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SOLUTIONS

1. Higgs boson decay, H → ff :

The leading-order Feynman diagram for the decay H → ff, and the configuration in the Higgs
rest frame, are
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where u1(p2) is positive helicity (right-handed) and u2(p2) is negative helicity (left-handed).
The corresponding adjoint spinors are:

ū1(p2) =
√

E +mf (1, 0,−p/(E +mf), 0) , ū2(p2) =
√

E +mf (0, 1, 0, p/(E +mf)) . (1)

The antifermion 4-momentum is p3 = (E, 0, 0,−p) and the basis spinors are
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(2)

where v1(p3) corresponds to negative helicity and v2(p3) to positive helicity.

Combining equations (1) and (2), the four possible combinations u(p2)v(p3) are

ū1(p2)v1(p3) = ū2(p2)v2(p3) = 0 (3)

ū2(p2)v1(p3) = −ū1(p2)v2(p3) = 2p . (4)

Hence only two combinations, ū2(p2)v1(p3) and ū1(p2)v2(p3), give a non-zero matrix element.
These correspond to the following spin configurations:
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For ū2(p2)v1(p3), the fermion and antifermion both have negative helicity, while for ū1(p2)v2(p3)
both particles have positive helicity. The total spin in the final state in both these cases is
therefore zero, consistent with the fact that the Higgs boson has spin zero. The two other
spinor combinations, ū1(p2)v1(p3) and ū2(p2)v2(p3) have total spin 1 in the final state, which is
forbidden by angular momentum conservation.

The matrix element for the two non-zero spinor combinations of equation (4) is

Mf i =
gWmf

2mW

u(p2)v(p3) = ±gWmf

2mW

· 2p

Summing over these two possibilities gives a decay rate

Γ =
p

8πm2
H

〈|Mf i|2〉 =
p

8πm2
H

· 2
(

gWmf

2mW

· 2p
)2

=
1

4πm2
H

(

gWmf

mW

)2

p3

Since E = mH/2 and E2 − p2 = m2
f , the centre of mass momentum p is given by

p =
√

1
4
m2

H −m2
f .

Using GF/
√

2 = g2
W/8m

2
W then gives

Γ = Nc
GF√

2

m2
fmH

4π

(

1 − 4m2
f

m2
H

)3/2

.

For mH = 100 GeV, the decay H → tt is forbidden because the top quark is too heavy, but
decays to all other quark flavours and all lepton types are allowed:

H → bb, cc, ss, uu, dd, τ+τ−, µ+µ−, e+e−, νeνe, νµνµ, ντντ .

For all these final states we have m2
f ≪ m2

H (the heaviest final state particle is the b quark with
mb ∼ 5 GeV) and hence (1 − 4m2

f /m
2
H)3/2 ≈ 1. We can therefore take

Γ ≈ Nc
GF√

2

m2
fmH

4π
∝ Ncm

2
f .

Only b, c, τ are heavy enough to contribute significantly, with decay rates in the ratio 1

3m2
b : 3m2

c : m2
τ = 3 × (5 GeV)2 : 3 × (1.5 GeV)2 : (1.7 GeV)2 = 75 : 6.7 : 2.9

where the factors of 3 are for colour. For the b quark we have

Γ(H → bb) = 3 × 1.166 × 10−5 GeV−2

√
2

× (5 GeV)2 × (100 GeV)

4π
= 4.9 MeV

1Accurate values of the quark and lepton masses are not expected here, just rough estimates.
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giving an estimate of the total width Γ of

Γ ≈ (75 + 6.7 + 2.9)

75
× 4.9 = 5.5 MeV .

The Higgs lifetime is then given by

τ =
h̄

Γ
=

6.582 × 10−25 GeV.s

5.5 MeV
= 1.2 × 10−22 s .
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3. Neutral Kaons

The K0 and K0 belong to a JPC = 0−+ multiplet so

CP
∣

∣K0
〉

= −
∣

∣K0
〉

, CP
∣

∣K0
〉

= −
∣

∣K0
〉

.

The CP eigenstates K1 and K2 can then be constructed as

|K1〉 =
1√
2

(∣

∣K0
〉

−
∣

∣K0
〉)

CP |K1〉 = + |K1〉

|K2〉 =
1√
2

(∣

∣K0
〉

+
∣

∣K0
〉)

CP |K2〉 = − |K2〉

If CP violation is neglected, the states KS and KL decay only via KS → ππ and KL → πππ.
The ππ system has CP = +1 and the πππ system has CP = −1, and we can therefore identify

|KS〉 = |K1〉 =
1√
2

(∣

∣K0
〉

−
∣

∣K0
〉)

|KL〉 = |K2〉 =
1√
2

(∣

∣K0
〉

+
∣
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〉)

Feynman diagrams for K0 → π−e+νe and K0 → π+e−νe:
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Thus the decays K0 → π−e+νe and K0 → π+e−νe are allowed, while the decays K0 → π−e+νe

and K0 → π+e−νe are forbidden, i.e. the final state π−e+νe determines the K0 component in
the beam while π+e−νe determines the K0 component.

For a pure |K0〉 beam at t = 0, the initial wavefunction is

|ψ(0)〉 =
∣

∣K0
〉

=
1√
2

(|KL〉 + |KS〉)

The wavefunction ψ evolves with time as

|ψ(t)〉 =
1√
2

(|KL(t)〉 + |KS(t)〉)

=
1√
2

(

|KL〉 e−imLt−ΓLt/2 + |KS〉 e−imSt−ΓSt/2
)

.
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The decay rate into π−e+νe is determined by the K0 component of the beam:

Γ(K0
t=0 → π−e+νe) =
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where ∆m ≡ mL −mS. Similarly,
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t=0 → π+e−νe) =

∣
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.

The two decay rates become equal when cos ∆mt = 0, i.e. when ∆mt = π/2. Since L = vtlab,
tlab = γt, γ = E/m and v = p/E, we have

∆m =
π

2

1

t
=
π

2

γ

tlab

=
π

2

E/m

L/v
=

π

2L

p

m

=
π

2 × (17.8 m)
× 100 GeV

0.498 GeV
× (0.197 GeV.fm) = 3.5 × 10−15 GeV .

The KL lifetime is about 500 times greater than the KS lifetime, so at large times, only the
e−ΓLt term survives. The two decay rates are then approximately equal:

Γ(K0
t=0 → π−e+νe) ≈ Γ(K0

t=0 → π+e−νe) ≈ 1
4
e−ΓLt .

Since the beam is almost pure KL at large times, this gives (in the absence of CP violation)

Γ(KL → π−e+νe) = Γ(KL → π+e−νe) .

CP violation was first discovered through the observation of a small fraction of KL → π+π−

decays. The state KL was therefore seen to decay both into a CP = +1 eigenstate (ππ) and
into a CP = −1 eigenstate (πππ), which is only possible if CP is violated. A comparison of
KL → π+π− with KL → π0π0 showed that CP violation is due dominantly to mixing:

|KL〉 =
1

√

1 + |ǫ|2
(|K2〉 + ǫ |K1〉)

where |ǫ| ∼ 2 × 10−3. The ππ decays can then be explained as coming from the CP = +1 K1

component of the KL wavefunction.

With CP violation:

|KL〉 =
1

√

1 + |ǫ|2
(|K2〉 + ǫ |K1〉)

=
1

√

1 + |ǫ|2

[

1√
2

(∣

∣K0
〉

+
∣

∣K0
〉)

+
ǫ√
2

(∣

∣K0
〉

−
∣

∣K0
〉)

]

=
1

√

1 + |ǫ|2
· 1√

2

[

(1 + ǫ)
∣

∣K0
〉

+ (1 − ǫ)
∣

∣K0
〉]

.
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Hence the decay rates to π−e+νe and π+e−νe are

I(π−e+νe) ∝
∣

∣

〈

K0
∣

∣KL

〉∣

∣

2 ∝ |1 + ǫ|2

I(π+e−νe) ∝
∣

∣

〈

K0
∣

∣KL

〉∣

∣

2 ∝ |1 − ǫ|2

The decay rate asymmetry is

δ ≡ Γ(KL → π−e+νe) − Γ(KL → π+e−νe)

Γ(KL → π−e+νe) + Γ(KL → π+e−νe)

=
|1 + ǫ|2 − |1 − ǫ|2
|1 + ǫ|2 + |1 − ǫ|2

=
(1 + ǫ)(1 + ǫ∗) − (1 − ǫ)(1 − ǫ∗)

(1 + ǫ)(1 + ǫ∗) + (1 − ǫ)(1 − ǫ∗)

=
ǫ+ ǫ∗

1 + |ǫ|2
≈ 2Re(ǫ)
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