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SOLUTIONS

Deep-inelastic scattering at HERA

The isolated particle in the upper part of the diagram is the scattered positron, with a large
signal in the electromagnetic calorimeter followed by a negligible signal in the hadronic calorime-
ter.

Taking the x-axis to point vertically upwards and the z-axis to point horizontally to the right
in the diagram, the e™ beam must enter from the left along +2 and the proton beam from
the right along —z; otherwise longitudinal momentum is not conserved. (Also, the detector
is asymmetric, being deeper on the —z side to contain the more energetic proton fragments).
The scattering angle of the et (of energy 240 GeV) can be estimated from the diagram to be
0 ~ 154°. Hence the 4-momenta p;, ps, p3 of the incoming e*, the incoming proton and the
scattered e™, in units of GeV, are:

pr = (27.5,0,0,27.5)  ps = (820,0,0, —820)
ps = (240,240 x sin 154°,0, 240 x cos 154°) = (240, 105.2,0, —215.7)

This gives a four-momentum transfer
q=p1 —ps = (—212.5,—-105.2,0,243.2) ,

and hence

¢ = (—212.5)* — (—=105.2)* — (243.2)> = | —25057 GeV? | .
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The scalar product ps.q is
p2.q = 820 x (—212.5) — (=820 x 243.2) = 25174 GeV? ,

giving a Bjorken z value of

2 2 25057 GeV?

T 2paq 2 x (25174 GeV?)

(Note that the numerical value of the proton mass, M = 0.938 GeV, is not in fact needed).

For ep scattering, given
2e kY = FyP = szxqi(x, %)

we have 4 ] 4 ]
FeP— = - —2T —zd(x) .
5 9xu(w) + gxd(x) + gxu(x) + 9xd(x)
For en scattering, we interchange u(x) and d(x):
4 1 4 — 1
Fon == - - ~ () .
5 gxd(:):) + gxu(x) + gxd(a:) + gxu(x)
Hence
"1 ! -
/ —(F3? — F5")de = / 3 [u(z) — d(z) +u(z) — d(z)] dz
o T 0

Breaking each distribution function into “valence” and “sea” components and assuming the sea
components are all identical, we can write

u=uy(r)+S() d=dy(x)+Sx) u=S(x) d=S(z).

The distribution functions are normalised to the total number of that parton type in the proton:

/01 () = 2 /01 dy(2)dz =1 .

Y1, . o 1 1

In terms of uy (x), dy(z), S(x), we have

Hence

4 1 4 1 4 1 10
°p _ _ _ — — — — -
FP = gx(uv +9)+ 9a:(dv +95)+ 9335+ 9335 x {guv + 9dv + 5 S}

4 1 4 1 4 1 10
F2en - §$(dv + S) + §ZL’(UV + S) + §ZL‘S + §ZES =T |:§dv + §UV + §S:|

The ratio R of these two structure functions is
ern - 4dv + uy + 105

R = =
Fer 4’LLV + dv + 108

As z — 0, the sea component S(x) completely dominates and R — 1. As x — 1, S(z) becomes
negligible and the ratio depends on the relative magnitude of uy and dy. Experimentally, dy

becomes very small and R — .



Helicity and Handedness:

Without loss of generality, choose the direction of motion of the particle to be along the +z-axis.
In the limit £ > m, the free particle spinors become

1 0
0 1
Uy = \/E 1 ) Uy = \/E 0 )
0 -1
Operating on these with v° gives
0010 1 1
5 [ 0001 ol ol
Tu={ g g g0 |VE[1|=VE || =w
01 00 0 0
0010 0 0
0001 1 1
5, _ — - _
0100 -1 -1

Therefore, the left-handed and right-handed chiral components 3(1 —~°)u and (1 +~°)u are

(1 )ul - 07
1

)UQ = U3,

(1 + ’)/5)161 = Uq
(1 + 75)u1 =0.

NI— N
—
N~ N

Any free particle spinor u can be expressed as a linear combination u = aju; + asus. This has
left- and right-handed chiral components

up = 11+ )u= alé(l + 9% us + OéQ%(l + ) ug = ayuy

But, for motion along the +z-axis, u; and uy are the positive and negative helicity eigenstates,
respectively: R
S.uyp = +%U1, Soug = —%U2

Hence:

~ ~ . .
S.up = apSup = —500Uy = —5uL,

~ ~ 1 1
SZUR = alSzul = +5a1u1 == +§UR

demonstrating that, in the relativistic limit, %(1 —7°)u is a spin-down eigenstate (helicity —1)
and %(1 +~°)u is a spin-up eigenstate (helicity +1).



Neutrino scattering:

Feynman diagram for v,e™ — pu~ve:

Vu /"Li

e~ Ve

Spin diagram: the v, and v, both have negative helicity. Since the interaction is mediated by
a W= boson, only the left-handed chiral components of the e~ and p~ can contribute. In the
relativistic limit, the left-handed chiral component of a particle is a negative helicity eigenstate.
Since the e~ and p~ masses can be neglected (£ > m), the e~ and p~ therefore both have

negative helicity.
s

<= \ 8 )

A% > < c

" =
A

The total spin in both the initial and final states is zero. In the centre of mass frame, the total
3-momentum is also zero. Hence there is no preferred spatial direction and the scattering is
isotropic.

Feynman diagram for v,e” — v e™:



Spin diagrams: the initial and final state v, both have negative helicity. Since the interaction
is now mediated by a Z° boson, both the left-handed and right-handed chiral components,
i.e. both helicity eigenstates, of the e can contribute. Because of helicity conservation, the
initial and final helicity state of the e~ must be the same. Thus there are two possible spin
configurations, one with both e~ spins down (negative helicity, left-handed) and one with both
e~ spins up (positive helicity, right-handed).

2 2
<= )0 <= V8 ;

Vu »> < € A% »> < c
—> <=
Wiz
c

The left-handed case has relative interaction strength ¢ and gives isotropic scattering. The
right-handed case has relative interaction strength cf, and gives an extra factor of %( 1+ cos 0)?
because the initial and final states both have total spin +1 along the particle axis.
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For v,e™ — ™ ve, considering just the contributions from the vertex factors, we have

2
gw gw g
Mg ~ ==7"5(1 =) - =415 (1 = 7°) = ZXAr5(1 =) A5 (1= 77) .

N \/572 5 12

This is given to result in a differential cross section

do 1 G ?
- = — S
dQ 2 \ 8mmiy,

For v,e™ — v e, the vertex factors contribute

9z 97
M~ A5 (1= %) - "5 = 3”)
2
g
=5 [ 30 =" "5 (1= 7") + @31 =" "3 (1+97)]

The first term on the right-hand side is identical to the v,e™ — p~ v, case, except that gw is
replaced by gz and there is an extra factor of ¢f. The second term has an extra factor of cj,
and 1+ +° in place of 1 —~5. The latter gives rise to the different allowed spin configuration
discussed above, with angular distribution }1(1 + cos0)?. The v,e” — v,e” differential cross
section can therefore be written down directly from the v,e™ — p~ v, cross section above as

do 1 g2 2 . .
=2 (52s) sl + 300+ cost (6]
Z

where we have also replaced mw by my. Integrating over all angles using

+1
1
/%(1 + cos 0)%d) = 27r/ 114 2)*de = 3% 47
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and using gw = gz cos by, mw = my cos Oy gives

o(vue” —vue”)

o(v,e” — U ve)
Since the electron has Ii(,‘?}) = —% and () = —1, we have
= —% + sin? Oy CR = sin? Oy .

Substituting then gives a quadratic equation for sin? fy:

4
R = (—% + sin? OW)2 + %sin4 Ow = % —sin? Oy + 3 sin? Oy = 0.09 ,

which can be solved to give sin? fy ~ 0.52 or sin® Oy ~ 0.23, the latter being the correct result
(consistent with all other data).



