NST Part III Experimental and Theoretical Physics Dr J R Batley

Particle Physics Major Option Exam, January 2003

SOLUTIONS

SU(2) and SU(3)
(a) Feynman diagrams for D** — D% and D** — D*7% decays:
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The @ and d antiquarks form an isospin doublet with isospin quantum numbers |%, —%> and
%, %> respectively. The charm quark is an isospin singlet with |1, I3) = |0,0). Therefore the

D° and D* mesons, and the D** and D** mesons, must each form isospin doublets, and the
isospin quantum numbers associated with each decay are:

D™ = D" |55) = |5 —3) L)
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The result of combining the state ‘%, %> with the state |1, 1) can be written down by inspection:
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Applying the ladder operator T_ to this equation, using

gives



In terms of the particles involved in the D** decays, this can be interpreted as
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Hence:

(b) The only ladder operations on the state |rr) which give non-zero results are:
T rry = (lgr) +Irg))  V_|rr) = ([br) +|rb)) .
Applying the ladder operators to the state (|gr) + |rg)) then gives (amongst other things)

T (lgr) +1Irg)) = 21g9)  V_(lgr) +Irg)) = (Igb) + |bg)) -
and so on. After normalising the states, we obtain a sextet:
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which are symmetric under particle interchange.

The states orthogonal to these form a triplet:
1 1
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which are antisymmetric under particle interchange.

() = 1r8)) = (1bg) — 1)

The colour coefficients for single-gluon interactions between two quarks of the same colour
C(rr —rr) = C(gg — gg) = C(bb — bb) = %
or of different colour
C(rg — rg) = C(rb — rb) = C(gr — gr) = C(gb — gb) = C(br — br) = C(bg — bg) = _%

1
C(rg — gr) =C(rb— br) = C(gr — rg) = C(gb — bg) = C(br — rb) = C(bg — gb) = 3
were derived in the lectures. For the symmetric states of mixed colour, such as ¢ = 1/ V2(gr +

rg), we have
1 -1 1 1
C =— 12X —42x -| ==
Therefore every state in the sextet has a colour factor C' = 1/3, corresponding to a repulsive

potential.



Similarly, for a triplet state such as ¢ = 1/v/2(gr — rg), we have
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which corresponds to an attractive potential.

These results are derived from leading-order perturbation theory (single-gluon exchange) and
apply only to high ¢?, which means short distances. The long-distance potential is dominated
by non-perturbative QCD and is believed to be attractive (confining) only for colour singlet
states.
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W decay in UA1:
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The matrix element for the decay W~ — e™7, is given as

M = g—\/g%(m)ﬂ(mhﬂé(l —7°)v(pa)

This matrix element (V' — A) is non-zero only for a left-handed e~ and a right-handed 7,. We
must therefore take u(ps) = u (ps) and v(py) = v1(ps):

—sin /2 -5

VE| € /2 VB

ul(p?)) = ul(g) =VE sin 0/2 =VE
—cos /2 —c

u(ps) = \/E(—S,c, —s,¢)

sin(f + m)/2 c
—cos(f +m)/2 S
v (pa) = v (0 + ) = vVE —sin((9 + ﬂ));2 =VE —c
cos(d +m)/2 —s
Since
1 0O -1 0 c
0 1 0 -1 S S
%(1 -7 )UT(p4) ) -1 0 1 0 \/E —c = \/E —c = UT(pZL)
0O -1 0 1 —S -8

the matrix element simplifies to
My = D6, (01T, (ps)7"vr (pa)
V2

Operating with each gamma matrix in turn gives
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The lepton current is therefore

Uy (p3) V" 21— )or(pa) = BE(P + 8> — @ — s, 8" =P+ 8° = &, —i(s* + & + 8° + ), 4sc)
= 2E(0,s* — %, —i, 2sc)

Using sin# = 2sin /2 cos /2 = 2sc and cos = cos? /2 — sin? /2 = ¢* — 52, this becomes
w) (p3)7"3(1 — 7°)vy(pa) = 2E(0, — cos 0, —i,sin 6)

Taking the scalar product of the electron current with each of the three possible W polarisation
vectors gives

1
el - E(O, 1,i,0)-2E(0, — cosf, —i,sin ) = —v/2E(cosf — 1)
1 . .
e E(O, 1,—i,0) -2E(0, — cosf, —i,sinf) = vV/2E(cosf + 1)
el (0,0,0,1) 2E(0, — cosf, —i,sinf) = 2E - —sin 6
Therefore

e |M;i]* = g3 E*(1 — cosf)?

e | M;i]* = gay E*(1 + cos6)?

el | M;i|* = 295, E® sin® 0

For an unpolarised sample of W bosons, averaging over the three possible spin states gives

(IMgi[*) = %Q%VE2 [(1—cos6)® + (14 cosf)® + 2sin* 0] = %g%VE2 4= %g\z,sz .
The decay rate is .
= T (P
with p* = F = mw/2. Hence,
ar 1 4, rmw\2 _ lggmw
dQ "~ Gdm?my 39V (55") - 3 64n?

This is an isotropic decay distribution (as expected since an unpolarised sample of W bosons
has no preferred spatial direction) so that integrating over all spatial directions gives a simple
factor of 4m:

2
(W™ — e7,) = DX
™

The allowed decays of the W boson are
W™ — e Ve, vy, 7 Ur,ud, s, ub, cd, s, cb
(the top quark is too heavy) with relative decay rates
11,1, 3[Veal®, 31 Visl%, 31V %, 3 Veal®, 3 Vi, 3[ Vi
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Using unitarity of the CKM matrix:

|‘/ud|2 + |‘/us|2 + ’Vvub|2 =1
Veal® + Vel + [V I = 1

this adds up to 9 units. Hence

O

BR(W™ — e 7,) =

Considering valence quarks only (uud for the proton, Tud for the antiproton), the quark-level
processes for W production and decay in pp collisions are id — W~ — ¢ 7, and du — W —
etv.. The corresponding Feynman diagrams are:
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In high energy pp collisions, the quarks, antiquarks and leptons involved can be assumed to
be in the relativistic limit. In this limit, because of the V — A structure of charged-current
(W%) interactions, only left-handed particles and right-handed antiparticles can interact with
W+ bosons. Hence the d, u, e~ and v, must be left-handed while the T, d, e* and 7, must be
right-handed:
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(Note that the directions of the p and P are reversed between the two diagrams). Hence, in either
case, the overlap between the initial and final state spin wavefunctions is maximised for small
angles 0*; the angular distribution of the electron or positron is proportional to (1 + cos6*)?,
as seen in the UA1 data:
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