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SOLUTIONS

2. Tau lepton decay:

Feynman diagram for τ− → π−ντ decay:
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The matrix element is
Mf i =

√
2fπVudGF(j.p4) ,

where the lepton current is
jµ = u(p3)γ

µ 1

2
(1 − γ5)u(p1) .

In the τ− rest frame, and assuming a massless neutrino, the four-momenta can be taken to be

p1 = (mτ , 0, 0, 0) , p3 = (p∗, p∗ sin θ, 0, p∗ cos θ) , p4 = (Eπ,−p∗ sin θ, 0,−p∗ cos θ) ,

where E2
π = (p∗)2 + m2

π and p∗ = |p3| = |p4|.
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For a particle of 4-momentum pµ = (E, p sin θ cos φ, p sin θ sin φ, p cos θ), the spinors are

u↑(p) =
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For a massless neutrino, only the left-handed helicity eigenstate u↓(p3) can contribute. Since
the neutrino four-momentum is p3 = (p∗, p∗ sin θ, 0, p∗ cos θ), the spinor u↓(p3) can be obtained
from Equation (1) by setting E = p = p∗, m = 0, φ = 0 :

u↓(p3) =
√

p∗
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
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
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

.

The corresponding adjoint spinor is

u↓(p3) = u†
↓(p3)γ

0 =
√

p∗
(

− sin θ/2 cos θ/2 − sin θ/2 cos θ/2
)

.

The τ− is in a spin eigenstate with the spin pointing in the +z direction. The spinor u(p1)
describing this spin state can be obtained from u↑(p) of Equation (1) by setting θ = 0 and
taking the zero-momentum limit E = mτ , p = 0 (the value of φ is irrelevant): 1

u(p1) =
√

2mτ
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. (2)

The lepton current jµ = u↓(p3)γ
µ 1

2
(1 − γ5)u(p1) can now be evaluated using standard matrix

multiplication:

1

2
(1 − γ5)u(p1) = 1

2
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
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


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u↓(p3)γ
0 =

√
p∗

(

− sin θ/2 cos θ/2 sin θ/2 − cos θ/2
)

u↓(p3)γ
1 =

√
p∗

(

− cos θ/2 sin θ/2 cos θ/2 − sin θ/2
)

u↓(p3)γ
2 =

√
p∗

(

−i cos θ/2 −i sin θ/2 i cos θ/2 i sin θ/2
)

u↓(p3)γ
3 =

√
p∗

(

sin θ/2 cos θ/2 − sin θ/2 − cos θ/2
)

which combine to give

jµ = u↓(p3)γ
µ 1

2
(1 − γ5)u(p1) =

√

2mτp∗ (− sin θ/2,− cos θ/2,−i cos θ/2, sin θ/2) .

The 4-vector scalar product of the lepton current with p4 is then

jµ.p4 =
√

2mτp∗(−Eπ sin θ/2 − p∗ sin θ cos θ/2 + p∗ cos θ sin θ/2)

= −
√

2mτp∗(Eπ + p∗) sin θ/2

= −
√

2mτp∗mτ sin θ/2

1Equivalently, we could use the spinor u↓(p) of Equation (1) and set θ = π, since a negative helicity particle
travelling in the −z direction (θ = π) has its spin pointing in the +z direction, as required. This gives the same
form for the spinor u(p1) as in Equation (2), up to an overall minus sign.

2



where energy conservation, mτ = Eπ + p∗, has been used in the last step. Hence

Mf i =
√

2fπVudGF(jµ.p4) = −2fπVudGFmτ

√
mτp∗ sin θ/2 .

An angular distribution sin θ/2 is to be expected for the overlap of two spin-half wavefunctions.
In particular, the matrix element vanishes for θ = 0, where the τ− and ντ spins are oppositely
directed, and reaches a maximum for θ = π, where the τ− and ντ spins both point in the +z
direction.

τ−

ντ

π−

u↓(p3)

p4

θ

If the τ− spin points in the −z direction, the matrix element must vanish at θ = π and reach
a maximum at θ = 0. The matrix element can be written down on symmetry grounds as

Mf i = −2fπVudGF

√
mτp∗mτ cos θ/2 .

Squaring the energy conservation equation mτ = Eπ + p∗ gives

(mτ − p∗)2 = E2
π = (p∗)2 + m2

π .

This gives the centre of mass momentum as

p∗ =
m2

τ − m2
π

2mτ

.

When the τ− spin points in the +z direction, the differential decay rate is then

dΓ

dΩ
=

p∗

32π2m2
τ

|Mf i|2 =
1

32π2m2
τ

· m2
τ − m2

π

2mτ

· 2f 2
π |Vud|2G2

F(m2
τ − m2

π)m2
τ sin2 θ/2

=
f 2

πG2
F

32π2
|Vud|2m3

τ

(

1 − m2
π

m2
τ

)2

sin2 θ/2

where dΩ = d cos θ dφ. When the τ− spin points in the −z direction, the factor sin2 θ/2 is
replaced by cos2 θ/2.
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An unpolarised τ− sample is effectively an equal mix of Sz = +1

2
and Sz = −1

2
τ− leptons, and

the differential decay rate can be obtained by averaging over the two possible τ− spin states:

dΓ

dΩ
=

f 2
πG2

F

64π2
|Vud|2m3

τ

(

1 − m2
π

m2
τ

)2

.

This decay rate is independent of θ (since sin2 θ/2+cos2 θ/2 = 1), so that the decay is isotropic,
as expected for an initially unpolarised sample.

The partial width for unpolarised τ− → π−ντ decay is obtained by integrating over dΩ, giving
a factor of 4π :

Γ(τ− → π−ντ ) =
G2

Ff 2
π

16π
|Vud|2m3

τ

(

1 − m2
π

m2
τ

)2

.

The branching ratio is

BR(τ− → π−ντ ) =
Γ(τ− → π−ντ )

Γ
= ττΓ(τ− → π−ντ ) = ττ

G2
Ff 2

π

16π
|Vud|2m3

τ

(

1 − m2
π

m2
τ

)2

.

Estimating |Vud| ≈ 1 (or |Vud|2 ≈ cos2 θC ≈ 0.95 to be more precise), taking fπ = mπ, and using
ττ = 2.91 × 10−13 s gives

BR(τ− → π−ντ ) =
(2.91 × 10−13)

(6.582 × 10−25)

(1.166 × 10−5)2(0.1396)2

16π
(1.777)3

(

1 − (0.1396)2

(1.777)2

)2

= 12.9% .
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3. Colour and partons:

Leading-order Feynman diagrams for gg → tt:
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Leading order Feynman diagram for qq → tt:
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Colour factors for qq → tt: the qq and tt vertices contribute 1

2
λa

ij and 1

2
λa

kl respectively:

C(ij → lk) =
1

4

8
∑

a=1

λa
ijλ

a
kl .

For rr → rr, we have i = j = k = l = 1:

C(rr → rr) =
1

4

8
∑

a=1

(λa
11)

2 =
1

4

[

(λ3
11)

2 + (λ8
11)

2
]

=
1

4

(

1 +
1

3

)

=
1

3
.

Similarly:

C(gg → gg) =
1

4

[

(λ3
22)

2 + (λ8
22)

2
]

=
1

4

(

1 +
1

3

)

=
1

3
.

C(bb → bb) =
1

4
(λ8

33)
2 =

1

4

(−2√
3

)2

=
1

3
.

For rr → gg, we have i = j = 1 and k = l = 2, so

C(rr → gg) =
1

4

8
∑

a=1

λa
11λ

a
22 =

1

4

(

λ3
11λ

3
22 + λ8

11λ
8
22

)

=
1

4

(

1 · −1 +
1√
3
· 1√

3

)

= −1

6
.
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For rg → rg, we have i = 1, j = 2 and k = 2, l = 1, so

C(rg → rg) =
1

4

8
∑

a=1

λa
12λ

a
21 =

1

4

(

λ1
12λ

1
21 + λ2

12λ
2
21

)

=
1

4
(1 · 1 + i · −i) =

1

2
.

In summary, the allowed colour factors contributing to the matrix element Mf i are

C(rr → rr) = C(gg → gg) = C(bb → bb) =
1

3

C(rg → rg) = C(rb → rb) = C(gr → gr) = C(gb → gb) = C(br → br) = C(bg → bg) =
1

2

C(rr → gg) = C(rr → bb) = C(gg → rr) = C(gg → bb) = C(bb → rr) = C(bb → gg) = −1

6

In qq → tt scattering in high energy hadron-hadron collisions, the initial state q and q are not
in a well-defined colour state, but rather each is effectively an equal mix (unpolarised mixture)
of red, green and blue. The colour factor appearing in the qq → tt cross section (which contains
|Mf i|2) is obtained by summing over all allowed colour configurations for the scattering, and
averaging over the possible colours of the initial q and q (factor of 1/3 for each):

〈

|C(qq → tt)|2
〉

=
1

3
· 1

3

[

3 ×
(

1

3

)2

+ 6 ×
(

−1

6

)2

+ 6 ×
(

1

2

)2
]

=
2

9
.

Consider the production of a tt pair in a hadron-hadron collision, due to the interaction of two
partons with momentum fractions x1 and x2 :

x1P

x2P

50◦

t

t

p3

p4

The t quark has four-momentum (with p = 40 GeV)

p3 = (
√

p2 + m2
t , p, 0, 0) = (

√
402 + 1752, 40, 0, 0) = (179.513, 40, 0, 0) .

Since the transverse momentum of the t is the same as that of the t, namely 40 GeV, the t
momentum is 40/ sin 50◦ = 52.216 GeV. Hence the t four-momentum is

p4 = (
√

(p/ sin 50◦)2 + m2
t ,−p, 0, p cot 50◦) = (182.624,−40, 0, 33.564) ,

6



and the four-momentum of the tt system is

p3 + p4 = (362.137, 0, 0, 33.564) .

The incoming partons have 4-momenta (x1P, 0, 0, x1P ) and (x2P, 0, 0,−x2P ). Conservation of
energy and momentum then gives

(x1 + x2)P = 362.137 GeV

(x1 − x2)P = 33.564 GeV

At the Tevatron, with beam momenta P = 980 GeV, these equations give

x1 = (362.14 + 33.56)/(2 × 980) = 0.202

x2 = (362.14 − 33.56)/(2 × 980) = 0.168

At the LHC, with beam momenta P = 7000 GeV, we have

x1 = (362.14 + 33.56)/(2 × 7000) = 0.028

x2 = (362.14 − 33.56)/(2 × 7000) = 0.023

Measurements of parton distribution functions q(x) and g(x) show that quarks dominate for
momentum fractions x > 0.15-0.2, and gluons dominate below this. Hence, at the Tevatron,
qq → tt dominates, while at the LHC, the most likely production mechanism is gg → tt.
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