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SOLUTIONS

1. SU(2) and SU(3)

(a) Feynman diagrams for D∗+ → D0π+ and D∗+ → D+π0 decays:
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The u and d antiquarks form an isospin doublet with isospin quantum numbers
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respectively. The charm quark is an isospin singlet with |I, I3〉 = |0, 0〉. Therefore the
D0 and D+ mesons, and the D∗0 and D∗+ mesons, must each form isospin doublets, and the
isospin quantum numbers associated with each decay are:
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D∗+ → D+π0 :
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The result of combining the state
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with the state |1, 1〉 can be written down by inspection:
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Applying the ladder operator T− to this equation, using
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T− |1, 1〉 =
√

1 × 2 − 1 × 0 |1, 0〉 =
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The state orthogonal to this is

∣

∣

1

2
, 1

2

〉

=

√

2

3

∣

∣

1

2
,−1

2

〉

|1, 1〉 − 1√
3

∣

∣

1

2
, 1

2

〉

|1, 0〉 .

1



In terms of the particles involved in the D∗+ decays, this can be interpreted as
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Hence:

BR(D∗+ → D0π+)

BR(D∗+ → D+π0)
=

(
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2/3

−
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1/3

)2

= 2

(b) The only ladder operations on the state |rr〉 which give non-zero results are:

T− |rr〉 = (|gr〉 + |rg〉) V− |rr〉 = (|br〉 + |rb〉) .

Applying the ladder operators to the state (|gr〉 + |rg〉) then gives (amongst other things)

T− (|gr〉 + |rg〉) = 2 |gg〉 V− (|gr〉 + |rg〉) = (|gb〉 + |bg〉) .

and so on. After normalising the states, we obtain a sextet:

|rr〉 |gg〉 |bb〉 1√
2

(|gr〉 + |rg〉) 1√
2

(|br〉 + |rb〉) 1√
2

(|gb〉 + |bg〉) .

which are symmetric under particle interchange.

The states orthogonal to these form a triplet:

1√
2

(|gr〉 − |rg〉) 1√
2

(|br〉 − |rb〉) 1√
2

(|bg〉 − |gb〉)

which are antisymmetric under particle interchange.

The colour coefficients for single-gluon interactions between two quarks of the same colour

C(rr → rr) = C(gg → gg) = C(bb→ bb) =
1

3

or of different colour

C(rg → rg) = C(rb→ rb) = C(gr → gr) = C(gb→ gb) = C(br → br) = C(bg → bg) = −1

6

C(rg → gr) = C(rb→ br) = C(gr → rg) = C(gb→ bg) = C(br → rb) = C(bg → gb) =
1

2

were derived in the lectures. For the symmetric states of mixed colour, such as ψ = 1/
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2(gr+
rg), we have
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Therefore every state in the sextet has a colour factor C = 1/3, corresponding to a repulsive

potential.
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Similarly, for a triplet state such as ψ = 1/
√

2(gr − rg), we have

C(ψ → ψ) =
1

2
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2 × −1

6
− 2 × 1

2

]

= −2

3

which corresponds to an attractive potential.

These results are derived from leading-order perturbation theory (single-gluon exchange) and
apply only to high q2, which means short distances. The long-distance potential is dominated
by non-perturbative QCD and is believed to be attractive (confining) only for colour singlet
states.
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3. W decay in UA1:

The matrix element for the decay W− → e−νe is given as

Mf i =
gW√

2
ǫµ(p1)u(p3)γ

µ 1

2
(1 − γ5)v(p4)

This matrix element (V − A) is non-zero only for a left-handed e− and a right-handed νe. We
must therefore take u(p3) = u↓(p3) and v(p4) = v↑(p4):
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the matrix element simplifies to

Mf i =
gW√

2
ǫµ(p1)u↓(p3)γ

µv↑(p4)

Operating with each gamma matrix in turn gives
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The lepton current is therefore

u↓(p3)γ
µ 1

2
(1 − γ5)v↑(p4) = E(c2 + s2 − c2 − s2, s2 − c2 + s2 − c2,−i(s2 + c2 + s2 + c2), 4sc)

= 2E(0, s2 − c2,−i, 2sc)

Using sin θ = 2 sin θ/2 cos θ/2 = 2sc and cos θ = cos2 θ/2 − sin2 θ/2 = c2 − s2, this becomes

u↓(p3)γ
µ 1

2
(1 − γ5)v↑(p4) = 2E(0,− cos θ,−i, sin θ)

Taking the scalar product of the electron current with each of the three possible W polarisation
vectors gives

ǫµ+ : − 1√
2
(0, 1, i, 0)·2E(0,− cos θ,−i, sin θ) = −

√
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ǫµ− :
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(0, 1,−i, 0) ·2E(0,− cos θ,−i, sin θ) =
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ǫµL : (0, 0, 0, 1) ·2E(0,− cos θ,−i, sin θ) = 2E · − sin θ

Therefore
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For an unpolarised sample of W bosons, averaging over the three possible spin states gives
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The decay rate is
dΓ

dΩ
=

p∗
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W

〈|Mf i|2〉

with p∗ = E = mW/2. Hence,
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.

This is an isotropic decay distribution (as expected since an unpolarised sample of W bosons
has no preferred spatial direction) so that integrating over all spatial directions gives a simple
factor of 4π:

Γ(W− → e−νe) =
g2
WmW

48π
.

The allowed decays of the W boson are

W− → e−νe, µ
−νµ, τ

−ντ , ud, us, ub, cd, cs, cb

(the top quark is too heavy) with relative decay rates

1, 1, 1, 3|Vud|2, 3|Vus|2, 3|Vub|2, 3|Vcd|2, 3|Vcs|2, 3|Vcb|2
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Using unitarity of the CKM matrix:

|Vud|2 + |Vus|2 + |Vub|2 = 1

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1

this adds up to 9 units. Hence

BR(W− → e−νe) =
1

9

Considering valence quarks only (uud for the proton, uud for the antiproton), the quark-level
processes for W production and decay in pp collisions are ud → W− → e−νe and du → W+ →
e+νe. The corresponding Feynman diagrams are:
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In high energy pp collisions, the quarks, antiquarks and leptons involved can be assumed to
be in the relativistic limit. In this limit, because of the V −A structure of charged-current
(W±) interactions, only left-handed particles and right-handed antiparticles can interact with
W± bosons. Hence the d, u, e− and νe must be left-handed while the u, d, e+ and νe must be
right-handed:

(Note that the directions of the p and p are reversed between the two diagrams). Hence, in either
case, the overlap between the initial and final state spin wavefunctions is maximised for small
angles θ∗; the angular distribution of the electron or positron is proportional to (1 + cos θ∗)2,
as seen in the UA1 data:
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