction, u —d or d — u ,the CKM
matrix enters as either V,;, or V@

*Writing the interaction in terms of the WEAK eigenstates

NOTE: u'is the

sw u dioint soi ;
ot joa =1 S| @[S

W 8w 1
*Giving the weak current: Jdu = U [_lﬁ'}’ﬂi(l - 75)] Viad

For u — d’ the weak current is:

i d

2 . =/ W 41

e o = [0
Wt vz'*

“In terms of the mass eigenstates 4 — AP — (Viad) P =vidiyP =vid

*Giving the weak current: Jud = d ;d [_ig\/_vzyﬂ%(l — '}/5)] u
2
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*Hence, when the charge —% quark enters as the adjoint spinor, the complex

conjugate of the CKM matrix is used

* The vertex factor the following diagrams:
Ez: C oz ﬁ; ’ u >rvv3/»_ V\Y\V/:L< !
d u
W= W= d u

is —i%vudy”%(l -7

* Whereas, the vertex factor for:
W+ W+ u d

s SRVt -7)
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* Experimentally (see Appendix I) determine

Vil Vas| Vi 0.974 0.226 0.004
WVeal Vas| Vsl | ~ [ 023 096 0.04
Vial |Vis| |Vin| ? ? ?

* Currently little direct experimental information on Vi4, Vis, Vi

* Assuming unitarity of CKM matrix, e.g. |V, | +|Vep |2+ |Vip|? = 1
gives:
Cabibbo matrix

Via| Vas| [V 0.974 0.226 0.004 Po——
Veal [Ves| Vs | = | 023 0.96 004 | |Lem ciogonai-iery
WVial Vis| Vil 0.01 0.04 0.999

* NOTE: within the SM, the charged current, WjE , weak interaction:
® Provides the only way to change flavour !
@ only way to change from one generation of quarks or leptons to another !

* However, the off-diagonal elements of the CKM matrix are relatively small.
* Weak interaction largest between quarks of the same generation.
» Coupling between first and third generation quarks is very small !

* Just as for the PMNS matrix — the CKM matrix allows CP violation in the SM
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The Neutral Kaon System

*Neutral Kaons are produced copiously in
strong interactions, e.g.

7~ (dn) + p(uud) — A(uds) + K°(d5)
7+ (ud) + p(uud) — K+ (u3) + K (sd) + p(uud)

* Neutral Kaons decay via the weak interaction d
* The Weak Interaction also allows mixing of neutral kaons via “box diagrams”

W= u,c,t
KO _ u,c,t\y Ausc,t | EO KO . wt W~ : EO
S« hannl—< d S_ e < ¢ . d
wt u,c,t

_O
* This allows transitions between the strong eigenstates states KO, K
» Consequently, the neutral kaons propagate as eigenstates of the ovgroall strong
+ weak interaction (Appendix Il); i.e. as linear combinations of KO, K

Ky and the “K-long” K|,
‘These states have approximately the same mass m(Ks) ~ m(Ky) ~ 498 MeV
7(Ks) =0.9x 10719 | | 7(Kz) = 0.5 x 1077 s

*These neutral kaon states are called the “K-short”

*But very different lifetimes:
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CP Eigenstates

*The Kg and K; are closely related to eigenstates of the combined charge
conjugation and parity operators: CP

*The strong eigenstates KO(dE) and Eo(sg) have JP =0~
with — PIK%) = —|K%), PK’)=—-|K)
*The charge conjugation operator changes particle into anti-particle and vice versa
CIKO) = C|ds) = +|sd) = |K")
similarly C|E0> = |K0> [ The + sign is purely conventional, could
have used a - with no physical consequences

*Consequently

CPK) =—[K")  CPR’) = —|K")

i.e. neither K¥ or EO are eigenstates of CP
*Form CP eigenstates from linear combinations:

K1) = (K= [K")| | CPIK) = +]K)
[Ko) = (KO +K")| | CPIK2) = —|Ko)
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Decays of CP Eigenstates
*Neutral kaons often decay to pions (the lightest hadrons)
*The kaon masses are approximately 498 MeV and the pion masses are
approximately 140 MeV. Hence neutral kaons can decay to either 2 or 3 pions
Decays to Two Pions: 70 z
Y K9 — 7070 JP: 00 =0 40" ° 20
«Conservation of angular momentum = [ =( 72.
= P(n'7%) = —1.—1.(—-1)t = +1
The ©°= % (uti — dd) is an eigenstate of C
C(n’n%) =Crn’.cn’ = +1.+1=+1
= CP(n'n%)=+1
% K= atn~  asbefore }3(7r+77:_) =+1
* Here the C and P operations have the identical effect
ot T Hence the combined effect of CP

Y 1= e is to leave the system unchanged
\ T C \ n+ ...................................................
. == .

| Neutral kaon decays to two pions occur in CP even (i.e. +1) eigenstates
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Decays to Three Pions:

7’5\7 KO — 71-07[071-0 JP : 00O —0 +0 40" Remember L is
............................................ C . . magnitude of angular
70 Conservation of angular momentum: | momentum vector

L/ Liol,=0 = Li=L
g\ 1 P(a'n°n%) = 1. - 1. - L(=1)".(=1)2 = 1
e n?: 0,00

: " C(nn"n’)=+1.+1.4+1

717+. . *Again L =1,
L - Pt al)=—1-1.-1L(-Db. (-1 =-1
T N\ +o— 0y o\ — Pt ) — L
) .71.0; Cntn a’)=+1.C(ztn")=P(xtn)=(-1)k
............................................................ ) 7,',4. P‘ P
Hence:  CP(ntn 7%) =—1.(—1) e || e

*The small amount of energy available in the decay, m(K)—3m(7) ~70MeV
means that the L>0 decays are strongly suppressed by the angular momentum
barrier effects (recall QM tunnelling in alpha decay)

Neutral kaon decays to three pions occur in CP odd (i.e. -1) eigenstates |
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* If CP were conserved in the Weak decays of neutral kaons, would expect decays
to pions to occur from states of definite CP (i.e. the CP eigenstates K , K5)

—) A
K1) = 5 (IK%) —[K")) | CPIKi) = +|K1) | |Ki — 7%

Ka) = (K% +[K") | CPIKy) = ~|K2) | | K2 — nnm| [cPoDD

* Expect lifetimes of CP eigenstates to be very different
« For two pion decay energy available: mg —2my; ~ 220MeV
« For three pion decay energy available: mg — 3m; ~ 80MeV

* Expect decays to two pions to be more rapid than decays to three pions due to
increased phase space

* This is exactly what is observed: a short-lived state “K-short” which decays to
(mainly) to two pions and a long-lived state “K-long” which decays to three pions

|Ks) = |Kp) = %(U(O) — |FO>) with decays: Kg— 1

K1) = 1Ko} = (K% +[K")  with decays: K — o
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Neutral Kaon Decays to pions

*Consider the decays of a beam of KY
*The decays to pions occur in states of definite CP

*IfCPis conserved in the decay, need to
express KV in terms of Ks and K}

|Ko) = 5 (IKs) + [KL))

*Hence from the point of view of decays to pions, a KY beam is a linear
combination of CP eigenstates:
a rapidly decaying CP-even component and a long-lived CP-odd component
*Therefore, expect to see predominantly two-pion decays near start of beam
and predominantly three pion decays further downstream
N

SN

Ks—1mn

At large distance left
with pure K, beam

K, — nnrw /

AN
7

Distance from K° production

Log Intensity
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*To see how this works algebraically:
*Suppose at time t=0 make a beam of pure KO

ve=0)=p) i)

*Put in the time dependence of wave-function Ks mass: ms .
|Ks(1)) = |K5>e_imSt_FS’/2 Ks decay rate: I'g = 1/1’5

NOTE the term e_FS’/Z ensures the Kg probability density decays exponentially
e |ys® = (Ks()|Ks(1)) = e 15" = e1/5s

*Hence wave-function evolves as

W) = | IKs)e st e mt

‘Writing  B5(t) = e~ (msT TS)‘ and 9L(f)=e_(imL+F2_L)’
W) = 5(6s(r)|Ks) +6L(r)|Kz))

*The decay rate to two pions for a state which was produced as KO:
I Ko — ) o< [(Kg 2 Os(t 2 _ o Tst — p—t/7s
(Kilo ylt

which is as anticipated, i.e. decays of the short lifetime component Kg

440 / 557




Neutral Kaon Decays to Leptons

*Neutral kaons can also decay to leptons — d nt
K —ate v K —atuv d U
e u u —0
K% — netv, K'—7m utv, S V.
*Note: the final states are not CP eigenstates 0
which is why we express these decays in terms of KO, K e

* Neutral kaons propagate as combined eigenstates of weak + strong
interaction i.e. the Kg, K . The main decay modes/branching fractions are:

Ks — n'm BR = 69.2% K, — #ntn n® BR=12.6%
R BR =30.7% — 1°2°72°  BR=19.6%
— 7w eV, BR=0.03% — 7w etv, BR=202%
— 7m'e V., BR=0.03% — wte™v, BR=202%
— m p'vy BR=0.02% — s ptv, BR=135%
— 7w Vy BR=0.02% — a'u v, BR=135%

*Leptonic decays are more likely for the K-long because the three pion decay
modes have a lower decay rate than the two pion modes of the K-short
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Strangeness Oscillations (neglecting CP violation)

*The “semi-leptonic” decay rate to et V. occurs from the KO state. Hence
to calculate the expected decay rate, need to know the KO component of the
wave-function. For example, for a beam which was initially K° we have (1)

W) = 5(6s(r)|Ks) +6L(r)|Kz))
‘Writing Kg, K;, in terms of KO,KO

() = 4 [B5() (1K) — [R) + 6,.(1) (1K) + &)

1 (654 6,)[K%) + 1 (6, — 65)|K")

Because 0Os(7) # O (t) a state that was initiallya K? evolves
with time into a mixture of K0 and ¥~ - “strangeness oscillations”

The K° intensity (i.e. KO fraction):
T(KLo — K%)= [(K°|w(1))|> = ;|65 + 6L (2)

similarly  T(K2oy —K°) = (K |y (1)) = 1|65 — 6. (3)
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*Using the identity |z1 :i:Z2|2 = |Z1 |2 + |Z2|2 i2§R(ZlZ§)
O+ 6, > = |e—(ims+%Fs)t ie*(imL+%FL)t|2

-Tr -r —imet —ir imrt — AT
e St—{—e L’j:ZEK{e ! Ste 2 St.e : Lte 2 Lt}
_ — _ Lty —ilme—

gt I'rt 9) 5 tg{{ i(mg mL)t}

_ _ _ Lty
e ISt eIt 40677  cos (mg — my )t

_ _ _ Tl
= e st Lo Tl L2 cos Amt

*Oscillations between neutral kaon states with frequency given by the
mass splitting Am = m(KL) _ m(KS)
*Reminiscent of neutrino oscillations ! Only this time we have decaying states.
*Using equations (2) and (3):
1
(K2, — K% =- [e_rst +e Tt 2 (TsHIL)t/2 cosAmt] (4)

T(KLy— EO) =

Al— A

[e—l"st +eTut e TstIL)t/2 g Amt] ()
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- Experimentally we find:  |7(Kg5) =0.9 x 107105 | [7(K) =0.5x 10775

and  [Am = (3.506 +0.006) x 10~5GeV

i.e. the K-long mass is greater than the K-short by 1 part in 1016
* The mass difference corresponds to an oscillation period of

2rh
S x~12x%x107?
Am 5

osc —

* The oscillation period is relatively long compared to the Ks lifetime and
consequently, do not observe very pronounced oscillations

1 T T

(K2, — K%)= % [e’rs’ +e T 42 TsHTL)/2 oo Amt]

08 1
(K., —K') = 1 [e’rs’ +e T 0 (TstlL)e/2 cosAmt]

g
[

Intensity

1 After a few Kg lifetimes, left Wit|’_l a pure K
] beam which is half K° and half K°

N
'S

02
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* Strangeness oscillations can be studied by looking at semi-leptonic decays

d - d N
— T
d u d u
0 _ -0
K S e+ K S Ve
Ve e

* The charge of the observed pion (or lepton) tags the decay as from either a EO
or KO because

0 — =0 _

K’ —rmetv, K +rne'v, NOT ALLOWED

—0 g— but 0 —

K —nte v, KV A mwte Vv, | (seeQuestion 23)
*So for an initial K° beam, observe the decays to both charge combinations:

0 0 -0

Ki—o—K Ktozo —K
I_} ﬂ_e+Ve I—P T[+e_Ve

which provides a way of measuring strangeness oscillations
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The CPLEAR Experiment

*CERN : 1990-1996
*Used a low energy anti-proton beam
*Neutral kaons produced in reactions

pp — K ntK°
pp— Kt K’ (Question 24)
 Low energy, so particles produced

almost at rest

* Observe production process and
decay in the same detector

» Charge of K*7T inthe production

g - - s process tags the initial neutral kaon

s T as either K0or EO

* Charge of decay products tags the decay as either as being either KO or EO

* Provides a direct probe of strangeness oscillations
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An example of a CPLEAR event K~ (su)
K(ds)
K~ K (sd)
+ Production:
T - .
pp —|K K

*For each event know initial wave-function,

7'(;_'_ e.g. here: |y(r =0)) = |K°)
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*Can measure decay rates as a function of time for all combinations:
eg. RT = F(KtO:O — T etV,) o« F(KtO:O — KO)
*From equations (4), (5) and similar relations:
Ri=T(K )y —netv,) = N,wvj—l [eFS’ +e Tt 4 2o (s tTL)t/2 cosAmt]
R_= F(KtO:O — e V,) = Nyeyt |e 15" 411t — 2o~ TsHTL)1/2 o5 At

R_= F(E?ZO — e V) = Nrevy [e_rs’ +e Tt 4 2o (TsHL)t/2 cosAmt]

— —0 o r . o ]

R, =T(K,_y—netv,)= NneV}T e Ust 7Tt — 2o~ (TsHTL)1/2 0o At
where Nzev is some overall normalisation factor

‘Express measurements as an “asymmetry” to remove dependence on Ny

(Ry +R_) —(R_+Ry)

(Rt +R-)+(R-+Ry)

448 / 557




o Tagged mixed

o Tagged unmixed

— Fit mixed

Fit unmixed

Using the above expressions for R etc., obtain ]
200

candidates / (0.1 ps)

2~ TsHIL/2 co5 Amr
e—rsl‘ + e—FLt
A. Angelopoulos et al., Eur. Phys. J. C22 (2001) 55

gé 0.7

0.6

AAm -

2 3 4
decay time [ps]

(See also B%-B?,

bar mixing plots in

arXiv:1304.4741)

SF—

05 F

0.4 [

0.5 | * Points show the data

* The line shows the theoretical
prediction for the value of Am
most consistent with the CPLEAR
data:

1l{\)leutrcxl—kcxon1c§,e<:c1y time [t,j(J Am = 3.485 x 10—15 GeV

*The sign of Am is not determined here but is known from other experiments
* When the CPLEAR results are combined with experiments at FermiLab obtain:

Am = m(Kr) —m(Ks) = (3.50640.006) x 10~1° GeV

02 F

01 F
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CP Violation in the Kaon System

* So far we have ignored CP violation in the neutral kaon system
* Identified the K-short as the CP-even state and the K-long as the CP-odd state

[Ks) = K1) = S5 (IK?) — K”)  withdecays: Ks — 7T
|KL> = |K2> = \%(|K0> + |E0>) with decays: K; — T

* At a long distance from the production point a beam of neutral kaons will
be 100% K-long (the K-short component will have decayed away). Hence,
if CP is conserved, would expect to see only three-pion decays.

* In 1964 Fitch & Cronin (joint Nobel prize) observed 45 K; — ntn decays
in a sample of 22700 kaon decays a long distance from the production point

m— Weak interactions violate CP

*CP is violated in hadronic weak interactions, but only at the level of 2 parts in 1000

atnn’ BR=12.6% CP=-1
707970 BR =19.6% CP=-1
atr BR = 0.20% CP=+1
7070 BR = 0.08% CP=+1

K;

K. to pion BRs:

L
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* Two possible explanations of CP violation in the kaon system:
i) The Kg and K, do not correspond exactly to the CP eigenstates K; and K,

1 1
KJ) = B —
5 = e NI
with |&€] ~2x 1073
*In this case the observation of K; — 7T is accounted for by:
1
[IK2) + €| K1)]

KL) = ——=
V1+lel L zn [cP=+1]
AT [CP = 1

K1) +€lK2)] | | 1K) = [1K2) + €|Ki)]

ii) and/or CP is violated in the decay

K1) = |K2)
L) AT Parameterised by 8/
e

* Experimentally both known to contribute to the mechanism for CP violation in the

kaon system but i) dominates: g//g = (1,7:}:0.3) x 1073 { %33 ((E;?n'}‘ﬂab)

* The dominant mechanism is discussed in non-examinable Appendix Il
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CP Violation in Semi-leptonic decays

* If observe a neutral kaon beam a long time after production (i.e. a large distances)
it will consist of a pure K. component

Ki) = 5 s «a +s)|1<ﬁ(1 _8)|E|O_>], .
T etv, ¢

* Decaysto 7T et V., must come from the KO component, and decays to
7T+€_Ve must come fromthe K component

T(KL — e V,) o |(RKL) P o< |1 — €2 m 1 — 2R {e}
(K, — et v,) o< (KK |2 o< |1 +e|> ~ 1 +2%R{e}
* Results in a small difference in decay rates: the decay to 77:_e+ve is

0.7 % more likely than the decay to 17 ¢~V,

*This difference has been observed and thus provides the first direct
evidence for an absolute difference between matter and anti-matter.

* It also provides an unambiguous definition of matter which could, for example,
be transmitted to aliens in a distant galaxy

“The electrons in our atoms have the same charge as those emitted
least often in the decays of the long-lived neutral kaon”
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CP Violation and the CKM Matrix

* How can we explain F(E?ZO — K% £T(KY, — EO) in terms of the CKM matrix ?

* Consider the box diagrams responsible for mixing, i.e.

9 q
A A dT> - .
K° @y Ad R KO §W+ §W_ a ©
S _« hannl—<d a / <
w+ |

where q={u,c,t}, ¢ ={uc,}

* Have to sum over all possible quark exchanges in the box. For simplicity
consider just one diagram

Ve Vg
4N
K cy At R My AuVeaViViaVis
S d
S < hnl—« N A constant related
V% Via to integrating over
virtual momenta
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* Compare the equivalent box diagrams for K0 — fo and EO — KO

Vea Vf‘; Ves tti
g YN § > VW ES—

K’ cy At e K cy At KO
S d d S
—<— VN —<—VW—<—

Vcs ‘/td cd ‘/ts
Mfi o< ActVcdVg;‘/tafvt)sk M,l' o< Agt c*dVCS tZVts = M;;,'

* Can be shown that CP violation is driven by terms like  Mj; —M;El. =23{My;}

* Hence the rates can only be different if the CKM matrix has imaginary component
€] o< 3I{Mji}

* A more formal derivation is given in Thomson’s “Modern Particle Physics”, chap 14.

* In the kaon system we can show (question 25)

€] o< Aur-3{VuaViisViaVis } +Act- S{VeaViViaVis t + A S{ViaVisVia Vi }

| Shows that CP violation is related to the imaginary parts of the CKM matrix |
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Summary

* The weak interactions of quarks are described by the CKM matrix

* Similar structure to the lepton sector, although unlike the PMNS matrix,
the CKM matrix is nearly diagonal

* CP violation enters through via a complex phase in the CKM matrix

* A great deal of experimental evidence for CP violation in the weak
interactions of quarks

* CP violation is needed to explain matter — anti-matter asymmetry in the
Universe

* HOWEVER, CP violation in the SM is not sufficient to explain
the matter — anti-matter asymmetry. There is probably another mechanism.
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Appendix I: Determination of the CKM Matrix

Non-examinable

*The experimental determination of the CKM matrix elements comes mainly from
measurements of leptonic decays (the leptonic part is well understood).
« It is easy to produce/observe meson decays, however theoretical uncertainties
associated with the decays of bound states often limits the precision
» Contrast this with the measurements of the PMNS matrix, where there are few
theoretical uncertainties and the experimental difficulties in dealing with neutrinos
limits the precision.

X ..
(1) |Vud| from nuclear beta decay ( - )
u
v _ Super-allowed 0*—0* beta decays are
d ud Ve relatively free from theoretical uncertainties
I o< |Vgl?
o

V| = 0.97377 +0.00027 (~ cos )
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(2] |Vus| from semi-leptonic kaon decays ( x )

u
u u w I o |VMS|2
K~ s Vus -
|Vus| = 0.2257 £0.0021 (= sin6,)
-
© ||V 4l | |from neutrino scattering | v, +N — utu~X (X )

Look for opposite charge di-muon events in Vi scattering from production and
decay ofa D" (cd) meson 5
Rate o< [Vq|[*Br(Dt — Xutvy,)

7

v opposite sign
. T pu pair

~—

Measured in various
collider experiments

DT e = |[Vea| = 0.230£0.011
\5
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(4] |Vcs| from semi-leptonic charmed meson decays ( y )
D+ *Precision limited by theoretical uncertainties
v |Ves| =0.95740.017 £0.093
H_J
+ | experimental error | | theory uncertainty |
© |[|V.,| | |from semi-leptonic B hadron decays ( - )
eg. 2 o
B C F o< |Vcb |2
b Vep v
| V| = 0.0416 £ 0.0006
-
® ||Vl | | from semi-leptonic B hadron decays L
oq. - : c
: i Foc Vi
17} o<
B b Vb — ub

V.| = 0.0043 £0.0003
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Appendix Il: Particle — Anti-Particle Mixing

Non-examinable
*The wave-function for a single particle with lifetime 7 = l/r evolves with time as:

W(t) — Ne T1/2p—iMt
which gives the appropriate exponential decay of
(W) w(t)) = (w(0)|y(0))e /"
*The wave-function satisfies the time-dependent wavg equation:
H|y(t)) =|(M — 3iT)|y(t)) =iz ly()) (A1)

For a bound state suchasa K9 the mass term mcludes the “mass” from
the weak interaction “potential” Hye,x

KO\ Hyearc| )2
M = mK0+<K |Hweak|K0 +Z| | weak|]>| «—| Sum over

intermediate

myo — E; states j
d > A d The third term is the 2"? order
KO cvY At KO | term in the perturbation expansion
s 5 corresponding to box diagrams
—<—VWVWW——=<= resultingin g0 _, g0
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* The total decay rate is the sum over all possible decays KY — f

I'= 27‘[2 |{ f|Hweak|KO |2pF <\—| Density of final states |

* Because there are also dlagrams which allow g0 ., K mixing need to
consider the time evolution of a mixed stated

w(t) =a(t)K° +b(1)K’ (A2)

* The time dependent wave-equation of (A1) becomes

Mi =3l Miz =il ) (1K0(0)) KO0)
(i i) (o) - ()

the diagonal terms are as before, and the off-diagonal terms are due to mixing.

A KO|Ayeax | KO) [
Mll :mK0+<K0|Hweak|K0>+Z ‘( | wea | >‘
n mKO_En

oA e A 50 4 VW s
M12=Z <K |Hweak|J> <J|Hweak|K > KO c Vv At . EO
j mgo — E; s _\d
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*The off-diagonal decay terms include the effects of interference between
decays to a common final state

N " ~ -0
1—‘12 - 27rz<f|Hweak|K0> <f|Hweak|K >pF
f

In terms of the time dependent coefficients for the kaon states, (A3) becomes

e ()30

where the Hamiltonian can be written:
. My My, 1 (T Iz
H=M_ill= < !
2 My My 2\Ip Iy

*Both the mass and decay matrices represent observable quantities and are
Hermitian

My =My, My =M, Mp=M;
I =107, Tn=I%, I'p=I%

*Furthermore, if CPT is conserved then the masses and decay rates of the EO
and KYare identical:

My =My=M, TIy=In=r
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*Hence the time evolution of the system can be written:

M—Lr Mp—1iiTp (a .0 (a
G-, ") 6) =5 G)) e
*To solve the coupled differential equations for a(t) and b(t), first find the

eigenstates of the Hamiltonian (the K_ and Ks) and then transform into
this basis. The eigenvalue equation is:

M—%il—‘ Mlz—%l'rlz X1 :A X1 (A5)
=2l M—iil X X
*Which has non-trivial solutions for
H—AI| =0

= (M — 3T —21)*— (M}, — 5iT%,) (M2 — 3iT12) =0
with eigenvalues

A =M~ L0\ (M7, — §iT}) (M1, — §iT'1o)

*The eigenstates can be obtained by substituting back into (A5)
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(M — 3iD)x; 4 (Mia — 3iT12) = (M — il £ \/(Mikz — 300) (M2 — 5iT12))x:

X M, — LTy
= 2 _ 4 12 % 12
X1 M, —511“12
* Define n— Mikz _ %’TTz
M, — 3iTyn
* Hence the normalised eigenstates are
1 1 1 0 -0
)= () = s (K 2K
VIHPAET) /TP

* Note, in the limit where Mi,,I'|» are real, the eigenstates correspond to the
CP eigenstates K; and K,. Hence we can identify the general eigenstates as
as the long and short lived neutral kaons:

_ 1 0 7V _ 1 0\ _ (@0
K1) = \/W(IK )+n[K)) |Ks>—7\/m(|l<> niK"))
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* Substituting these states back into (A2):
_O
w(t) = a()lK°)+b()K")

= /1+[nf? [@(KL‘FKS)‘*‘E;(—;)(KL_KS)}

V14

= 5 la(n)Ki +as(t)Ks]
with T S |
b(t) b(t)
apt)=alt) + —: t)=alt)——=:
______ Wm0y mma
* Now consider the time evolution of ar ()
dou_ 20 iab
“or ~'ar "o

* Which can be evaluated using (A4) for the time evolution of a(t) and b(t):
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da . ) 1 N - )
G = (M3 at (M= 3 )b] + o (M3 = 31T} )a+ (M — iD)b|

. b : o, -
= (M—%lr) (a—l— H) +(M12—%lrlz)b+ H(Mlz—%lrlz)a

= (M—3%iD)ap+ (M — 5il )b+ <\/(Mf2 — 3l (M — %iF12)> a
. « _— . b
= (M—%zl")a“t (\/(Mlz—%lrlz)(Mlz—%lF12)> (a—l— ﬁ)

= M-1iD)a+ <\/(MT2 —3il,) (M2 — %irlz)> ar

= (my,—3il))ar

aaL

. . 1~

* Hence: ZW = (mL — QIFL)(IL
with my = M+9t{\/(Mf2 — 3, (M — T )

and I = r—23{\/(M;FZ—%irjz)(Mn—%iru)}
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* Following the same procedure obtain:

.aaS 1
=== (ms — 51l g)as

with mg = M—EK{\/(ME—%iFTz)(Mlz—%iFlz)}

and Is = T'+23 {\/(Mfz - %irjz)(Mu - %’Tu)}

* In matrix notation we have

ML_%iFL 0 ay, =ii ajy,
0  Ms—3il ) \as ot \as

* Solving we obtain

ar (t) o e—imLz—FLt/z

as (l.) o e—imSt—FSt/Z

* Hence in terms of the K| and Kg basis the states propagate as independent
particles with definite masses and lifetimes (the mass eigenstates). The time
evolution of the neutral kaon system can be written

|V/(t)> :ALe—imLz—FLt/2|KL> +Ase—imst—FSt/2|KS>

where A, and Ag are constants
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Appendix Ill: CP Violation : ®t decays

Non-examinable

* Consider the development of the KO — EO system now including CP violation
* Repeat previous derivation using

1 1
Ks) = \/TW [|K1) + €|K2)] KL) = TISIZ [|K2) +€|Ky)]

*Writing the CP eigenstates in terms of KO EO

’ L> \/—m[ +£ ‘KO> (]—g)lfo>:|
IKS> \/—m[ + € |KO> (1_8)|E0>j|

-Invertmg these expressions obtain

*Hence a state that was produced as a KO evolves with time as:

[14]er 1
ly(1)) = 2 1te

, 1
where as before 0g(t) = e_(’m5+7)f and O(t) = e~ (imL+)t

(6L(1)|KL) + 65(1)[Ks))
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*If we are considering the decay rate to nn need to express the wave-function
in terms of the CP eigenstates (remember we are neglecting CP violation
in the decay)

lw(@) = \f1+£ (IK2) +€|K1))0(t) + (|K1) + €[K2)) 65(7)]

- %m[(es+eeL)|K1>+(9L+86s)le>]

*Two pion decays occur with CP = +1 and therefore arise from decay of the
CP = +1 kaon eigenstate, i.e. K|

| CP Eigenstates

2
Ky — ) < (K WO = 5 | | 1o+ eouP
*Since |8|<<1
1 ? 1 1
|1+e (I1+e*)(14+¢) 142R{e} (e}

*Now evaluate the |9§ + 89L|2 term again using
121 £ 2212 = |21)? + |22|? £2R(z2123)
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|GS + 89L|2 — |efimst7r73t u ge*imLt*FTLtF
e—FSt + |8|26—FLZ + zm{e—imst—FTSt.g*e—HmLt—FTLt}
‘Writing € = |8|ei¢
|GS + 89L|2 — ¢ Tst + |8|2e—FLt + 2|8|e—(FS+FL)I/2m{ei(mL—mS)t—¢}
= eI 4 |e|Pe T 4 2le|e” TsHLI2 cos(Am.t — @)

*Putting this together we obtain:

1
K"y — nm) = 5(1 —2R{€e})Nrr [{rst + |8|2e;FL’ —|—2|£|e’(FS+FL)’/2Rcos(Am.t - ¢)}
/ A\ \
Short lifetime CP violating long | Interference term |
component lifetime component
Ks_’TUC K —nr

In exactly the same manner obtain for a beam which was produced as EO

F(f?:()—um) = %(I—FZSK{S})NHW e ISt 4 |g|?e T —\2|8|e7(r5+rl)’/2cos(Am.t—q))]

A\
| Interference term changes sign |
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* At large proper times only the long lifetime component remains :
1
(K%, —nn) — 5@ —2R{e})Nyz.|e[>e TV

i.e. CP violating K; — 7w decays

* Since CPLEAR can identify wheth_e(l)' a K9 or EO was produced, able to
measure (K, — nr) and I['(K,_,— 77)

Prediction with CP violation

n =
‘ 3 § M CPLEAR data
Ky — G107k,
o ] F ntn
[ -
€108 S
= E E .
o 10 4 2 F o)
E —0 . S
> L = e 1550
g, Kico — nm 10%¢ = tagged initial K
8 ] r
g I 104k Y /
-4 " E R
10 - E ol
K, —rnrn i /' s
s 102 e ReSeaTToeT:
e, t tagged initial KO ‘4 fﬁwff i t
K. _o,— 1w AN .
6 1 1 1 1 L | 1 1 1 L 1 L L 1 1 1 1 L
® 0755 5 75 10 125 15 175 20 225 25 2 4 & 8 10 12 14 16 18 20
t/10"s Neutral-kaon decay time [Tg]

+ interference term |
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*The CPLEAR data shown previously can be used to measure & = |8|ei¢
—0
‘Define the asymmetry: ~,  _ [(K_y — 7m) —[(K)y — 77)
(K~ — am) + (KL, — 77)

*Using expressions on page 443
_ AR{e} [e7Ts! +|g]2e7 2] — 4|e|e~TLtTs)/2 cos(Am.t — @)

Ay
* 2[e"Tst +|e|2e~Tt] — 8R{e}|e|e~ TtTs)/2 cos(Am.t — ¢)
o< |g|R{e} i.e. two small quantities and
can safely be neglected
o 2R [ e ] —2lefem T2 cos(Am.t — )
4+ ~

e Tsl + [g|2e Tt

_o%{e) - 2|eleTLtTs)/2 cos(Am.t — @)
e st + |£|26—FLt

_o%{e} 2|eleTs=TL)/2 cos(Am.t — @)
1+ ‘g|ze(rs—FL)f
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A.Apostolakis et al., Eur. Phys. J. C18 (2000) 41
0.5
04
03"

exp

Asymmetry A2

Best fit to the data:

02 F
0.1F

le| = (2.264+0.035) x 1073
¢ = (43.19+£0.73)°

1F
-01f
-02f
'0.3E
-o.4§
“0.5E. . | | | | | | .
2 4 6 8 10 12 14 16 18 20
Neutral-kaon decay time [1]
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Appendix IV: CP Violation via Mixing

Non-examinable

* A full description of the SM origin of CP violation in the kaon system is beyond

the level of this course, nevertheless, the relation to the box diagrams is
illustrated below

* The K-long and K-short wave-functions depend on 1]

_ ! 0 s _ 0y _ (70

* 1 -

My, — 5,
1.

My, —3il12

*x If M;{,=Mp; I],=1I12 thenthe K-long and K-short correspond to
the CP eigenstates K, and K,

*CP violation is therefore associated with imaginary off-diagonal mass
and decay elements for the neutral kaon system

*Experimentally, CP violation is small and n=1

. 1— 1—
Define: &€ = ﬁ —= n= H__g

473 /557

«Consider the mixing term M12 which arises from the sum over all possible
intermediate states in the mixing box diagrams

e.g. Ve Vis
AN B
K ey At _ K Mo=AdVaViViVa+..
S <« hn—e
|7 Vid

In the Standard Model, CP violation is associated

with the imaginary components of the CKM matrix, and it can be shown
that mixing leads to CP violation with

€] o< 3{M12}

*The differences in masses of the mass eigenstates can be shown to be:
G2
— ~ ~F (2 * *
AmK =mg; — Mg, ~ Z, 371'2 meK|quVquqdeq/s|mqmq/
9.9

where ¢ and 6]/ are the quarks in the loops and fx is a constant
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*In terms of the small parameter €

1 —0

Ky :4[11% K+ (1-¢)K ]

i) = 3 1+ OO +(1-9)K)

1 —0

Ky :7[1—8 K +(14+¢€)|K }

Ks) = 3 (10K + (1 +o)R)
* If epsilon is non-zero we have CP violation in the neutral kaon system
Writing Mikz_—m: z and z=ae"

M, —%irlz
gives

* From which we can find an expression for &

l—e® 1—¢" 2-cos¢p ¢

Cl4e i 14e®  24cosdp 2
€| = |tan §|

*

E.E

* Experimentally we know € is small, hence ¢ is small
e~ o= Lag 1 3{M, — 3T}, }

~ -0 =— I —
272 2 My — i

12|
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Appendix V: Time Reversal Violation

*Previously, equations (4) and (5), obtained expressions for strangeness
oscillations in the absence of CP violation, e.g.

1
(K, — K% = 1 [e_FS’ +e Tt 4 0~ (UsHTL)t/2 cosAmt}

*This analysis can be extended to include the effects of CP violation to give the
following rates (see question 24):

I(K%y— K% o 1 [e_rs’ + e Tl 4 2o~ (Ts+lL)t/2 cosAmt]

F(K?:O — EO) o [e‘rst + e 11t 4 2o~ (TsHTL)/2 ¢og Amt]

I'(K?

_0
t:O—>K)oc

* Including the effects of CP violation find that

F(f?:() — K9) +# I"(KtO:O — EO) | Violation of time reversal symmetry ! |

* No surprise, as CPT is conserved, CP violation implies T violation
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Particle Physics

Dr Lester

Handout 13 : Electroweak Unification and the
W and Z Bosons
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Boson Polarization States

* In this handout we are going to consider the decays of W and Z bosons, for
this we will need to consider the polarization. Here simply quote results although
the justification was given in Appendices A1-A4 of Handout 8 [(pages 290-298)|
* Areal (i.e. not virtual) massless spin-1 boson can exist in two transverse
polarization states, a massive spin-1 boson also can be longitudinally polarized

* Boson wave-functions are written in terms of the polarization four-vector &

BHY — gue—ip.x = 8N6i(ﬁ-f_Et)

* For a spin-1 boson travelling along the z-axis, the polarization four vectors are:

1 1 f 1
p v
e =—(0,1,-i,0); & =—(p,,0,0,E) &' =——(0,1,i,0
75 i o= L (e00E) e == 5010
........... < >» Z 9 >» — R S Z
S, =—1 S.=0 S, =+1
transverse longitudinal transverse

Longitudinal polarization isn’t present for on-shell massless particles, the photon
can exist in two helicity states 4 = +1 (LH and RH circularly polarized light)
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W-Boson Decay

* To calculate the W-Boson decay rate first consider W~ — ¢7V,

* i : : .
Want matrix element for Incoming W-boson : £, (Pl)

D1 ps Ve Out-going electron : %(p3)
W 1 Out-going V, : v(p4)1 |
P3N Vertex factor : —ig—\/vg 5}/”(1 — )/5)
=My = &a(pr)alps) 2P0 =) e

= M= %eu<p1>u<p3>w%<1 — 7 )v(pa)

* This can be written in terms of the four-vector scalar product of the W-boson
polarization & (pl) and the weak charged current j“

Mﬂ:%eu<p1>.j“ with | j* =7(p3) P L (1— 7)) v(pa)
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W-Decay : The Lepton Current

* First consider the lepton current j* = ﬁ(p3)}/”%(l - );)v(p4)
* Work in Centre-of-Mass frame
pPL= (MW,0,0,0);

o
W/ p3=(E,Esin6,0,Ecos9)
o e > Z ps=(E,—Esin0,0,—Ecos6)
B / with E=_"%
Ve 2

* In the ultra-relativistic limit only LH particles and RH anti-particles participate
in the weak interaction so

teraction so N
J=1u(p3) P 5(1 =7 )v(pa) =1, (p3)¥*vi(pa)

Note: 5(1—7°)v(pa) =vi(ps)  T(ps)7vi(ps) S | (p3)v*vi(ps)
t
Chiral projection operator, “Helicity conservation”, e.g.

e.g. see [BI501 or ([B318] see (P51} or (B39
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*We have already calculated the current e

J* =1 (p3)7v*vi(p4) - /“i(m)
when considering ete™ — ,u+,u_ ° 0 Sz
-From page B3 we have for L g /

jﬁ =2E(0,—cos0,—i,sinO) v, vi(p4)

*For the charged current weak Interaction we only have to consider this single
combination of helicities

= (p3) P L(1 =P )v(ps) =, (p3)7*v; (ps) = 2E(0, — cos 8, —i,sin )

and the three possible W-Boson polarization states:

1 1 1
M C - It :
e =—(0,1,-40); &=—(p;,0,0,E) & =—-—=(0,1,i,0
7t )i & =—(p: ) & =5l )
w- W= W=
........... <> >» Z — >
S, =—1 S, =+1

S, =
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* For a W-boson at rest these become:
1 1
u : Y. u .
e =—(0,1,—-4,0); & =(0,0,0,1) & =-——(0,1,i,0

* Can now calculate the matrix element for the different polarization states

m .
My = g_\/“%gu(p])j“ with GjH = ZTW(O,—COSG,—i,sm 0)
. | Decay at rest : E; = E, = my/2 |
* giving
M_ = TW%(O,], i,0).my (0,—cos 0, —i,sin0) = %gwmw(l +cos9)

M; = %(0,0,0 1).my (0,—cosO,—i,sin0) = —\%gwmwsine
M, = —5—“37(0,1,1,0) mw (0, —cos0,—i,sin0) = T gwmy (1 —cosH)
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* The angular dlstrlbutlons can be understood in terms of the spln of the partlcles

* The differential decay rate (5_7) can be found using:

ar_ [p7] MP
dQ 327r2m
where p* is the C.0.M momentum of the final state particles, here p* = mTW
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* Hence for the three different polarisations we obtain:
ar-  gim, 1 dry ngW 1., dry g%vmw 1
— = 1 0 0 — 1-— 0
0 = eam g Teos)’ g =g 3 0 = e gl oo’

* Integrating over all angles using

4
/}1(1 +cos8)>d¢dcos § = / 1sin* 8d¢dcos 6 = ?TC

* Gives 2
r —r,=r, =52
48T

* The total W-decay rate is independent of polarization; this has to be the case
as the decay rate cannot depend on the arbitrary definition of the z-axis

* For a sample of unpolarized W boson each polarization state is equally likely,
for the average matrix element sum over all possible matrix elements and

average over the three initial polarization statV
2

(IMsl*) = "S(M_P+ ML + M%)
= Lejmiy [1(14cos8) + 1sin® 8+ 1(1—cosB)?]
1 2 2
= 38wy
* For a sample of unpolarized W-bosons, the decay is isotropic (as expected)
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* For this isotropic decay

dr |p*| > 4r|p”| >
S __ Pl g Fr=_—""2"1m
dQ 32n2mgv<| = 327r2m%V<| %
2
= |T(W~ = e v) = W
( e ) 481

* The calculation for the other decay modes (neglecting final state particle masses)
is same. For quarks need to account for colour and CKM matrix. No decays to
top — the top mass (175 GeV) is greater than the W-boson mass (80 GeV)

W™ —eV, W —du|x3|Vul?| W —de |x3|Vy]?
W™ —pu vy W —si [x3]V,] W~ —sc |x3|Vel|?
W= —1v, W —bu [x3|Vy| W~ — bt |x3|Vep|?
* Unitarity of CKM matrix gives, e.g. |Vig|* + [Vis|* + |Vin|? = 1
* Hence BR(W — qq') = 6BR(W — evV)
and thus the total decay rate :

3g2 my Experiment: 2.14£0.04 GeV
I'v =9T'w_.ey = WV _2.07GeV (our calculation neglected a 3% QCD
167 correction to decays to quarks )
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FromWtoZ

* The Wt bosons carry the EM charge - suggestive Weak are EM forces are related.
* W bosons can be produced in e*e- annihilation 9 2

T IRESRINERE
F 5(Without Z°)

* With just these two diagrams there is a problem:

the cross section increases with C.0.M energy s b
and at some point violates QM unitarity § E
0 i T I AR =
UNITARITY VIOLATION: when QM calculation gives larger 150 160 170 180 190 200 210
flux of W bosons than incoming flux of electrons/positrons \/E/GGV

* Problem can be “fixed” by introducing a new boson, the Z. The new diagram
interferes negatively with the above two diagrams fixing the unitarity problem

et wt et 7 (AR A e AVAVAVAVE /A
e W e W~ e —>—A AN

\Myww + Mzww +Myww|?> < |[Myww + Myww|?
* Only works if Z, y, W couplings are related: need ELECTROWEAK UNIFICATION
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SU(2)_: The Weak Interaction

* The Weak Interaction arises from SU(2) local phase transformations

Y — ' = el
where the G are the generators of the SU(2) symmetry, i.e the three Pauli

in matrices
P — |3Gauge Bosons | Wl , W2 , W3

* The wave-functions have two components which, in analogy with isospin,
are represented by “weak isospin”

* The fermions are placed in isospin doublets and the local phase transformation

corresponds to / .
p (e7) = (*) =5 (%)
e e e

* Weak Interaction only couples to LH particles/RH anti-particles, hence only
place LH particles/RH anti-particles in weak isospin doublets: Iy = %
RH particles/LH anti-particles placed in weak isospin singlets: [ =0

Weak Isospin

o1 (Ve vy Vo u c 1\ ——hv=+3
W — § — ) — ’ — 9 d/ ’ / 9 b/ 3 1
¢ ) \H Jp \T /L S/L Iy =—3
Iy =0 (Ve)R» (3_)R; ---(M)Rp (d)R7 Note RH/LH refer to chiral state;"

487 / 557

V
* For simplicity only consider XL = ( E>L

*The gauge symmetry specifies the form of the interaction: one term for each
of the 3 generators of SU(2) - [note: here include interaction strength in current]

1 2 1 2 ~ 1 3 ~ 1
Ju=8wXLY' 30 Ju=gwALY 20 = 8wV 205X
*The charged current W*/W- interaction enters as a linear combinations of W,;, W,

W = (W Fiwy)

* The Wt interaction terms

=8 Fin) = a0 s(on Fio)
* Express in terms of the weak isospin ladder operators G4 = %(61 + iGz)

= é\'%xL}/”G:FxL } Origin of % in Weak CC

W+ ve Ew corresponds to | j = By vro x|

: Bars indicates
JE S o C adjoint spinors
which can be understood in terms of the weak isospin doublet

#=mro n="Fwant (10) (¢),= Sgarv = per 0 -7y
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Ve
: 8w . —
W | e corresponds to | j* = g—vng}/“G+xL
f W ’
u 8w 8w = 01 vy 8w _SW ol
= —ﬂxm“cma = —ﬂ(vL,eL)Y“ (0 0) (6),“ —ﬁvw“eL —\/iw“z(l re

*However have an additional interaction due to W3
W = aul
J3 = 8wA Y3031
expanding this:
) I_ _ 1 0 v ol _
Jlél :gWE(VL;eL)V# (() -1 ) (e) :gW%VLYHVL—gW%eLY“CL
Ly \

Lgw

......................................................................................................

|:> | NEUTRAL CURRENT INTERACTIONS !

489 / 557

Electroweak Unification

*Tempting to identify the W3 asthe Z

*However this is not the case, have two physical neutral spin-1 gauge bosons, ¥, Z
and the W3 is a mixture of the two,

* Equivalently write the photon and Z in terms of the W3 and a new neutral
spin-1 boson the B

*The physical bosons (the Z and photon field, A ) are:
— 3 i
Ap = By cos by + Wy sin Ow Bw is the weak
Zy = —By sinBy + Wﬁ cos By mixing angle
*The new boson is associated with a new gauge symmetry similar to that
of electromagnetism : U(1)y
*The charge of this symmetry is called WEAK HYPERCHARGE Y

_ _ 73 Q is the EM charge of a particle
Y =20 2IW { I is the third comp. of weak isospin

g/Y e *By convention the coupling to the B, is %g’Y
e er: ¥ =2(—1)-2(-3)=—1 vp: Y =-1
3 B | eg:Y=2(-1)-2(0)=-2 VR: Y =0

(this identification of hypercharge in terms of Q and I; makes all of the following work out)

490 / 557




* For this to work the coupling constants of the W3, B, and photon must be related
e.g. consider contributions involving the neutral interactions of electrons:

jfim =YY = eeLQcYuer + e€rQeYuer
w3 _
=y
% . gl_ . g/_ Y g/_ Y
Ju = TIVYe’YHw = 5¢L eL'}/ueL‘l‘ 5 CRYegr YuCr
* The relation Ay = By cos Ow + Wﬁ sinBy is equivalent to requiring

jom = j%cos By + ¥ sin Oy

*Writing this in full:
e QcYuer +eerQeYuer = 38 08 Ow [ELYe, Yuer +ErYep Yuer] — 28w sin Oy [ErYuey]

— €1 Yuer — €ERYuer = 58 cos O [—€rYuer — 2€rVuer] — 38w sin Ow €1 Yuer]

which works if: | e = gw sin By = g’ cos Oy

(i.e. equate coefficients of L and R terms)

* Couplings of electromagnetism, the weak interaction and the interaction of the
U(1)y symmetry are therefore related.

491 /557

The Z Boson

*In this model we can now derive the couplings of the Z Boson

Zy = —Bysin Oy + WS cos By for the electron I3, =1

3

Ji = —5¢ sinOwl[erYe, yuer + CRYep Yuer] — 2gw cos Oy [Er yuer]

*Writing this in terms of wégk isospin anci"é'ha,[ge:

.gW CcOS GW [EL’}/‘LL eL]

| For RH chiral states 1;,=0 |
*Gathering up the terms for LH and RH chiral states:

jﬁ = [g'ISV sin Oy — ' Osin By + gw iy cos Ow | erLyuer — (¢ Osin Oy | ErYuer
Using: e =gwsinBy =g cosBy gives

) (13 — Qsin? Ow )
ji= g~

€L YueL — ,7Qsin29W CrRYuE
$in By LHCL= |8 TG, | RIMeR

Jh = gz(Iyy — Qsin® Oy )[eLyuer] — gzQsin® Oy [ErYuer]

: . 1.4
with [e = gzcos By sin By ie. |8z c0s O
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* Unlike for the Charged Current Weak interaction (W) the Z Boson couples
to both LH and RH chiral components, but not equally...

ji = 8z(Ii — Qsin® Oy )[eLyuer] — g7Qsin® O [ErYuer]
= gzer[eryuer] + gzcr[erYuer)

€ €
CL-8z L CR-87 R
L CRr
Z Z
_ 13 -2 _ - 2
cp = W—QSIH GW CR——QSHI OW
I 1 ')
W3 part of Z couples only to B, part of Z couples equally to
LH components (like W¥) LH and RH components

* Use projection operators to obtain vector and axial vector couplings
— — 1 — — 1
ALYuur =Yy (1 =75)u  HrYuur = U5 (1+95)u

Ji = g7y [ctA(1—9) +ery(1+%))] u
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o= S [(er+cr) + (cr — o))

* Which in terms of V and A components gives: ]ﬁ = gjzﬁ}/“ [CV —cCa )/5] u

with cV:cL—i—cR:I%,—ZQsinZOW CAZCL—CRZI%/

* Hence the vertex factor for the Z boson is:

—igz 5 [ev — cas)

Z
* Using the experimentally determined value of the weak mixing angle: sin® Oy ~ 0.23

Fermion | O L CA
Ve, Vs Ve | 0 | +3 +%
e ..... ”u ..... ﬂ_ ..... _1 ......... _%_% .....
......... u767t +%+% +%
.y _% ; _% i ; ; ,_%
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Z Boson Decay : T,

* In W-boson decay only had to consider one helicity combination of (assuming we
can neglect final state masses: hehcnty states = chiral states)

V 3 """"""""""""""""""""""""""""""""""""

7~ - W-boson couples:
W - to LH particles :
5 - and RH anti-particles
NN\ L. ang R antpartictes

* But Z- boson couples to LH and RH particles (with different strengths)
* Need to consider onIy two helicity (or more correctly chlral) combinations:

This can be seen by considering either of the combinations which give zero

e.g. uRV“(Cv+CA75)VR—M 1+7’5 YO?’“ CV"‘CAYS (1—7’5

:4uT}’Gl— Y (1 =) ey +cap’)v

= u}/“ 1+7)1=7)(cy +caps)v=0
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* In terms of left and right-handed combinations need to calculate:

e [4
z
0 > Z
/ 8z-CL / 87-CR
et et

* For unpolarized Z bosons: (Question 26)

.N
>\
.N

([Myi|*) = 3[2cig5m3 + 2ckgzmy] = 3g5my(cf +cR)
/

| average over polarization |

. 2 2 2, 2
* Using ¢y +cy = 2(cg +c) and dQ 32m2mZ,

2
= |TZz—ete) =L +ch)
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Z Branching Ratios (Question 27)

* (Neglecting fermion masses) obtain the same expression for the other decays
= gz Z¢2 2
LZ—ff)= ( ¢y +¢4)
*Using values for cy and c, on page 471 obtain:
Br(Z—ete )=Br(Z—u u")=Br(Z— 171 )|~ 3.5%
B?‘(Z — V1V1) = B}”(Z — V2V2) = BF(Z — V3V3) ~ 6.9%
Br(Z — dd) = Br(Z — s5) = Br(Z — bb)|~ 15%
Br(Z — un) = Br(Z — cc)|~ 12%
*The Z Boson therefore predominantly decays to hadrons
Br(Z N hadrons) ~ 69% | Mainly due to factor 3 from colour

*Also predict total decay rate (total width)
I'z=Y,11=25GeV

Experiment: 'z =2.49524+0.0023 GeV
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Summary

* The Standard Model interactions are mediated by spin-1 gauge bosons
* The form of the interactions are completely specified by the assuming an
underlying local phase transformation =» GAUGE INVARIANCE

U(1)em —=> QED
SU(2), = Charged Current Weak Interaction + W3

SU(3)coI ':> QCD

* In order to “unify” the electromagnetic and weak interactions, introduced a
new symmetry gauge symmetry : U(1) hypercharge

U(1)y —> |Bu

* The physical Z boson and the photon are mixtures of the neutral W boson
and B determined by the Weak Mixing angle

sinBy ~ 0.23

* Have we really unified the EM and Weak interactions ? Well not really...
Started with two independent theories with coupling constants £w,€
*Ended up with coupling constants which are related but at the cost of

introducing a new parameter in the Standard Model By
Interactions not unified from any higher theoretical principle... but it works!
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Particle Physics

Dr Lester
e T T T T T
i 4
40 F '\ """""""""" o)
g ALEPH / "-& |
= DELPHI H |
=] L3 4
_g 30 OPAL i
! ;
T 20 - :‘,<. b ]
! /
+q_) ° mwmg;’s,‘error bars/,»
8/ 10 |~ —— o from fit /"
(o) «--- QED unfolded
n -.I .. L n 1 L n 1 " |\E/. 1 L L L 1 1
86 88 90 92 94
V/s/GeV

Handout 14 : Precision Tests of the Standard Model
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The Z Resonance

* Want to calculate the cross-section for ete™ — Z — ].L+[.L_
*Feynman rules for the diagram below give:

N2 py MF o eevertext W(pa)-—igz¥ () —ciy) -u(pr)
—I
Z propagator: > g“vz
q _mz

prp vertex:  u(p3) - —igzy” 5 ( cv—cAys

, _ . ¢ e —iguv
- —lez:[V(Pz)‘—lng”%(Cv—CAYS)"M(Pl)]-qz_—Hn:z-[u(m) ~igzy" 5 (cy —ck ) v

4

>
8

Myi = _ﬁgu\/[ 7(p2)1 3 (e =i’ ulpn)]-[a(p3)7" 3 (cy — k1) - v(pa)]

/4

* Convenient to work in terms of helicity states by explicitly using the Z coupling to
LH and RH chiral states (ultra-relativistic limit so helicity = chirality)

sev—ea¥’) = a3l —\75) +er3(14+7)

| LH and RH projections operators |
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hence cy = (cp+cg), ca = (cL—cR)
and %(CV—CA’W) = %(CL—l-CR—(CL—CR)?’S)
= as(1=7Y)+cer3(1+7)

. 1 1
with ¢z =35(cv+ca), cr=3(cv —ca)
* Rewriting the matrix element in terms of LH and RH couplings:

2
My = _ffizm%gw[czv(pz)w%(l — 7 u(p1) + 7 (p2) ¥ (147 )u(p1))

X [fT(ps)7 §(1= P )(pa) + ChT(p3)y S(147)(pa)
* Apply projection operators remembering that in the ultra-relativistic limit
0=Pu=u; 11+ u=u;, s1=Phv=v;, 3(1+pP)v=y
=D M= = T P () + (02 ()

x[epu(p3) Y vi(pa) +cgii(p3)y'v) (pa)]
* For a combination of V and A currents, ET}/”VT =0 etc, gives four orthogonal

contributions
2
8 — _
— 7 Zmz guv([civi(p2) v u; (p1) +cgvi(p2) Y ur (p1)]
—my
x[c} ) (p3)y vi(pa) + Ry (p3) Y v (pa)]
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* Sum of 4 terms

f 8 _ _ o= — .
Mg = — "2 cickguv [V (p2) ¥ ur (PO (p3) Y v  (pa)] e
f ¢~ w?
g2 "i b
: - . — - :
Mg = — >4 ciel guv [P (p2) Y u (P07 (p3)Y vy (pa)] - © 7, e
q-—mz ut ﬁ
g2 1:‘ o
Mg = —ﬁcicggu\/[ﬂ(m)?’”w(m)][ﬁT (P3)7"v)(p4)] 97 St
: Z u+ :
| g o
ML= _mcicﬁguvm (P2) v u (p0)][E, (P3)Y" v (pa)] e“'7 = o
: z + :
' n

Remember: the L/R refer to the helicities of the initial/final state particles
* Fortunately we have calculated these terms before when considering
ete” —y—ptp giving (r )

7 (p2) " ur (p)[# (p3)7'v) (pa)] = s(1 +cos @) etc.
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2 2
. . € 8z e i
* Applying the QED results to the Z exchange with S 5 5CC
ives:

d 821 (c6)2(c)2(1 4 cos 6)?
s —mz

g |
Me* = 57| 25| (cp)*(cf)?(1 —cos8)?

‘MRR|2 = S2

where q2 =5= 4E§

2 2
Ml = 5% |22 | ()X (c4)*(1—cos6)?

) 2
5| (c0)*(cf)*(1+cos6)?

My |* = 52

* As before, the angular dependence of the matrix elements can be understood
in terms of the spins of the incoming and outgoing particles e.g.

MRR

P«_ |171>9
2
— =

P
<

/ o =b I1,1) ==

p |

T ™
-1 cosO +1

v
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The Breit-Wigner Resonance

* Need to consider carefully the propagator term 1/(s —m%) which
diverges when the C.0.M. energy is equal to the rest mass of the Z boson

* To do this need to account for the fact that the Z boson is an unstable particle
*For a stable particle at rest the time development of the wave-function is:

v~ e imt
*For an unstable particle this must be modified to
Y~ o—imt p=Tt/2
so that the particle probability decays away exponentially

vy ~e =/t with  T=p
*Equivalent to making the replacement
m—m—il'/2

*In the Z boson propagator make the substitution:
mz —mz—il'z/2
* Which gives:
(s—m%) — [S— (mZ —lrz/25] = S—m%+lmzl—‘z—|:%l—% ~ S—m%-Fl'erZ
where it has been assumed that 1’7 < my
* Which gives 1 12 1
2

s—m35 s—m%—l—imzl“z
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* And the Matrix elements become
4.2

875
T o R he0s0)ete
y4 VARNA

* In the limit where initial and final state particle mass can be neglected:

\Mgr|* =

do 1 M2
- = —|Mj;
* Giving: dQ 647m4s (-‘
dogr . 1 g%s 2/ N2 » y
dQ  64n2 (s—m ) +mzl"2( R)"(ck)"(1+c0s0) \Mpe|* + Mg
dQ ~ 64n? (s— )2 +mZF2( £)(cr)"(1+cos) ~
doyg 1 gzs 2 HN2 2 Mg[2+ [Mie 2
Q & (-m ) +mzr2( cz)"(cg)™(1 —cos ) |Mrg| +§| LL]
dog, 1 g5s 2 pin2 2 K e
O - (= n2)2 £l (ck)7(cy)? (1 —cosH) 1 cosO +1
T
* Because ‘MLL‘Z + |MRR|2 75 |MLR‘k + |MRL‘2 , the e 6\ i
differential cross section is asymmetric, i.e. parity > < .
violation (although not maximal as was the case / e
for the W boson). S
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Cross section with unpolarized beams

* To calculate the total cross section need to sum over all matrix elements and
average over the initial spin states. Here, assuming unpolarized beams (i.e. both
e* and both e spin states equally likely) there a four combinations of
initial electron/positron spins, so

1
(1M = (|Mgg|* 4 |Mrz|* 4 |Mrg | + |Mge|?)
g5s°
(s =m3)* +myT7

N — [\-)l —_
= N

X {l(ck)*(cg)*+(cf)*(c)?)(1 +cos 6)

+[(cf)?(ck)” + (cg)*(c7)*)(1 — cos 6)* }
*The part of the expression {...} can be rearranged:
{3 = (cg)? +(c0)?[(cg)* + (c1)?](1 +cos® B)
+2[(ck)* = (¢f)][(cg)* — (cf.)*] cos 6
2

2
and using 6‘2/ —I—ci = Z(C%—i—c]%) and CyC4A =C[— Cp

{-}= %[(65)2+(02)2][(05)2+( )!](1+cos? 8) +2cf ey cos 6
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* Hence the complete expression for the unpolarized differential cross section is:
do 1 2
o = (M)

1 1 g%s N

6412 4" (s —m2)2 + m3I%

{21(c)” + (c2)1l(ey)* + (c)?](1 + cos? B) + 2cf e eyl cos 6}

* Integrating over solid angle dQ = d¢d(cos0) = 2xd(cos 0)

S5 (1 4cos?8)d(cos8) = [F! (1 +2%)dx = & and [ cosOd(cos8) =0

1 g7s 2 (N2 | (A2
Opte——z—utu— = 1927 (S—m%)2+m%r% [(Cf/) +(Cf§) ][(CV) +(CA) H

* Note: the total cross section is proportional to the sums of the squares of the
vector- and axial-vector couplings of the initial and final state fermions

()2 +(ch)?
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Connection to the Breit-Wigner Formula

* Can write the total cross section

1 g7s 2 207( N2 (N2
Opte——z—utu— = 19271 (s—m%)z-l—m%l—% [(Cf/) +(C§> ][(CV) +<CA) H

in terms of the Z boson decay rates (partial widths) from (Page496B (question 26)
2 2
Nz —e'e) =220’ +(c5)’) and D(Z—p'u”) =L (c)) + ()
o 127 s
= 7T Gy maT

N(Z—ete )N(Z—p'u”)

* Writing the partial widths as I, = F(Z — e*e_) etc., the total cross section
can be written

127 S

2

+ - 7
olee =Z— ff)= 2 (s—m%)2+m%F%

l_‘eel_‘ff

where f is the final state fermion flavour:

(The relation to the non-relativistic form of the part Il course is given in the appendix)
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Electroweak Measurements at LEP

*The Large Electron Positron (LEP) Collider at CERN (1989-2000) was designed
to make precise measurements of the properties of the Z and W bosons.

¥ *26 km circumference accelerator
- T — straddling French/Swiss boarder
* Electrons and positrons collided at
4 interaction points
4 large detector collaborations (each
with 300-400 physicists):
ALEPH,
DELPHI,
L3,
OPAL

Basically a large Z and W factory:
* 1989-1995: Electron-Positron collisions at Vs = 91.2 GeV
= 17 Million Z bosons detected
* 1996-2000: Electron-Positron collisions at Vs = 161-208 GeV
= 30000 W*W- events detected
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+ - - - - - -
e*e” Annihilation in Feynman Diagrams
In general e*e" annihilation et 7 et 7
involves both photon and 4 f Z !
Z exchange : + interference +
SR (A
10%
i 2 R ;-“ ' ............................................ 2
+ -7 10 e+ —
N Y 2 . z X
. 1
‘e : : B e
a o g o Atz zf
- resonance:
gﬂ#?ﬁ;ﬁhﬁzgmn 102?%15 Pee exchange dominant
T R LEP .
— LEPII ~ .,
20 40 60 80 00 120 0 160 180 20 e
High energies: . 2

WW production [ | ¢ w+ et Z W+ ¢ —€—NAAN W
M + M + Ve
e W= e W= & —>—AAAN W
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Cross Section Measurements

* At Z resonance mainly observe four types of event:
ete” -Z—efe” efe  —=Z—-utu- efe  —=Z—1"7"
ete” — Z — gg — hadrons

* Each has a distinct topology in the detectors, e.g.

ete” - Z—ete” efe” -Z—utu- efe” — Z — hadrons
— \'\

p e d \\‘

NN

* To work out cross sections, first count events of each type
* Then need to know “integrated luminosity” of colliding beams, i.e. the
relation between cross-section and expected number of interactions
Nevents =270
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* To calculate the integrated luminosity need to know numbers of electrons and
positrons in the colliding beams and the exact beam profile
- very difficult to achieve with precision of better than 10%
* Instead “normalise” using another type of event:

€ ¢ + Use the QED Bhabha scattering process
¢+ QED, so cross section can be calculated very precisely
y + Very large cross section — small statistical errors
+ Reaction is very forward peaked - i.e. the
et et electron tends not to get deflected much
/ i \ do 1 1 do 1
: - — X — X —— - o —
¢ bt o+ Q¢ sin®0)2 = a0~ 9

'Y \ \
*, | Photon propagator | | e.g. see handout 5 |

+ Count events where the electron is scattered in the very forward direction

NBhabha = -Z OBhabha =y & - OBhabha known from QED calc.
* Hence all other cross sections can be expressed as
N; .
_ Cross section measurements
0, = —— O |:>
! NBhabha Bhabha Involve just event counting !
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Measurements of the Z Line-shape

* Measurements of the Z resonance lineshape determine:
= Mz :peak of the resonance
= Iz :FWHM of resonance
» I’y :Partial decay widths

*= N, : Number of light neutrino generations
* Measure cross sections to different final states versus C.o.M. energy \/E

* Starting from

Glete —7Z— fF) = 127 s

232 2172
my (s —m3)* +mzI7
maximum cross section occurs at \/E =pmyz with peak cross section equal to

o0 12m el sy
T mE TS

reer ff (X)

* Cross section falls to half peak value at \/_ ~m,+ 2 which can be seen
immediately from eqn. (X) 2

h
* Hence Iz = o= FWHM of resonance
Z
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* In practise, it is not that simple, QED corrections distort the measured line-shape
* One partlcularly |mportant correction: initial state radiation (ISR)

......................................................................................................................................................................

e+ E E e \/E — 2E _g Physics Reports, 427 (2006) 257-454
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
‘becomes Z0r N 1 60
E E-E, . ! AT Ey” : ° DELPED
....................................................................................... = 30} OPAL
* Measured cross section can be written: T
_ li ! N
o-meas( )—fO'(E) (/’, )dE T 20}
| ;
Probability of e+e- colliding with C.o.M. energy o ° "'”‘”,",;',:f’.‘,‘;f""""“/
E’when C.0.M energy before radiation is E S 10 [ ’
b .....
* Fortunately can calculate f(E’ E)very
precisely, just QED, and can then obtain
Z line-shape from measured cross section /5/GeV
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* In principle the measurement of 7z and 1z is rather simple:
run accelerator at different energies, measure cross sections, account for ISR,

then find peak and FWHM

mz = 91.1875£0.0021GeV

'z =2.4952+£0.0023GeV

* 0.002 % measurement of m;!

* To achieve this level of precision — need to know energy of the colliding beams
to better than 0.002 % : sensitive to unusual systematic effects...

area very slightly !

+ As the moon orbits the Earth it distorts the rock in the Geneva

¢+ The nominal radius of the accelerator of 4.3 km varies by #0.15 mm
+ Changes beam energy by ~10 MeV : need to correct for tidal effects !

Trains:

¢+ Leakage currents from the TGV
railway line return to Earth following

the path of least resistance.

+ Travelling via the Versoix river and
using the LEP ring as a conductor.

+ Each time a TGV train passed by, a small
current circulated LEP slightly changing
the magnetic field in the accelerator

+ LEP beam energy changes by ~10 MeV
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Number of generations

* Total decay width measured from Z line-shape:

I'7 =2.4952£0.0023GeV

* If there were an additional 4th generation would expect Z — V4V, decays
even if the charged leptons and fermions were too heavy (i.e. > m;/2)

* Total decay width is the sum of the partial widths:

['z=Te+ F/_l/.l +'tr + Dhadrons + Fvl v T 1_‘vzvz + FV3 V3 +?

* Although don’t observe neutrinos, 7 — vV decays
affect the Z resonance shape for all final states

* For all other final states can determine partial decay
widths from peak cross sections:
o0 — 12mLel sy
2 2
Ir m; I3
* Assuming lepton universality:

1_‘Z - 3F€€ + l_‘hadrons +
/ N 7

measured from
peak cross sections

Opaq [MD]

Ny

Lyy
t

measured from
Z lineshape

calculated, e.g.
question 26

= | Ny =2.9840 +0.0082
* ONLY 3 GENERATIONS

30

20

eTe”™ — Z — hadrons

2v

t average measurements,
error bars increased
by factor 10

¥G¥-2G¢ (9002) L2¥ ‘sHoday soishyd

(unless a new 4th generation neutrino has very large mass)
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Forward-Backward Asymmetry

* On page 495 we obtained the expression for the differential cross section:
([Mpi])? o< [(cf )+ (cg)?][(er )+ (ck )N (1 +cos® )+ 2 [(cf)* —(ck)?](er)® — (k) ] cos &
* The differential cross sections is therefore of the form:
do _ e\2 e\2 HN2 HAN2
- 0 K % [A(1+cos’6) + Bcos 0] { A=[(cp)”+ (cg)7]l(cr)” + (cg)7]
_ 2 2 HN2 HN2
B =2[(c])” — (cg)7]l(c)” — (cg)7]
* Define the FORWARD and BACKWARD cross sections in terms of angle
incoming electron and out-going particle

1 do 0 do
Or /0 dcosGdcose 8 ./—1 dcos @ cos

e.g. “backward hemisphere”

/' B ~»
\_ e |- e <,
§ g 1 Al e_+_ ?” &
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* The level of asymmetry about cos0=0 is expressed :
in terms of the Forward-Backward Asymmetry
OF — O,
AFB = u \_
OF +Op : —
« Integrating equation- -1 cosd +1
1 1 4 1
oF = K’/ [A(14cos?8) +Bcos8]dcos 6 = K’/ [A(14x%) +Bx]dx = & <§A+ EB)
0 0

0 0
Op = K‘/ [A(14cos 8) +Bcos8]dcos @ = K/
1 -1
* Which gives:
OrF — Op - B 3 |:(

[A(1+x*)+Bx]dr =& (gA - %B)

A p— pr— e
B ortos  (8/3)A 4

* This can be written as
3 | _ () () 2090
App = ~AAy with Ar= R iae = 2 (T
4 (1) + (R ()2+(ch)
* Observe a non-zero asymmetry because the couplings of the Z to LH and RH

particles are different. Contrast with QED where the couplings to LH and RH
particles are the same (parity is conserved) and the interaction is FB symmetric

o)) [

i i (c%)z]
(e1)? +(ck)*] L(cp)*+(cg)?
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Measured Forward-Backward Asymmetries

* Forward-backward asymmetries can only be measured for final states where
the charge of the fermion can be determined, e.g. eTe™ — Z — [.L u-

OPAL Collaboration, HS) ~
Eur. Phys. J C19 (2001) 587:651. Because sin20,, = 0.25, the value of

[ Agg for leptons is almost zero
L eteou’ u OPAL

=
(8

- i o peak-2 “7 For data above and below the peak
. peat , ] of the Z resonance interference with
o peak+

ete” — Y — H+.u_ leads to a
larger asymmetry

dG/dcosﬁu. (nb)
2 %

N\

I
'S

*LEP data combined:
FB = 0.0145 +0.0025

= AYE —0.0169+0.0013

A%T » = 0.0188£0.0017

3
*To relate these measurements to the couplings uses Apg = ZAEA“

* In all cases asymmetries depend on A,
* To obtain A, could use AFB = 3A2 (also see Appendix Il for A )

It
(¥

S
=

1 -05 0 0.5 1
coseu_
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Determination of the Weak Mixing Angle

L A0f 3
* From LEP : App = 4A6Af Ae,Ap,Ac, ...
* FromSLC: Argr = A,
Putting everything | 4¢ = 0.1514+0.0019 includ Its f
togetrr oo Ay = 0.1456 £ 0.0091 other measurements
A; = 0.1449 £0.0040
[ f
with A= 2cy,¢4 _5 cv/ca

()2 +(ch)r "1+ (ev/ca)

* Measured asymmetries give ratio of vector to axial-vector Z coupings.
* In SM these are related to the weak mixing angle

o I, —2Qsin* 6y . 20

o= r —1—Esin26W:1—4|Q|sin29W

* Asymmetry measurements give precise determination of Sin GW

sin” Oy = 0.23154 +0.00016
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W*W- Production

* From 1995-2000 LEP operated above the threshold for W-pair production
* Three diagrams “CC03” are involved

* W bosons decay (p.459) either to leptons or hadrons with branching fractions
Br(W~ — hadrons) ~ 0.67 Br(W™ —e V) ~0.11
Br(W~™ — u=v,)~0.11 Br(W~ — 17 V) ~0.11
* Gives rise to three distinct topoloaies

|W+W —>£+v€ v| |W+W —>qq£v|

|W+W — qqqql
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ete->W*W- Cross Section

* Measure cross sections by counting events and normalising to low angle
Bhabha scattering events

30— . S uwee % Data consistent with SM expectation
s LEP "~ _~"I| * Provides a direct test of ZW W~ vertex
= PRELIMINARY | + 4 \
b; i . [ ¢ Z / w
20 ZWITW— Ll e
* e wt
10 1 + M >
J e e - e W=
(;“,ﬁ ....only v, exchange (Gentle) e+ E ANANAN W+
01 : :
160 180 200 + Ve
Vs (GeV) & —>—ANAAN W)

* Recall that without the Z diagram the cross section violates unitarity
* Presence of Z fixes this problem

522 /557




W-mass and W-width

* Unlike eTe™ — Z , the process ete” — WTW™ is not a resonant process
—> Different method to measure W-boson Mass
*Measure energy and momenta of particles produced in the W boson decays, e.g.
WTW™ — qgge™ Vv Pq * Neutrino four-momentum from energy-
momentum conservation !

Pe Pq1+Pq2+Pc+PV:(\/E>O)
] Reconzstruct gnassgs of two W bosgns
My =E—p~ = (pm +p612)

Pq>

> U ME:Ez_ﬁzz(Pe+PV)2
] 500 [ (c) qqlv BW * Peak of reconstructed mass distribution
2 - gives
g400 [ my = 80.376 +0.033GeV
v C
300 * Width of reconstructed mass distribution
200 E gives:
: I'v =2.196 +0.083 GeV
100 | ™
r Does not include measurements
0 & 1 from Tevatron at Fermilab
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The Higgs Mechanism

* Higgs mechanism can be used to give masses to both fermions and gauge
bosons — but mechanism is different in the two cases.

* Explaining how the Higgs mechanism gives the W and Z gauge bosons
masses, while leaving the photon massless, is (unfortunately) beyond this
course. [ See, hopefully, Gauge Field Theory minor option) ]

* By way of apology, we instead provide here an attempt to at least describe the
way the mechanism gives masses to fermions — that will hopefully whet your
appetite.
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Higgs Mechanism & Higgs Boson (1)

*Quantum Field Theories (QFTs) are written down in a Lagrangian formalism.
*A scalar field x with a mass m must have a term ““2m2xx” in the Lagrangian.
*A fermionic field g with a mass m must have a term “myy” in the Lagrangian.

*QFTs that are “Gauge Field Theories” have a Lagrangian which is also invariant
under the action of a “Gauge Group”.

*The Standard Model “Gauge Group” is chosen to be U(1)xSU(2)_xSU(3) in order to
allow it to model EM, weak and strong interactions in accordance with experiment.

*Terms of the type myy are (unfortunately!) not invariant under the above gauge
group. So one cannot have massive fermions (eg muon) in the Standard Model ®

*However, interactions between fields enter the Lagrangian as products of three or
more fields. For example, a term proportional to “@yy” leads to the theory having
an interaction vertex connecting one ¢ to two y particles. So:

*IF you could contrive to have a term “@yy” in the Lagrangian AND could guarantee
that ¢ could spend most of its time taking values near some non-zero value “m”,
THEN (1) the fermion field ¢ would act “as if” there were a term “myy” in the
Lagrangian, and so would look very much like it had mass m, even if it were actually
massless, and (2) the field ¢ would have an interaction with the field ¢, leading to
the testable and falsifiable prediction that an excitation of the field ¢ (i.e. a “¢
particle”) should couple to, or decay into, the fermions to which it “gives mass”.
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Higgs Mechanism & Higgs Boson (2)

*A field ¢ could spend a lot of time near a non-zero value if it took a non-zero value
in its ground state. Most fields take the value of zero in their ground-state, but thls
need not always be the case: V(q,) q,4 22

*For example, a field ¢ having a potential \‘\ [ “"
energy V(p) = a@*- bg? has a s Pes
ground-state located at @gs=+\(b/(2a)) \
*So by arranging: s
«(1) for ¢ to have a non-zero value Qgs in its \
ground state by ensuring that the potential
V(o) in the Lagrangian is of the right form, and

-1.0+

[TRl]

*(2) for there to be a (gauge invariant) interaction term “yowuy” in the Lagrangian ( y” being
just a constant of proportionality called the “Yukawa Coupling”) ...

.... then the field g will look like it has a mass m=y@gs ! Call @ the “Higgs Field”.
*Give different fermions different masses by using different Yukawa Couplings.

*Note that in the vicinity of the minimum, the potential V(¢) necessarily takes the
form V(@gs+x) = Vimin+tAx2+0(x3) for some constants A and V,,;,. We already said that
terms like Ax2 are banned from the Lagrangian if x is a fermionic field as they break
gauge invariance. However, these terms are not banned if x is a scalar field. So this
excitation x of the Higgs Field must be a scalar. Call it the “Higgs Boson”. We recognise
Ax2 as a mass-term for a scalar, so the Higgs Boson has a free (and unknown) mass.
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Higgs theory summary for fermions:

Fermions are intrinsically massless, and need to be so to satisfy
“Gauge Invariance”.

Nevertheless, interactions with the Higgs field make fermions look like
they have mass at “low temperature” (i.e. when the Higgs field is
near its ground state, below ~10'5 K)

Apparent fermion masses are controlled by free parameters called
Yukawa Couplings (the strength of the coupling to the Higgs field)

A Higgs Boson is an excitation of the Higgs Field.

The Higgs Boson must be a scalar particle to make everything work.

The Higgs Boson has a mass, but the mass is not predicted by the
theory — we have to find it experimentally.

The Higgs Boson has couplings to all the particles it gives mass to (and
indeed to gauge bosons too!) and so has many ways it could decay,
all fully calculable and determined by the theory as a function of its
(as yet unknown) mass

(For proper discussion of the Higgs mechanism see the Gauge Field Theory minor option)
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Higgs mechanism for gauge bosons:

* The Higgs mechanism results in absolute predictions for masses of gauge bosons
* In the SM, fermion masses are also ascribed to interactions with the Higgs field
- however, here no prediction of the masses - just put in by hand

* The Higgs is electrically neutral but
carries weak hypercharge of 1/2

* The photon does not couple to the w
Higgs field and remains massless o
* The W bosons and the Z couple to

W

weak hypercharge and become G

massive igwmy gV igzmy g“" _lﬁ
14

Feynman Vertex factors:

* Within the SM of Electroweak unification with the Higgs mechanism:

|:> | Relations between standard model parameters |

T
I O 1 My = my
W V2Gp sin Oy cos Oy

* Hence, if you know any three of : Otp,, Gr,mwy ,mz,sin Oy predict the other two.
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Precision Tests of the Standard Model

* From LEP and elsewhere have precise measurements — can test predictions

of the Standard Model !
«e.g. predict: [y — 1z cos By measure 2= 91.1875£0.0021 GeV
sin? Ow = 0.23154 +0.00016

*Therefore expect:

my = 79.946+0.008GeV|  Put my = 80.376 +0.033GeV

measure

* Close, but not quite right — but have only considered lowest order diagrams
* Mass of W boson also includes terms from virtual loops HO

4 PEEN
’\NV\,|:>’V\/\/\/—|—N\<:>\/\4+’V\;\N\/\\)V\,
W _ W
b

my = mYy +am? +bln (m—H>
nyy

* Above “discrepancy” due to these virtual loops, i.e. by making very high precision
measurements become sensitive to the masses of particles inside the virtual loops !
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The Top Quark

* From virtual loop corrections and precise LEP data can predict the top quark mass:

m°® =173+ 11CeV

* In 1994 top quark observed at the Tevatron proton anti-proton collider at Fermilab
— with the predicted mass !

* The top quark almost exclusively
decays to a bottom quark since

Viol? > [Vial? + Vs |?
* Complicated final state topologies:
tt — bbggqq — 6 jets
tt — bbgglv — 4 jets+ L+ Vv
tf — bblviv — 2 jets +20 +2v

* Mass determined by direct reconstruction (see W boson mass)

m"* =174.24+3.3GeV
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* But the W mass also depends on the Higgs mass (albeit only logarithmically)

«\/\Q\m '\NWV\)V\, my = miy, +am —|—bln(m )
w

* Measurements are sufficiently precise
to have some sensitivity to the Higgs

mass

* Direct and indirect values of the top
and W mass can be compared to
prediction for different Higgs mass

= Direct: W and top masses from
direct reconstruction

= Indirect: from SM interpretation

of Z mass, 6y etc. and

T T T T T T T

—LEP1 and SLD
80.5 -~ LEP2 and Tevatron (prel.)

68% CL

) * Data favour a light Higgs:
150 175 200
—> |my <200GeV

531 /557

Hunting the Higgs

* The Higgs boson is an essential part of the Standard Model — but does it exist ?
* Consider the search at LEP. Need to know how the Higgs decays

100; L = Higgs boson couplings proportional
F to mass

1071 W z f
I Y
Eﬂm o Awe Rz Y I
2 108 igwmw gt o igzmzgt -
& = Higgs decays predominantly to

1ot heaviest particles which are

energetically allowed (Question 30)
1673

100 200 300 400 500 600
Higgs Mass (GeV)

myg < 2my mainly HO — pb  + approx 10% HO — 1
2mwy < my < 2m; almostentirely HY — Wtw~ + HO — 77
my > 2my either H0—>W+W_, H0—>ZZ, HY — 7
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A Hint from LEP ?

* LEP operated with a C.o0.M. energy upto 207 GeV

* For this energy (assuming the Higgs exists) the
main production mechanism would be the
“Higgsstrahlung” process — —

* Need enough energy to make a Z and H;
therefore could produce the Higgs boson if

my < 207GeV —my

i.e. if my < 116GeV

b
*The Higgs predominantly decays to the heaviest particle possible
*x For my < 116GeV this is the b-quark (not enough mass to decay to WW/ZZ/tt)

+

ol ™

e

qggbb 0T bb —ept |VVbD

X%

-
R(Z—qq) ~70% BR(Z —(*¢")~10% BR(Z— vV)=~20%
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Tagging the Higgs Boson Decays

b b
* One signature for a Higgs boson <b—0 o—
decay is the produEtlon of two b quarks — b_>
o b b § q b
_____ +— @0 O—>
-
— @9 @ _
e ——
b —ead ®® ®
* Each jet will contain one b-hadron which will decay weakly c
* Because V;, issmall (V,, ~ 0.04) hadrons containing Vop
b-quarks are relatively long-lived _
* Typical lifetimes of 7~ 1 x 107125 W~

* At LEP b-hadrons travel approximately 3mm before decaying

é * Can efficiently identify
; ?——%\ jets containing b quarks

Displaced Secondary Vertex

from decay of B hadron
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* Clear experimental signature, but small cross section, e.g. for my ~ 115GeV
would only produce a few tens of ete™ — HO events at LEP
* In addition, there are large “backgrounds”

5 =
: OPAL

[
(=]

HIGGS SIGNAL: |

-l

) F

o F .

:5104§ e )
S Ll P
Nt | _ \\ b
§10 ; e H° ,<
1 2T

g107% 7w >
S

-

WW- MAIN BACKGROUND: |

[
(=]

1Y 7 K
1 77 ety
af Zryy e f
10 E T R
F Z b
2f HZ e_+MA<
10 80 100 120 140 160 180 200 b

\/S / GeV Higgs production cross
section (my=115 GeV)
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* The only way to distinguish

f 7z T
e'—<
f from f
S B e AN 7 B
0~ — R
" < e‘+Wv\< Mpp = M2
b b

is the from the invariant mass of the jets from the boson decays

* In 2000 (the last year of LEP running) the ALEPH experiment reported an excess
of events consistent with being a Higgs boson with mass 115 GeV

| First preliminary data

)
=3

= ALEPH found 3 events which were
high relative probability of being signal

Events /(4 GeV/c? )
=
T

H°? = L3 found 1 event with high relative
f probability of being signal

= OPAL and DELPHI found none

1=
T

L L L | .
050 60 70 8 90 100 110 120 130
2
M (GEV/CT)
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Example event:

R

Displaced vertex from b-decay

537 /557

Events / 3 GeV/c>

Combined LEP Results

Phys. Lett. B565 (2003) 61-75

e Data

Background
I signal (115 GeV/c)

[ Data 18 4
Backgd 14 1.2
[ Signal 29 22

L LEP  5-200200 Gev Tight

all  >109 GeV/c*

0 20 40 60

80 100 120

m,ree (GeV/c?)

* Final combined LEP results fairly
inconclusive

* A hint rather than strong evidence...

* All that can be concluded:

my > 114GeV
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The Large Hadron Collider

The LHC is a new proton-proton collider now running in the
old LEP tunnel at CERN.

ATLAS
General purpose

ALICE
Heavy ions

.-,- ' . B Quark-gluon plasma
- -._d - \’ ..
.f J l
ry

10T superconducting
magnets

Superconducting -
magnets ;

LHCb
B Physics
Matter-Antimatter CMS
asymmetries General purpose
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Higgs at Large Hadron Collider

Higgs Production at the LHC
The dominant Higgs production mechanism at the LHC is
g t
“gluon fusion” IV YN - - — H

g t

Hiqgs Decay at the LHC

Depending on the mass of the Higgs boson, it will decay
in different ways

Low Mass Medium mass High mass
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bg - Exp. Olbs .Exp. obs. E
-~ L e = Houpy === ——H—=2ZZ- ]
© - == — Hs WW—s v iiiee ——— H—s ZZ— liqq
[t r AN\ 5 e —— W,ZH — bb “em = HZZ s vy n
E L . w = e— H— WW — vqq ]
E |
o 10 .
Q - -
32 C -
Ln .
Port L _
= E
- ATLAS Preliminary I Ldt~ 1.0-1.2 fb",\s=7 TeV CLs limits ]
100 200 300 400 500 600

| ATLAS-CONF-2011-112

my, [GeV]

LHC Higgs data is interpreted in the above plot. For any particular hypothesised
Higgs boson mass (shown on the x-axis) the data places (at 95% confidence) an
upper bound on the cross section for Higgs-Boson-Like events, in units of “how
many would be expected from the Standard Model. In other words, a line level
with “10” on the y-axis at mH=125 GeV means “If the Higgs boson has a mass of
125 GeV, then it could have been produced at up to 10 times the rate expected in
the Standard Model and could still (just) have gone un-noticed, at 95%
confidence”.
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As data arrives it should lower the curves, unless
support from a Higgs boson can prevent curve from
passing through dotted line at “1”

C Exp. Qbs. Exp. Obs. .

C werans — Hopy === =—— H— ZZ— 1l -
=== — H-WW-kv —— H— 22— liqq

B o —— W,ZH— bb == e H 27 Iy

= — H WW — g

—
o

95% CL limit on o/cyg,,

ATLAS Prehmnary L dt ~ 1.0-1.2 fb",\'s=7 TeV CLs I|m|ts:‘

100 200 300 400 500 600
my, [GeV]

| ATLAS-CONF-2011-112
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Here is the (unconvincing) data that was shown in Feb 2012

The black blobs are
data. The smooth
curve is the expected
background shape.

The small dotted
“bump” indicate how
a Higgs signal might
change the shape of
the distribution if the
Higgs boson mass
was 120 GeV.

The variable on the x
axis is the invariant
mass two photons.

Events/ 1 GeV

Data - Bkg model

800

Inclusive diphoton sample
o Data 2011

700 Background model _:
D - N SM Higgs boson m = 120 GeV (MC) 3
600— —
500F Vs:?EMILw=+9m4—E
400F t =
300f —
200 —4
100~ ATLAS Preliminary —]
O: T BT OV B P R
100 T
50 —
O£ 1l I.+u|+ R JTTE ++ L S¢S UINEP VIR S5 JIPT Y .++&§
50; T ﬂ’H’ LRSS A0 T L U LAFUPVRIRAC S S AL LA S A
-10 g L P S T ) S S S S NS S S S A S S S E S S §

00 110 120 130 140 150 160
m,, [GeV]
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The astonishingly (un?)convincing evidence in the
analysis looking for Higgs decays pairs of Z bosons

The black blobs are
data.

The three triangular
lumps indicate what a
Higgs signal might
look at (for three
different Higgs boson
masses).

The variable on the x
axis is the invariant
mass of four leptons
which seem to have

come from two Z
bosons.

Events/5 GeV

—
o

T T T | T T T | T T T | T T T | T T T |

(0]

T T T T T T

T T T T T T I
° DATA ATLAS Preliminary

[l Background B
[ Signal (mH=1 25 GeV) -
[ Signal (m =150 GeV) .
[ Signal (mH=190 GeV) 7

H—zz"' -4
[Ldt = 4.8 fb"!
\s=7TeV

150

200 250

m,, [GeV]
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The 2015 public ATLAS data for Higgs
turning into two photons

1400 ——F+———— 7" T T
L [Ldt=45f0"\s=7TeV ATLAS

1200 [Ldt=20310" vs=8TeV 4 Data
Central Iow-pn

Events / GeV

— Signal+background

1000 ===+ Background

— Signal

800

600

data - fitted bkg
o

& b
[=)=)
I

e

e
llinl

110 120 130 140 150 760
m,, [GeV]
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The 2018 public ATLAS data for Higgs
turning into two photons
1500 L5 s ST

| --- Continuum background m, = 125.09 GeV |
In(1+S/B) weighted sum, S = Inclusive |

Sum of Weights / 1.0 GeV
S
o
o

500/

2 3

o 60:

£ w0

S a0

]

o 0

0 20& .

110 120 130 140 150 160

ATLAS-CONF-2018-028 m,, [GeV]
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... or turning into four leptons

—lllllllllllllllllllllllllIIIIIIIIIIIIIIIIIII—

[ ATLAS Preliminary  * P

[0 signal (m =125 GeV)

—_
o
o

"H— ZZ* > 4l P
- 13 TeV, 79.8 fo B z:jets, £, v, VWV
% Uncertainty
80 i

Events / 2.5 GeV

60

40

20

L I L I UL I L I T

080 90 100 110120 130 140 150 160 170

ATLAS-CONF-2018-018 my, [GeV]
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The discovery plot ... 2*10° = probability of fluctuation

110_—|'|llllllII'I“IIIIIII'IIIH

= = ATLAS 2011 -2012 RS

E [ Vs=7TeV: [Ldt=46-48" Eéj" .

= - _ ) —ra 4 = Observe

= {s=8TeV: |Ldt = 5.8-5.9 fb e e e

O

] | PR

w

()]
10— CL, Limits _|
11(:—) I I30IOI — 40IO I 560 -

m,, [GeV]

Spring 2012 data ... this is the
data that took us past the 5-
sigma “discovery” threshold
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Higgs boson

Now considered to be “discovered”.  ATLAS Preliminary :z((i‘yi‘i%c. Total uncertainty
Nobel Prize 2013! m;=12536GeV | it T+ o onp
Hom = i
. . p=1.17°028 00 | N
What has been discovered is abump 1 — o ;
in the sort of place you’d expect to u= 1460083 K
find a Higgs Boson. In other H - ww -
words, a particle consistent with w=1.180%0 00 i i
the Higgs Boson. H - bb = I
+0.39 (- 023
n=0.63 is
0.37 | |
H- 313 =B
To be really sure its “The” Higgs = 14400 |5 : K
Boson, we are acquiring more H > ; ;
information on its spin and p=-070 s i i
couplings (e.g. data shown to the H-2y - ;; : g
right) . So far everything checks ST Lt
out. The Higgs looks “standard”. Combined B il
Nonetheless, other (non-standard) w1180 e . |
Higgs Bosons could yet be found. : ; :
99 y \s=7TeV, 45-4.7 fb" -1 0 1 2 3
\s=8TeV,20.3 b Signal strength (w)
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Concluding Remarks

* In this course (I believe) we have covered almost all aspects of modern particle
physics — though in each case we have barely scratched the surface.

* The Standard Model of Particle Physics is one of the great scientific triumphs
of the late 20t century

* Developed through close interplay of experiment and theory

Dirac Equation | Experlment |Gauge Principle | | Higgs Mechanism

The Standard Model

Experlmental Tests

* Modern experimental particle physics provides many precise measurements.
and the Standard Model successfully describes all current data !
* Despite its great success, we should not forget that it is just a model;
a collection of beautiful theoretical ideas cobbled together to fit with
experimental data.
* There are many issues / open questions...
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The Standard Model : Problems/Open Questions

* The Standard Model has too many free parameters:
mV1 7mV2)mV37m€7mﬂ7m’hmd7mS7n1b7mu7mC7mt
012,013,623,6 * A,A,p.n e,Gp, By, a5 muy,8cp

* Why three generations ?

* Why SU(3).x SU(2)_x U(1) ?

* Unification of the Forces

* Origin of CP violation in early universe ?

* What is Dark Matter ?

* Why is the weak interaction V-A ?

* Why are neutrinos so light ?

* Ultimately need to include gravity

* Over the last 25 years particle physics has progressed enormously.

In the next 10 years we will almost certainly have answers to some
of the above questions — maybe not the ones we expect...
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Appendix I: Non-relativistic Breit-Wigner

* For energies close to the peak of the resonance, can write \/E =mz+A
s = m% +2myA+ A2 ~ m% +2myA for A< my
so with this approximation

(s—mZ)? +mly ~ (2mzA)? +m3l5, = 4my(A+1I7)
2 2, 192
= 4my[(Vs—mz)"+317]
— 3w s
* Giving: o(ete” = Z — ff)~ = Iy
mly (\/s—mz)*+ T2
* Which can be written:
gh; Ty
o(E)= :
4m (E —Ep)? + 117
Fi, Ff . are the partial decay widths of the initial and final states
E, Ey : are the centre-of-mass energy and the energy of the resonance

2J7+1 . . . _ 3
g= W is the spin counting factor § = 555

Ae =

%t . is the Compton wavelength (natural units) in the C.o0.M of either initial particle

* This is the non-relativistic form of the Breit-Wigner distribution first encountered

in the part Il particle and nuclear physics course.
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Appendix lI: Left-Right Asymmetry, A,

* At an e*e- linear collider it is possible to produce polarized electron beams
e.g. SLC linear collider at SLAC (California), 1989-2000
* Measure cross section for any process for LH and RH electrons separately

S Lo,
o

VS.

u/

= At LEP measure total cross section: sum of 4 helicity combinations:

e i

ey
- ot

= At SLC, by choosing the polarization of the electron beam are able to

measure cross sections separately for LH / RH electrons

[LR ]| ai W [ ri’ W | |[RR] ai T
e&= - et e—= - et e—= o e+ ~
T ; Ty ; T u+ ;

&
-

u_
e +
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* Averaging over the two possible polarization states of the positron for a
given electron polarization:

(ML) = (M) + IMigl?)  (IMg])? = 3(|MRe|* + |Mgr|?)

2
_1 |
= |oL=3(or+01L) Or = 7 (Orr + ORL)
* Define cross section asymmetry:
0L — Or
ALR =
O, + Or

* Integrating the expressions on page 494 gives:
oz o< (cp)*(cr)? oro< (¢)*(cR)® OrL o< (cR)*(cf)*  Orr o< (k) (ck)’

= ope< () (er)?+(cp)?]  ore (c)*(cf)? + (k)]

B (ce)2_(ce)2 B

* Hence the Left-Right asymmetry for any cross section depends only on the
couplings of the electron
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* Averaging over the two possible polarization states of the positron for a
given electron polarization:

(IML)? = S(IMe |+ IMir)?)  (IMg])? = 3(|Mre|> + [Mgr|?)

-2
1
= | oL =;(0r+0LL) or = 5(Orr -+ OrL)
* Define cross section asymmetry:
OL — OR
AR =
OL, + O

* Integrating the expressions on page 494 gives:
o1z < (¢f)*(c})?  orro< (c§)*(ck)*  OrL o< (cg)(c))*  Orr o< (ci)*(ck)?

= op o< (cf)*[(cp)* + (cg)?]

V()] oo (ch)2[(ch) + ()]
@@
AR = Ty (e e

* Hence the Left-Right asymmetry for any cross section depends only on the
couplings of the electron
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