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SOLUTIONS

Tau lepton decay:

Feynman diagram for 7= — 7~ v, decay:
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h

W= D4
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The matrix element is

My = V21 VoaGr(jpa)
where the lepton current is
" = Ta(pa)y"5(1 = ")ul(pr) -

In the 77 rest frame, and assuming a massless neutrino, the four-momenta can be taken to be
p1 = (m,;,0,0,0), ps = (p*,p*sind, 0, p* cosb), ps = (Er, —p*sin®,0, —p* cos @) ,

where EZ = (p*)? + m2 and p* = |ps| = |pyl.
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For a particle of 4-momentum p* = (E, psin @ cos ¢, psin 0 sin ¢, p cos §), the spinors are

cos 6/2 —sin /2
—— €' sin 62 —— ' cos /2
u(p) = VE+m o cosd/2 |7 u(p) =vVE+m o Sin /2 (1)
€' sin /2 — €' cos )2



For a massless neutrino, only the left-handed helicity eigenstate w|(ps) can contribute. Since
the neutrino four-momentum is ps = (p*, p*sin @, 0, p* cos ), the spinor u|(p3) can be obtained
from Equation (1) by setting E=p=p*, m=0, ¢ =0:

— sin /2

cos /2

ues) =i | S
—cos /2

The corresponding adjoint spinor is

uy(ps) = uj(pg)vo = p* (—sin6/2 cos/2 —sinf/2 coshf2) .

The 7~ is in a spin eigenstate with the spin pointing in the +z direction. The spinor u(p;)
describing this spin state can be obtained from wu;(p) of Equation (1) by setting § = 0 and
taking the zero-momentum limit £ = m., p = 0 (the value of ¢ is irrelevant): !

1
u(pr) = vV2m, 8 : (2)
0

The lepton current j* = u,(p3)y*1(1 — v°)u(p1) can now be evaluated using standard matrix
multiplication:

1 0 -1 0 1 1
0 1 0 1 0 0
%(1 — 7 )u(pr) = 21 -1 o0 1 0 2m. ol — ; 2my 1
0 -1 0 1 0 0
u)(p3)7’ = Vp* (—sinf/2 cosf/2 sinf/2 —cos6)2)

—cosf/2 sinf/2 cos6/2 —sinf/2)
—icosf/2 —isin6/2 icosf/2 isinf)2)
sing/2 cosf/2 —sinf/2 —cosb)2)
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which combine to give

3" =1 (ps)V" (1 — Y*)u(pr) = v/2m.p* (— sin /2, — cos /2, —i cos /2, sin §/2) | .

The 4-vector scalar product of the lepton current with p, is then

J*.ps = \/2m,p*(—E; sin /2 — p* sin 0 cos /2 + p* cos O sin 6/2)
= —/2m,p*(E, + p*)sin /2

= —+/2m,p*m. sin 6/2

'Equivalently, we could use the spinor u|(p) of Equation (1) and set § = 7, since a negative helicity particle
travelling in the —z direction (f = ) has its spin pointing in the +z direction, as required. This gives the same
form for the spinor u(p;) as in Equation (2), up to an overall minus sign.
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where energy conservation, m, = E, + p*, has been used in the last step. Hence

Mﬁ = ﬂfﬂvudGF(j‘u.pzl) = _2f7rvudGFmT\/ mTp* sin 6/2 .

An angular distribution sin 6/2 is to be expected for the overlap of two spin-half wavefunctions.
In particular, the matrix element vanishes for § = 0, where the 7= and v, spins are oppositely
directed, and reaches a maximum for § = 7, where the 7= and v, spins both point in the +z
direction.

y2

If the 7~ spin points in the —z direction, the matrix element must vanish at § = 7m and reach
a maximum at § = 0. The matrix element can be written down on symmetry grounds as

My = =2f. V. 4Gev/m p*m, cos0/2 | .

Squaring the energy conservation equation m, = E, + p* gives
(me = p")* = Bz = (p")* +m7 .

This gives the centre of mass momentum as

2 2
* mr — my
Pt =
2m,

When the 7~ spin points in the +z direction, the differential decay rate is then

dr p* 1 m2 —m?2 :
- WUWM2 T 3em 2m. 2[2IVaalPGR(m7 — m7)m? sin® 6/2
_ 2GR

2,3 m2\* 2
= 35,2 Voalem: (1 - m—;) sin” 6/2

where d©) = dcosfld¢. When the 7~ spin points in the —z direction, the factor sin?6/2 is
replaced by cos? /2.



An unpolarised 7~ sample is effectively an equal mix of S, = —1—% and S, = —% 7~ leptons, and

the differential decay rate can be obtained by averaging over the two possible 77 spin states:

dr’ ng% 2 3 mi ?
Qo Vud T (=05 )

T

This decay rate is independent of 6 (since sin® §/2 + cos? §/2 = 1), so that the decay is isotropic,
as expected for an initially unpolarised sample.

The partial width for unpolarised 7= — 7~ v, decay is obtained by integrating over df2, giving

a factor of 47 :
G2 f2 2\ 2
D(r~ = 7 v,) = 2|V [*m3 (1 - m_) :

167 m2

The branching ratio is

C(r -, 2 2 2
BR(T™ = 7 v,) = (r —)F ™ vr) =70(t7 =7 ) =1 Ff”| V. g|?m? ( - m_g) .
mT

Estlmatmg [V gl =1 (or |V, 4]* =~ cos? Oc ~ 0.95 to be more precise), taking f, = m,, and using
=291 x 10715 gives

(2.91 x 10713) (1.166 x 1075)2(0.1396)>
(6.582 x 10-25) 167

BR(tT -7 v,) =

07y

(1.777)3 (1 ~ )



3. Colour and partons:

Leading-order Feynman diagrams for gg — tt:

Leading order Feynman diagram for qq — tt:

q

fla]

Colour factors for qq — tt: the qq and tt vertices contribute %)\? and %)\g respectively

C(ij — Ik) = Z)\“Xl.
For 7 — 17, wehave 1 = j =k =1=1:

8

- ] a2 Lo 812 1 1 1
C(”"_”"T):Z;()‘n) :Z[(/\u) + (A11) } =1 1"’5 3"
Similarly:
Clgg — 99) = 7 [(O%)+ 087 = 1 (143) =3
4 07 > 4 3) 3
oF— 1) = Loy = L(22) 21
— = — . — JR— -,
4 33 4 \/g 3
For 7 — gg, we have it = j =1 and k =1 =2, so
1 1 1 1 1
C AN =~ (A AL + A A == (1 -1+ —- —= | = —=
(17 — gg) = Z 1122 4 11222 T Aqy 22) 4< +\/§ \/§> G



For rg — rg, wehavei =1, =2and k =2,l =1, so

1 o
C(rg — rg) = ZA A% == (Mo +A02) = (L ltie—i) =5 .

..;;
| =

In summary, the allowed colour factors contributing to the matrix element Mj; are

C(r7 — 17) = C(gg — gg) = C(bb — bb) = =

C(rg—rg) = C(?”E — Tl_)) =C(gr — gr) = C(gg — gl_)) =C(br — br) = C(bg — bg) = =

C(r7 — gg) = C(r7 — bb) = C(gg — r7) = C(gg — bb) = C(bb — 17) = C(bb — ¢g) = —

In qq — tt scattering in high energy hadron-hadron collisions, the initial state q and q are not
in a well-defined colour state, but rather each is effectively an equal mix (unpolarised mixture)
of red, green and blue. The colour factor appearing in the qq — tt cross section (which contains
| M;;|?) is obtained by summing over all allowed colour configurations for the scattering, and
averaging over the possible colours of the initial q and q (factor of 1/3 for each):

ety = 55 fax (3) wox (-4) o (3)] -3

Consider the production of a tt pair in a hadron-hadron collision, due to the interaction of two
partons with momentum fractions z; and x5 :

p3

P 50°

P4

The t quark has four-momentum (with p = 40 GeV)
ps = (VP2 +m2,p,0,0) = (VA2 + 1752, 40,0,0) = (179.513, 40,0,0) .

Since the transverse momentum of the t is the same as that of the t, namely 40 GeV, the t
momentum is 40/ sin 50° = 52.216 GeV. Hence the t four-momentum is

Py = (\/(p/ sin 50°)2 + m?2, —p, 0, p cot 50°) = (182.624, —40, 0, 33.564) |
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and the four-momentum of the tt system is

ps + pa = (362.137,0,0, 33.564) .

The incoming partons have 4-momenta (x1P,0,0,2;P) and (z9P,0,0, —x2P). Conservation of
energy and momentum then gives

(1 —x2)P = 33.564 GeV

At the Tevatron, with beam momenta P = 980 GeV, these equations give

71 = (362.14 + 33.56) /(2 x 980) = 0.202
25 = (362.14 — 33.56) /(2 x 980) = 0.168

At the LHC, with beam momenta P = 7000 GeV, we have

21 = (362.14 4 33.56) /(2 x 7000) = 0.028
25 = (362.14 — 33.56) /(2 x 7000) = 0.023

Measurements of parton distribution functions ¢(z) and g(x) show that quarks dominate for
momentum fractions x > 0.15-0.2, and gluons dominate below this. Hence, at the Tevatron,
qq — tt dominates, while at the LHC, the most likely production mechanism is gg — tt.



