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The information in this box may be used in any question.

The Pauli-matrices are:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The gamma matrix representation of the Part III Particles lecture course was:

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
, γ5 =

(
0 I
I 0

)
= iγ0γ1γ2γ3,

which has the following properties:

(γ0)∗ = γ0, (γ1)∗ = γ1, (γ2)∗ = −γ2, (γ3)∗ = γ3 and γ2(γµ)∗ = −γµγ2.

Using the above convention, the Part III Particles lecture course defined the following
particle and anti-particle spinors:

u↑ = N


c

eiϕs
|p|

E+mc
|p|

E+meiϕs

 , u↓ = N


−s
eiϕc
|p|

E+m s
−
|p|

E+meiϕc

 ,

v↑ = N


|p|

E+m s
−
|p|

E+meiϕc
−s
eiϕc

 , v↓ = N


|p|

E+mc
|p|

E+meiϕs
c

eiϕs


for objects whose three-momentum p is given by |p|(cos ϕ sin θ, sin ϕ sin θ, cos θ) where
c = cos θ2 and s = sin θ2 . The normalising constant is N =

√
E + m.

h ≈ 1.05 × 10−34 kg m2/s, c ≈ 3.00 × 108 m/s, e ≈ 1.60 × 10−19 C.

me = 5.11 × 10−4 GeV. mp = mn = 1.67 × 10−27 kg.


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1 Neutrinos produced inside the sun by electron capture in the following process
7Be + e− → 7Li + νe are almost mono-energetic with an energy of Eν = 862 keV and are
produced at a rate of 4.5 × π × 1036 per second. The Earth’s mean distance from the sun
is 150 million km.

The Borexino experiment in Italy is optimised to look for such neutrinos. It
observes neutrinos through their elastic scattering νee− → νee− with electrons in
molecules of an organic solvent called 1,2,4-trimethylbenzene, C6H3(CH3)3 within
which a small quantity of a scintillating additive is dissolved. The additive generates
scintillation photons in proportion to the lab-frame kinetic energy (KEe = Ee − me) of
each scattered electron, and it is by this means that scattering events are observed. Many
tonnes of solvent are used in the experiment (1 tonne=1000 kg).

[
Each of the carbon

atoms of the solvent contains six protons and six neutrons.
]

If the above scattering process were mediated exclusively by the W-boson (and if
electron and neutrino masses could be neglected) then the total cross section in natural
units would be:

σ(νee− → νee−) =
G2

F s
π

(⋆)

where
√

s is the centre-of-mass energy and GF = 1.166 × 10−5 GeV−2.

(a) Write down in S.I. units a numerical value for the cross section predicted by
(⋆) for 7Be solar neutrinos. [4]

Bookwork
We are told that GF = 1.166 × 10−5 GeV−2. The quantity s is the square of a
centre-of-mass energy, and so the units of

G2
F s
π

will be ‘per energy squared’. However, we know that cross sections should come out as
‘per unit area’ i.e. ‘per length squared’. We recognise, therefore, that we should use the
fact that hc = 197 MeV fm (emphasised in the course) is 1 in natural units to get back lost
unit-inducing factors. We will need two powers of hc to convert back to actual area.
Hence, with that correction we actually evaluate:

σS.I. =
G2

F s
π

(hc)2 .
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Furthermore,

s = (pµe + pµν )
2

=




Eν
0
0
Eν

 +


me

0
0
0




2

=


Eν + me

0
0
Eν


2

= (Eν + me)2 − E2
ν

= 2meEν + m2
e

(assuming all quantities are internally in Natural Units). Paper rubric says me = 511keV
and question description says Eν = 862 keV so cannot neglect electron mass.

In summary:

σS.I. =

G2
F

π
(2meEν + m2

e)

Natural Units

(hc)2

=
1
π

(
1.166 × 10−5 GeV−2

)2
× ((511 × 862 + 5112) × keV2)×

(197 MeV fm)2

≈ 1.92 ×
keV × keV ×MeV ×MeV
GeV × GeV × GeV × GeV

× fm2

= 1.92 ×
1018

1036 ×
(
10−15 ×m

)2

= 1.92 × 10−48 m2

[ Aside: You get σS.I. = 1.48 × 10−48 m2 if you assume me ≪ Eν. Though this is not
really the case, no significant penalties are applied to those who assume that. ]

Note that a student who has not learned hc=197 MeV fm will still be able to complete
the question by computing this value from constants given in the text between rubric and
question. However this will cost them time and effort, and the intention is that those who
did learn hc=197 MeV fm will benefit from having learned this. If they did want to work
this value out for themselves they would have to do this:
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Note added after marking the 2022 exam scripts:
Though it was reassuring to see that the majority of candidates who sat the exam

(approximately 90% of them) could (and did) instantly write down hc = 197 MeV fm, it
was nonetheless surprising that very few candidates could either (a) answer this question
correctly, or (b) that many who got huge answers did record any concerns about the size
based on ‘feeling’ that neutrino cross sections should be ‘small’. In fact, the list of
answers received in 2022 (sorted into random order) was as follows:1

1.91 × 10−39 m2, 0.00 × 10+00 m2, 1.48 × 10−48 m2, 0.00 × 10+00 m2, 5.20 × 10−47 m2,
4.97 × 10−56 m2, 1.48 × 10−48 m2, 1.93 × 10−48 m2, 7.90 × 10−53 m2, 4.37 × 10−49 m2,
1.91 × 10−48 m2, 4.43 × 10−38 m2, 1.15 × 10−48 m2, 1.48 × 10−48 m2, 6.04 × 10−31 m2,
3.79 × 10−73 m2, 0.00 × 10+00 m2, 1.25 × 10−48 m2, 1.48 × 10−45 m2, 1.26 × 10−42 m2,
2.00 × 10−47 m2, 1.92 × 10−46 m2, 1.65 × 10−42 m2, 3.17 × 10−33 m2, 1.90 × 10−48 m2,
1.30 × 10−48 m2, 1.25 × 10−48 m2, 1.40 × 10−30 m2, 1.27 × 10−43 m2, 1.47 × 10−26 m2,
1.58 × 10−46 m2, 9.30 × 10−09 m2, 1.38 × 10−42 m2, 3.13 × 10−49 m2, 1.45 × 10−45 m2,
7.25 × 10−35 m2, 1.91 × 10−48 m2, 3.27 × 10−12 m2, 7.70 × 10−12 m2, 1.00 × 10−54 m2,
1.20 × 10+15 m2, 1.10 × 10−41 m2, 1.49 × 10−48 m2, 1.92 × 10−48 m2, 5.00 × 10−48 m2,
3.17 × 10−48 m2, 7.29 × 10−41 m2, 1.07 × 10+09 m2, 1.92 × 10−48 m2, 1.92 × 10−48 m2.

Note that the range of values reported extends over nearly 100 orders of magnitude
from 10−73 m2 to 10+15 m2. The upper extreme is more than double the surface area of
The Earth! One would have imagined that all candidates with answers close to or above a

1Some people gave answers in fm2 rather than m2 for no penalty. The answers given in this list are
what those answers would have become after conversion to m2. A very small number of people gave
incommensurate answers. E.g. at least one person reported a value for the cross section as a volume (m3),
another as a length, another as a frequency, and another as dimensionless. To protect the identities of those
persons I have rendered those small number of answers in the list here as m2 and/or changed them in some
other way even though they were not reported as such on the scripts. The number of such changes is so
small, however, as to not change the meaning of the list as a whole.
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square fermi or a barn (i.e. above ∼ 10−30 m2 or ∼ 10−28 m2, the size nucleii) would have
had huge reason to express concern that their answers answers being correct given the
expectation that neutrinos should be the most slippery and hard-to-detect particles of the
Standard Model. Alas few with large cross sections did report on or notice excess sizes,
though those who were able to spot their answers were too big were usually given some
credit for their wisdom even if they lost credit for their inability to divide or convert
between units.

(b) Estimate the number of electrons in one tonne of 1,2,4-trimethylbenzene.
Make clear your assumptions and estimate the accuracy of your answer. [4]

Straightforward
1,2,4-trimethylbenzene has 9 carbon atoms and 12 hydrogen atoms. That implies that in
one molecule Np = 9 × 6 + 12 = 66 while Nn = 9 × 6 = 54. Ignoring the full SEMF,
binding energies, electron masses, etc, the approximate number of molecules in one tonne,
Nmolecules-per-tonne, could be given by:

Nmolecules-per-tonne =
1 tonne

66mp + 54mn

=
1 tonne

120 × mp
(since we may assume mp = mn)

=
103 × kg

120 × 1.67 × 10−27 × kg
= 4.99 × 1027.

Using this, the number of electrons per tonne, Nelectrons-per-tonne, is given by

Nelectrons-per-tonne = Nmolecules-per-tonne × Np

= 4.99 × 1027 × 66

= 3.29 × 1029.

This answer is certainly not better than 1% as mp and mn are only given to that precision.
Neglection of the SEMF and/or binding energies and could easily be an ∼ O(5%) effect.
Ignoring electron masses will be an O(0.1%) effect. Probably our final estimate is
therefore accurate to somewhere between 1% and 10%. A candidate may produce an
estimate by a different method and still get full credit so long as the method chosen is not
likely to be out by more than 10%.

(c) Estimate the maximum number of 7Be solar neutrino interactions which occur
per day per tonne of the Borexino detector, in the absence of neutrino oscillations,
assuming that the cross section for scattering is described by (⋆). [4]

Straightforward
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The 4.5 × π × 1036 s−1 solar neutrinos at the source are spread out over a sphere of area
4π × (150 × 109 m)2 by the time they reach Earth, meaning that the flux of neutrinos at the
Earth, ϕ, will be

ϕ =
4.5 × �π × 1036 s−1

4 × �π × (150 × 109 m)2

= 5.0 × 1013 m−2s−1

= 5.0 × 109 cm−2s−1.

If the cross section for neutrino scattering from part (a) is

σ = 1.48 × 10−48 m2

and the number of scatterers per tonne from part (b) is

N = 3.29 × 1029 tonne−1

then the event rate Γ (in the absence of neutrino oscillations) would be

Γ = ϕσN

= (5.0 × 1013 m−2s−1) × (1.92 × 10−48 m2) × (3.29 × 1029 tonne−1)

= 3.16 × 10−5 tonne−1s−1

= 3.16 × 10−5 tonne−1s−1 × (86400 s day−1)

= 2.73 day−1tonne−1.

[Aside: This is 273 events per day per hundred tons, which is relevant to part (h) of this
question.]

(d) Describe the angular and energy distributions in the centre-of-mass frame for
electrons scattered by neutrinos as a result of charged-current interactions. Include
within your answer an algebraic expression for dσ/dΩ∗ showing its dependence
on the cosine of the angle θ∗ between the outgoing electron and the incoming
neutrino. [4]

Applied knowledge
The incoming and outgoing neutrinos are necessarily left-chiral. The charged current

of the weak interaction preserves chirality, so the incoming and outgoing electron
chiralities may be deduced from those of the neutrinos and area as shown in the next
diagram (which incorrectly labels chiralities as helicities!):
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If the particles are relativistic,2 states of definite chirality are also states of definite helicity,
and so the initial state and final state are S = 0. Consequently the radiation is spherically
symmetric in the c.o.m. frame, i.e. uniform in cos θ∗ and uniform in ϕ. The former ranges
over [−1, 1] and the latter over [0, 2π] which are size 2 and 2π respectively, and so the
differential cross section is simply a factor 4π less than the total:

dσ
dΩ∗

=
G2

F s

4π2 .

In this frame the energies for the electrons (both incoming and outgoing) are fixed by
momentum conservation and are equal to each other, and the same can be said for the
neutrino energies. The energies could be found by solving the energy conservation
equation in 

√
s

0
0
0

 =


p∗

0
0
p∗

 +


√
m2

e + (p∗)2

0
0
−p∗


yielding

p∗ =
s − m2

e

2
√

s
and E∗e =

√
m2

e + (p∗e)2 =
s + m2

e

2
√

s
.

2In actual fact the particles are not relativistic but in a grey area between relativistic and non-relativistic.
From past experience it is not expected that candidates will worry about this distinction. It is expected that
all/most will just assume the particles are relativistic and will answer accordingly. To guide them in this
direction the opening question paragraph mentions that the supplied cross section assumes that the electron
mass has been neglected. Of course, a candidate who takes a more nuanced approach and does not neglect
electron masses will not be penalised (and could even be rewarded). But dealing with me , 0 is certainly
not expected, and the fact that there are only 4 marks here should make very clear to the candidates that
they are being asked for a simple answer, not a full-on first-principles spinorial calculation. For 4 marks
they should realised that a simple argument is being requested. FWIW: the possibility to express concerns
about relativistic/non-relativistic an be explicitly rewarded later in part (h).
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The first Borexino paper to describe observations of 7Be neutrinos (arXiv:0708.2251)
noted that:

“. . . the recoil electron [kinetic energy distribution has] a rectangular shape
with a sharp cut-off edge at 665 keV in the case of 7Be neutrinos (see Fig. 1).
The background from the 156 keV β-decay of 14C, intrinsic to the scintillator,
limits neutrino observation to [scattered electrons with kinetic] energies above
200 keV.”

The figure referred to in the text above shows the following plot:

(e) Check that that KEmax
e = 665 keV is indeed the maximum kinetic energy of an

electron scattered by a 7Be solar neutrino by: (i) deriving an algebraic expression
for KEmax

e in terms of me and Eν, and then (ii) confirming that it evaluates to
665 keV.

[
You will not be able to neglect the electron mass.

]
[4]

Straightforward


Eν
0
0
Eν

 +


me

0
0
0

 =


k
0
0
−k

 +


√
m2

e + p2
e

0
0
pe

 (1)

is solved as follows. First, equate total energy before and after:

Eν + me = k +
√

m2
e + p2

e (1)

and equate total momentum before and after:

Eν = −k + pe (2)
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Then (1)+(2) gives

2Eν + me = pe +

√
m2

e + p2
e

so
(2Eν + me − pe)2 = m2

e + p2
e

or

4E2
ν + 2Eνme − 2Eνpe + 2Eνme + m2

e − me pe − 2Eνpe + me pe + p2
e = m2

e + p2
e

so
2E2
ν + 2Eνme − 2Eνpe − me pe = 0,

giving

pe =
2E2
ν + 2Eνme

2Eν + me
= 1059 keV.

Using that value of pe with the supplied electron mass in the supplied KE formula:

KEmax =

√
p2

e + m2
e − me

gives Emax = 664.9 keV.
ASIDE 1: One student who took the exam took a different (but equivalent) approach

with his/her algebra and arrived at an answer which is the same as the above but which is
more explicit. He/she (correctly) found that one can write:

KEmax =
2E2
ν

me + 2Eν
= 664.9 keV.

ASIDE 2: In the exam quite a few candidates attempted a bit of (what one might call)
‘speculative numerology’ rather than physics to answer this ‘show that’ question. E.g. at
least two candidates appeared observe that

√
Eνme ≈ 664 keV, and so created what

appeared to be pseudo-justifications for this being the right formula for KE max. Perhaps
they hoped that 664 keV was close enough to 665 keV to be telling them something? Alas,
any argument leading to a KE max value pf

√
Eνme must be wrong: the similarity between

664 and 665 keV is purely a co-incidence. The plot following this para (produced during
marking – it would not have been needed by people taking the exam) shows that as Eν is
varied the alternative numerology answer

√
Eνme (in orange) does not track the correct

answer (in blue) even though they happen to pass very nearby each other for the value of
Eν supplied in the question (dotted vertical line). A similar coincidence was found by
another candidate who reported KEmax =

√
E2
ν − m2

e which again is very close to the
desired answer (see red line in plot below) but only at the given value of Eν. Numerology
is (sadly) not a suitable way of solving this question!
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(f) Explain how you could find out whether the Borexino paper’s description of
the shape of the kinetic energy spectrum of scattered electrons is consistent with
your answer to part (d)

[
You are not required to compute an analytic form for the

lab-frame kinetic energy distribution of the electrons, but your answer must
provide a clear description of the nature of the computations you would perform.

]
[4]
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Unseen
[Note: This question is not asking a candidate to PERFORM a calculation, it is only

asking then to outline how they would go about performing a calculation. There are thus
as many ways of answering it as there are valid approaches. The example given below is
just one way a candidate might consider answering it. It is important to stress that answers
very different to the one given below could easily gain full marks – all that matters is that
the process described make sense overall and achieve the desired aim.]

The uniform radiation in the COM frame for the radiated electron will, after a boost to
the lab frame, lead to a preference for forward peaked electrons. Whether or not this leads
to a flat (or flattish) distribution for the kinetic energy would require one to transform the
mono-energetic distribution from the c.o.m. frame to the required distribution in the lab
frame. The student could report that such a transformation is, in effect, what we did in the
lecture course when we worked our way from the c.o.m.-frame expression

dσ
dΩ∗

=
1

64π2s

|p̄∗f |

|p̄∗i |
|M f i|

2

to the lab-frame expression

dσ
dΩ
=

1
64π2s

(
1

M + E − E cos θ

)2

|M f i|
2 (A)

via Jacobians computed by expressing final-state dependent nvariants (like Mandlestam t)
in terms of first (i) com quantities and then (ii) lab frame quantities. Eq (A) shown above
is not itself directly applicable to us as its cos θ is for the outgoing massless particle not the
outgoing massive particle (the electron) – but the nature of the computation done would be
similar.

If we had been interested in the distribution of the cos θ of the neutrino (rather than
the electron) then the expression (A) just given shows us that (since the matrix element has
no preference for any special final state directions) the probability density cos θ can be
simply read off as proportional to (

1
M + E − E cos θ

)2

.

Since we are actually interested in the distribution of KEe our goal would be to get dσ
dKEe

rather than dσ
d cos θ ∝

dσ
dΩ so that we could read off whatever pre-factor then appeared. We

would therefore expect to need to calculate the Jacobian dKEe
d cos θ so that the desired

differential cross could be computed from

dσ
dKEe

=
dσ

d cos θ
d cos θ
dKEe

.

If, having done so, we found an expression that looked like:

dσ
d(KEe)

= f (s,KEe)|M f i|
2
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then consistency would be established with the Borexino description if the function
f (s,KEe) were shown to be approximately independent of KEe. Calculating d cos θ

dKEe
could

be ugly and might be best done using a computer algebra package.

(g) According to the Borexino paper, what fraction of 7Be solar neutrino elastic
scattering events are observable, i.e. would have kinetic energies above the
β-decay background? [2]

Straightforward
As the distribution is flat, the observed fraction is approx

1 − 200/665 = 70%.

1 mark for the general idea, and a second one for using 200 keV rather than 156 keV in the
formula. [To first approximation, answers good to ±10 % were accepted.]

(h) The Borexino experiment reported 49 ± 4 counts/(day · 100 tonne) from
neutrino interactions, while 75 ± 4 counts/(day · 100 tonne) were expected without
neutrino oscillations. The rate found in part (c) should be significantly larger than
either of these two rates. What might be the main cause or causes of the
discrepancy? [4]

Unseen
[Aside: One cause of discrepancy could be that the student just made a mistake and

got an astronomically high prediction through simple error. While it would be correct for a
student to say ‘my answer is bigger than Borexino’s own prediction because I made a
mistake and they did not’ that sort of answer is clearly not what the examiners are looking
for and will not be awarded marks! Marks will not be deducted for students who note
something along these lines, though.]

[REASON 1 of 3] : The notes highlight the fact that electron neutrino detection via
elastic scattering from electrons is complicated by the fact that the neutral current
(Z-boson) interaction is also possible. It was reported in the notes that the Z-boson matrix
element interferes destructively with the W-boson one, (⋆), leading to the total cross
section for elastic scattering being about 0.6 times lower than would have been expected
from the (⋆) alone. This might be a good place for candidates to draw the two lowest order
Feynman diagrams for the process of νee− → νee− scattering: one with a Z and one with a
W.

[REASON 2 of 3] : We saw in part (g) that only 70% of the of the scattering events
are observable in Borexino.

[REASON 3 of 3] : There will inevitably be other sources of inefficiency though we
are not able to quantify such sources with the information in the question. Photomultiplier
down time might be one source. A change in angular distribution caused by the Z-boson
interference changing the angular distribution to something different to that described in
(d) may perhaps account for a small inefficiency. E.g. the plot from the paper shows a
non-flat energy spectrum whose red line actually RISES slightly at energies beklow 0.25
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MeV, and perhaps this is due to Z-interference. This rise would mean that the number of
events above the 200 keV threshold would not be 70% but slightly less than 70%.

Taking into account the two multiplicative correction factors we can quantify above
(the 60% from Z-boson interference, and the 70% from KE thresholds) results in our
original count-rate prediction of

210 day−1(100 tonne)−1

predicted in part (c) being reduced to

0.6 × 0.7 × 210 day−1(100 tonne)−1 = 88 day−1(100 tonne)−1.

The rate reported by Borexino’s paper (75 ± day−1(100 tonne)−1) is only 85% of the
value we determined, so it is not too hard to imagine that this remaining difference could
due to the other sources of unquantified inefficiency similar to those described in
‘[REASON 3 of 3]’.

©
20

23
U

ni
ve

rs
ity

of
C

am
br

id
ge

(TURN OVER



16

2 (a) Forward-Backward Asymmetry of the Z-boson:
In 1997, one of the LEP experiments (ALEPH) published3 the following plot of
their measurements of the Z-boson’s forward-backward asymmetry.

The plot above was captioned:

‘Measured forward-backward asymmetries of muon-pair production
compared with the fit results. . . . For comparison the measurements at
lower energies from [other experiments called] PEP, PETRA and
TRISTAN are included.’

The fitted curve in the plot above passes through the point (mZ, 0.020) where mZ is
the mass of the Z-boson.

(i) From an experimental perspective: how is AFB defined and how are
measurements of AFB like those shown in the above plot made? [4]

Bookwork
Key features of a good answer might include saying:
•How forward and backward directions are defined in e+e− → µ+µ− events
(forward meaning outgoing µ− has same sign of z-component of its momentum
as was had by the incoming e−).
•What σF and σB actually are.

3Phys. Lett. B 399 (1997) 329
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•That AFB =
σF−σB
σF+σB

.
•That as a cross-section ratio the asymmetry insensitive to luminosity
uncertainties and acceptances (so long as the same for positive and negative
particles) which is a desirable feature.

(ii) From a theoretical perspective, why is AFB worth measuring? What
theoretical features of the standard model does it constrain, and how? [8]

Bookwork
The word ‘features’ in this question was deliberately chosen (when

‘symmetries’ or ‘parameters’ would have been more specific) to avoid making the
question too ‘leading’. That is to say, part of the point of phrasing the question this
way is to see if candidates answering it appreciate that there are at least two
different reasons AFB-measurements are interesting: (i) because they tell us
something about a symmetry (Parity Violation in the standard model) via
parameters like ce/µ

L/R which control that parity violation, and (ii) because they allow
us to make measurements of parameters, like sin θW , which are less directly related
to parity breaking. [The above (i)/(ii) split is not a clear-cut dichotomy that should
be enforced in marking. Someone could easily argue that sin θW is very much parity
related since it tells us how much the W3-boson (which only couples to left-handed
doublets) should mix with the even-handed B-boson. Nonetheless, it will be
expected that somehow candidates bring out in some way the idea that there are
both measurements of sin θW and measurements of cL , cR to be got out of
AFB-measurements.]

Key features of a good answer might therefore include saying:
•That

< |M f i|
2 >∝

[
(ce

L)2 + (ce
R)2

] [
(cµL)2 + (cµR)2

]
(1 + cos2 θ)+

+2
[
(ce

L)2 − (ce
R)2

] [
(cµL)2 − (cµR)2

]
cos θ

and that therefore
dσ
dΩ
∝ A(1 + cos2 θ) + B cos θ

with A =
[
(ce

L)2 + (ce
R)2

] [
(cµL)2 + (cµR)2

]
and

B = 2
[
(ce

L)2 − (ce
R)2

] [
(cµL)2 − (cµR)2

]
and so

σF ∝

∫ 1

0

dσ
dΩ

d cos θ =
4
3

A +
1
2

B

and

σB ∝

∫ 0

−1

dσ
dΩ

d cos θ =
4
3

A −
1
2

B

and so
AFB =

B
8
3 A
=

3
4

AeA f
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if we define

A f ≡
(c f

L)2 − (c f
R)2

(c f
L)2 + (c f

R)2
≡

2c f
Vc f

A

(c f
V )2 + (c f

A)2
≡

2c f
V/c

f
A

(c f
V/c

f
A)2 + 1

.

•A candidate may wish to add some justification for the link between the Matrix
Element given above and the helicity conservation at the Z-boson vertex?
•That within the Standard Model σF and σB are different from each other (or
equivalently that AFB , 0) if and only if (i) ce

L , ce
R, and (ii) cµL , cµR are

different.
•This means that AFB gives us a handle on a parity violation within the Standard
Model, and a that a non-zero value of AFB shows us that the SM violates parity.
•Another reason AFB is good to measure is that it provides a clean way of
measuring sin2 θW . A candidate could substantiate this claim by saying: (i) that
AFB-measurements constrain Ae and Aµ, (ii) that any A f constrains c f

V/c
f
A, and

(iii) that (by reproducing the argument given in lectures) charged leptons
satisfy:

c f
V

c f
A

= 1 − 4 sin2 θW .

•Bonus marks for nothing that AFB , 0 does not by itself tell us that parity is
violated in nature. It only tells us that parity is violated if the SM describes
nature. This is because σF − σB is that AFB (as a quantity) is invariant (not
odd) under a parity transform (a property it inherits from the invariance under
parity of the angle θ between the outgoing muon and the incoming electron).

(iii) What general conclusions (if any) can be drawn from the ALEPH plot as a
whole? What quantitative conclusions (if any) can be drawn from the value
of AFB at

√
s = mZ ? What quantitative conclusions about electroweak

unification (if any) can we draw from the same data point if it is also
assumed that electrons and muons have identical couplings to the Z-boson? [8]

Bookwork
Key features of a good answer might include:
•Broadly speaking, the fact that AFB , 0 at some values shows us that the SM’s
cL and cR values are unequal. [8]
•Broadly speaking the fitted curve’sAFB value is very close to 0 when

√
s = mZ .

This means that sin2 θW is close to one quarter.
•Broadly speaking, the fact that the curve is not constant suggests that there is
more than just one diagram involved – that there is some kind of interference
between processes with different angular preferences.

To make specific use of AFB(mZ) = 0.02 we would need to interpret it. To do this
needs a theory. The only theory that the students on this course have access to is a
leading-order calculation done assuming that only the Z-boson matters. An
interpretation can be offered with this theory, but of course it should be recognised

©
20

23
U

ni
ve

rs
ity

of
C

am
br

id
ge



19

that a full calculation would have to be done (and might give have a slightly
different result) taking into account things neglected here, if it were desired to get a
result closer to ‘reality’.

Our leading order calculation said that:

AFB(mZ) =
3
4

AeAµ.

If we are unwilling to make any further assumptions, then the only thing we can
conclude is that

3
4

AeAµ ≈ 0.02.

However, if we are willing to assume lepton universality we have also that
Ae = Aµ = A and so

3
4

A2 ≈ 0.02

and so

A ≈ ±

√
0.08

3
.

As already mentioned, we are expecting:

A =
2ρ

1 + ρ2

in which we have defined ρ = ce
V/c

e
A = cµV/c

µ
A. This means that

Aρ2 − 2ρ + A = 0

or

ρ =
1 ±
√

1 − A2

A
.

Given the ± in the formula for ρ and the (independent) ± in A there are therefore
four possible values of ρ:

ρ ∈

+
1 +

√
1 − 0.08

3√
0.08

3

,−
1 +

√
1 − 0.08

3√
0.08

3

,+
1 −

√
1 − 0.08

3√
0.08

3

,−
1 −

√
1 − 0.08

3√
0.08

3


≈ {+12.2,−12.2,+0.0822,−0.0822}.

We also already mentioned that

ce
V/c

e
A = ρ = 1 − 4 sin2 θW

and so
sin2 θW =

1
4

(1 − ρ).

Using our four values of ρ we get

sin2 θW ∈ {−2.79, 3.29, 0.229, 0.271} .
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We can discount the first two values as being outside ±1. But the last two are
plausible. The data point at the centre of the plot is therefore consistent (at least if
analysed using only the Z-diagram and only at leading order) with

sin2 θW ∈ {0.229, 0.271} .

One of these is not overly inconsistent with the current experimental value of
sin2 θW ≈ 0.23.

(b) The Quark Model of the Hadrons: The Σ0, Σ0∗ and Λ0 baryons all have the same
uds flavour, yet each has a different mass from the other. Why is this? Are there
any physical (rather than, say, simply notational or conventional) reasons for them
to have different masses? [10]

Unseen
Despite the fact that a good answer to this question could be wordy and need not

involve calculations, per-se, it is not a ‘brief notes’-style question. In particular, there is no
section of the lecture notes that a student with a photographic memory can regurgitate and
thereby obtain full marks. A student might be able to paste some parts together to achieve
a reasonably high mark. But what I am looking for above all is to reward candidates who
can find some pithy/simple way summarising in their own words the nuances of what
multiplets are, which symmetries are exact, which are approximate, and what that even
means. The ‘worked answer’ below is not ‘the right answer; it is just an example of the
sorts of issues I hope will be covered. From past experience as an examiner I am aware
that many candidates will write much better answers than that provided here, or may find
very different ways of conveying the same information that are also able to gain full credit.
Above all, the intention when marking will be to reward candidates who are able to
convince the marker that they understand the answer to the question at a level beyond
photographic recall of notes.

Messages I would like to see conveyed could include:

•That flavour symmetry is apparently broken by both mass (e.g. md , mu < mc < ms

etc.) and electric charge (Qu , Qd, etc).
•But that if an n-colour flavour symmetry were not broken, then the hadrons
(collections of quarks) would group together into S U(n)-multiplets for which
EVERY element of a given multiplet would be identical with respect to external
properties (mass, spin, orbital angular momentum, parity, etc) even if those external
properties could be different in other S U(n)-multiplets.
•To underline the above point, the difference between the elements of a
SU(n)-flavour-multiplet would be no more than that signifying the difference between
a spin-up or a spin-down electron (both members of an SU(2)-spin doublet). By this
we mean that spin-up can be turned into spin-down by a mere rotation of co-ordinate
axes, thus showing that (in a universe with rotational symmetry) there is no
fundamental difference between spin-up and spin down. And in the same way any
element of an S U(n)-flavour-multiplet (were it a true symmetry) could be turned into
any other by a redefinition of the flavour basis.
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•In that sense, the difference between the Σ0, Σ0∗ and Λ0 baryons could be approached
by our asking “Are they all in the same SU(3)-flavour-multiplet? Or are they in
different ones?” This is a useful question to ask, because if are they in different
multiplets, they can have very different masses or spins purely because they are put
together with different spin and flavour wave-functions. In contrast, those which are
in the same flavour multiplet as each other would be literally identical, were it not for
other effects we will come to.
•It is not expected that candidates will be able to name and place every baryon by
name onto the appropriate multiplet, so it is not expected that candidates will
instantly recognise the spin and flavour wavefunctions of the Σ0, Σ0∗ and Λ0.
However, it can be expected that candidates for the exam can spot that uds is at the
CENTRE of any SU(3)-flavour multiplet, and it can be expected that they will recall
(or will be able to work out on a scrap of paper) that three-quark (i.e. baryon)
SU(3)-flavour multiplets constructed from 3 × 3 × 3 decompose into a symmetric
decuplet, two mixed-symmetry octets and a singlet state (33 = 10 + 8 + 8 + 1) and
that since the SU(2) spin wavefunctions from 2 × 2 × 2 decompose into a symmetric
quadruplet and two mixed symmetry doublets (23 = 4 + 2 + 2) so that the only
combinations yielding the correct overall antisymmetry between quarks are an
S = 3/2-decuplet and an S = 1/2-octet.
•Given the above, and knowing that octets have two states at their centre (more on that
later) they should know or be able to deduce that, between them, two of the baryons
in the set B = {Σ0, Σ0∗, Λ0} are in the octet, whereas one is in the decuplet.
•As examiner I don’t really mind which one they call which. Names are just names,
after all, and little meaning is directly attached to them. However, the candidate who
notices that super-script ∗ is often often attached to excited states might well assume
that the two Σ baryons cannot be in the same multiplet, and this means that Λ0 has to
be in a multiplet with one of the other two, and so the Λ0 has to be in an octet. Bonus
marks to anyone who notices this perhaps?
•Similarly, ‘hats off’ to anyone who spotted (when revising the baryons part of the
course) that baryons in a given row of the (S=3/2) decuplet are always heavier than
the baryons in the corresonding row of the (S=1/2) octet. If they did spot this they
could have reasonably intuited this as being consistent with the idea that it’s harder to
trap three magnets together with their north poles all pointing upwards and south
poles all down (repelling each other) than to place one magnet anti-parallel to the
other two, and so the higher internal energy of the S = 3/2 naturally makes them
heaver and more excited than the others. Someone vaguely recalling that could
(reasonably) put this fact together with that in the last bullet point to deduce
(correctly) that the excited Σ0∗ is the one on his own in the S = 3/2-decuplet while it
is the Λ0 and Σ0 which live together in the octet.
•This means that the biggest difference between the states in B is that the Σ∗ has
S = 3/2 and therefore is probably heavier than both the other two as a result of its
magnetic moments being parallel. Some people may just have remembered that
photographically [the lectures notes said mΣ0∗ = 1318 GeV, while mΣ0 = 1193 MeV
and mΛ0 = 1116 MeV.] but more credit can be given to those who can explain where
all this is coming from.

©
20

23
U

ni
ve

rs
ity

of
C

am
br

id
ge

(TURN OVER



22

•Arguably the hardest remaining part of the question is to then explain what the
difference is between the Λ0 and Σ0 which live together in the sane octet. These two
have, after all, the same spin and parity as each other, and (as we’ve already said)
would be IDENTICAL to each other were it not for SU(3)-flavour being a broken
symmetry. The ‘trite’ answer to this might be to say:

As one uses the T− isospin ladder operator to traverse step-wise across the
middle row of the baryon octet from the right-most state (uus or Σ+) to the
left-most sate (dds or Σ−) one will inevitably see each member of an isospin
triplet of states as the uu→ 1√

2
(ud + du)→ dd or

(I3 = 1)→ (I3 = 0)→ (I3 = −1), and so there should be a state in the
middle which is the central member of an isospin-triplet (this is the state Σ0.
Therefore there must be a different state (which we might call the Λ0) which
is in an isospin-singlet state.

The reason that this is a ‘trite’ or cop-out answer is that: (i) it does not tell us why we
should care any more or any less about the T± operators than about the V± or U±
ladder operators, and (ii) even if we did see a reason to view T± as special4 we would
still not really have provided a satisfactory answer to the question of: ‘In what
observable way is an iso-singlet state any different from an iso-triplet state?’. It is to
flesh out an answer to the above that the candidates will have to put their answer
together with information from other parts of the course.
•What I hope that some students will notice is that, in truth, the real difference
between the Λ0 and Σ0 cannot be worked out, ab initio from arguments dealing only
with ladder operators5 Instead I hope they will connect this part of the course to what
they saw with the K0 and K̄0 in the CP-violation part of the course. There they saw
that the K0 and the K̄0 could change into one another, and that (a priori) the linear
combinations of them that had well defined masses were related to what decays each
was able to undergo. In that case the things with masses (KL and KS were very
closely related to states with given CP (K1 and K2) since decays with some CP values
were harder than others. In the same way, what actually separates Σ0 and Λ0 is their
masses, and what drives their masses to (subtly) different values will depend on what
sorts of decays things with a uds flavour content can decay to ...
•Although world describes Λ0 as the iso-singlet and Σ0 the iso-triplet ... really we
should just give a name to the iso-singlet (call it λ0) and a name to the iso-triplet (call
it σ0) and then we should just accept that the PHYSICAL states with well defined
masses (Λ0 and Σ0) are just some as-yet undetermined orthogonal linear
combinations of λ0 and σ0. Critically we can say that (at this point) we do know what
the flavour wavefunctions for λ0 and σ0 are, even if we do not know what the flavour
wavefunctions for Λ0 and Σ0 are.

4A prime candidate for making T± special is that the u and d quarks are by far the lightest, and so as
far as mass is concerned could be viewed as more similar to each other than to any other quarks, making T
the ‘best’ symmetry. But the Devlis Advocate could complain that, nonetheless, Qd = Qs = −2Qu which
would give a special role to the ladder operators (U±) interchanging d and s quarks.

5If simple ladder operator arguments were good enough, then the three flavour wave functions given in
the lecture course for the three mesons at the centre of the pseudoscalar nonet would not looks so different
from the flavour wave functions given for the three mesons at the centre of the vector nonet!
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•We do not expect the candidates to know the different decay modes of the Σ0 and Λ0,
but they should be able to see that uds decays to lighter final states would (angular
momentum conservation and and parity conservation permitting, etc) either: (i)
involve changing an s to a u by emission of W− leading to either
uds→ udue−ν̄e → p + e−ν̄e or uds→ uduūd → ((p + π−) or (n + π0)), or (ii) would
simply involve a neutral emission like uds→ uds + γ.
•We know that it CANNOT be the case that only decays of uds→ uds + γ are
possible (for both λ0 and σ0) since if that were the case then a uds in the ground state
(i.e. after radiation of a sufficiently large number of photons) could not decay,
contradicting our knowledge that the only stable baryons are neutrons and protons.
•Accordingly: at least one of the λ0 and σ0 must be able to decay to ‘a proton or a
neutron and something else’, and since the proton and neutron have well defined
isospin wavefunction, it will inevitably be the case that one of σ0 or λ0 (which have
different isospin wavefunctions, by definition!) will find it easier to perform such
decays than will the other. Accordingly this difference in decay preference will drive
the difference in identity between Λ0 and Σ0 in a similar way to the way that the
different decay modes of the K1 and K2 lead to different masses and mixings for KL

and KS .
•Put another way, if it were the case that neither the Λ0 nor the Σ0 could decay6, then
presumably we would not really be able to distinguish the Λ0 and the Σ0 in any
meaningful way other than simply ‘by definition’.
•The shorter but less helpful answer which summarises all the above (and may be all
that many students actually will write, and could therefore still be enough for them to
get full marks) would be to say that:

The lightest baryons (protons and neutrons) are states with definite isospin.
The two states in the centre of a baryon octet will have different isospin
wavefunctions from each other since they will be orthogonal linear
combinations of iso-singlet and iso-triplet states. Accordingly, decays from
one state to ‘protons or neutrons and other stuff’ will be easier for the other,
and this will break the symmetry between the two. Experiment has
identified the Λ0 as an iso-singlet state and the Σ0 as an iso-triuplet state.
The concrete experimental manifestation of this difference, which is not
taught in the course, and which is not expected to be known by the
examinees (and so is merely documented here ‘for fun’) is that: (i) the Λ0

has a greater than 99% branching ratio to proton-pion, while (ii) the Σ0 has a
100% branching ratio to Λ0 + γ.

•Since that was a very long answer, we repeat here that a good candidate does not
need to give anywhere near the amount of verbiage provided above, but the more that
their answer conveys the idea that they are thinking about what makes (or could
make!) two states at the centre of a baryon octet different from each other as a result
of more than just ‘definition’ then the more marks the student will get!

6E.g. if you removed the Weak interaction from the SM you could no longer change flavours, and if you
removed QED too (leaving just QCD), you could no longer emit (non-virtual) neutral gauge bosons. Emis-
sion of virtual gluons going to qq̄-mesons would also not work as the π0 is too heavy. In that environment
a uds-baryon in the octet could no longer decay!
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This answer has not explored the possibility that some candidates might choose to
write about something altogether different, like baryon magnetic moments.7

7Baryon magnetic moments are not an examinable part of the course, but it could be the case (not
checked) that the a successful argument could be built on top of them. As ever, any valid answers will be
accepted.
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3 The ‘Zarquon’ is a hypothetical particle of mass M > 0 composed of indestructable
‘Zarks’. There are two types of Zark: the ‘Fat Zark’ and the ‘Ferret Zark’, with
respective masses of χ/2 and χ/4. Every Zarquon contains exactly one Fat Zark and two
Ferret Zarks (and nothing else). It is known that if, at some moment in time, a Fat Zark
has a three-momentum k in the rest frame of its Zarquon, then at the same moment in
time each of the Ferret Zarks has a three-momentum −1

2 k in the same frame. Zarquons
cannot be polarised, so all directions for k are equally likely.

(a) Write down |k| in terms of M and χ, and then determine the range of values
the parameter χ could take (given a value of M). [3]

Bookwork
To find |k| we need to solve the energy-conservation equation for the Zarquon (i.e. that its

mass is the sum of the energies of its components in the rest frame) i.e.:

2

√(
χ

4

)2
+

(
k
2

)2

+

√(
χ

2

)2
+ k2 = M.

The above is the same as √(
χ

2

)2
+ k2 +

√(
χ

2

)2
+ k2 = M

or √(
χ

2

)2
+ k2 =

M
2

or

k2 =

( M
2

)2
−

(
χ

2

)2
.

The above shows that χ ∈ [0,M] and

|k| =
1
2

√
M2 − χ2.

It is planned to investigate the Zark content of the Zarquon by a series of fixed-target
deep inelastic scattering experiments in which a beam of electrons is fired at a Zarquon
target as shown:

pµ1

ζµ

ζ µ
+ q µ

p
µ
3

qµ = pµ1 − pµ3

pµ2

{
e−

e−

Zarquon
Zark

Zark
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The probe electron has four-momentum pµ1 when incoming and pµ3 when outgoing. The
Zarquon has initial four-momentum pµ2. The struck Zark has momentum ζµ before and
ζµ + qµ after the interaction. The rest masses of the Zark and electron are unaffected by
their interaction. Assume that the electron mass can be neglected and in the lab frame the
momenta pµ1, pµ2, pµ3 and ζµ take the form:

pµ1 =


p
p
0
0

 , pµ2 =


M
0
0
0

 , pµ3 =


E

E cos θ
0

E sin θ

 and ζµ =


√

m2 + a2

−a cosα
a sinα cos δ
a sinα sin δ


where p > 0, a ≥ 0, 0 ≤ α ≤ π, 0 ≤ δ < 2π, 0 ≤ θ ≤ π and E ≥ 0. The value m will be
equal to either χ/2 or χ/4 depending on whether the struck object was a Fat Zark or a
Ferret Zark.

(b) How will the value of the parameter a depend on whether the struck object was a
Fat Zark or a Ferret Zark? What geometrical interpretation can be given to the
quantities α and δ ? How is α distributed? [4]

Bookwork
BOOKWORK[ Testing recall of spherical polar coordinartes – α being the polar

angle and δ being the azimuthal angle. It should be recalled that cosα will be
distributed uniformly between -1 and +1 given the isotropic distribution of k
reported at the beginning of the question. ]

The answer should report that a is equal to |k| for a Fat Zark, but is equal to |k|/2 for a
Ferret Zark.©

20
23

U
ni

ve
rs

ity
of

C
am

br
id

ge



27

For the scattering process described, the quantities in the set S

S = {p,M,m, a, α, δ, θ}

are not independent of E.
(c) Write down (but do not yet solve) an equation which, if solved, would fix E in

terms of the quantities in S . Explain the physical meaning of this constraint. [2]

Straightforward
The question says that the masses of the Zark and the probe electron are not changed

by their being struck. This is self-evident for the latter, as both pµ1 and pµ3 have zero
invariant mass. The invariant mass of ζµ + qµ is not, however, as parameterised,
necessarily still equal to its value before being struck (m). The constraint that could be
solved therefore is (in words) ‘mass of Zark after being struck = m = mass of Zark before
being struck’. Algebraically this could be written as:

(ζ + q)2 = m2

or, eliminating q to gain explicit E dependence could be written

(ζ + p1 − p3)2 = m2.

Full marks could be obtained by saying the above in words and writing down the equation
above in some form.

(d) By solving the constraint just written down (or otherwise) find an expression for E
in terms of the quantities in S . [4]

Straightforward
Multiplying out the square, and noting that ζ2 = m2 and p2

1 = p2
3 = 0, the constraint

could also be written as
ζ.p1 = ζ.p3 + p1.p3.

This RHS of the above is linear in p3 and may be solved for E. Specifically: pµ3 = Ekµ

where

kµ =


1

cos θ
0

sin θ


and so

ζ.p1 = Ek.(ζ − p1)

and hence
E =

ζ.p1

k.(ζ + p1)
.

Putting in the components gives

E =
p
(√

m2 + a2 + a cosα
)

p(1 − cos θ) +
√

m2 + a2 + a cos θ cosα − a sin θ sinα sin δ
. (2)
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(e) Suggest two physical reasons why an experiment might be unable to make
measurements all the way out to cos θ = ±1. [4]

Straightforward
It is impossible to have detection equipment all the way down to cos θ = −1 as these

detectors would clash with the beam injection hardware. Making measurements at
cos θ = +1 could be hard because the unscattered beam (and/or secondaries from the input
beam line) could form intense sources of background radiation.

In the rest of this question you may assume that the scattering experiments are conducted
only in the regime in which |cos θ| ≤ 0.9 and 10M ≪ p and that you may simplify
expressions by neglecting terms accordingly.

(f) Explain why it is the case that, in the scattering regime just described, your answer
for E obtained in part (d) simplifies to

E ≈

√
m2 + a2 + a cosα

1 − cos θ
. [4]

Unseen
If |cos θ| ≤ 0.9 and 10M ≪ p then M ≪ p(1 − cos θ). However, from earlier parts of

the question we also know that m ≤ χ/2 ≤ χ ≤ M and a ≤ |k| ≤ M/2 < M. We are
therefore able to deduce that a ≪ p(1 − cos θ) and m ≪ p(1 − cos θ). These two results
allow us to lose all the terms on the denominator of our original E expression (equation
(2)) other than the leading p(1 − cos θ) term.

The ‘Bjorken x’ variable is defined by the equation x = −q2/(2p2 · q).

(g) To the level of approximation permitted in this scattering regime, show that the
‘Bjorken x’ variable satisfies

x ≈

√
m2 + a2 + a cosα

M
. [4]

Unseen
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x =
−(p1 − p3)2

2p2 · (p1 − p3)
by definition

=
−p2

1 − p2
2 + 2p1 · p3

2p2 · (p1 − p3)

=
p1 · p3

p2 · (p1 − p3)
as me = 0

=
pE(1 − cos θ)

M(p − E)

=
E(1 − cos θ)

M

(
1 −

E
p

)−1

but the result of part (f) shows us that

E
p
≈

√
m2 + a2 + a cosα

p(1 − cos θ)

while working in (f) noted that a ≪ p(1 − cos θ) and m ≪ p(1 − cos θ). We therefore see
that

E
p
≪ 1

and so we may drop the
(
1 − E

p

)−1
term in our expression for x:

x =
E(1 − cos θ)

M

(
1 −

E
p

)−1

≈
E(1 − cos θ)

M

≈

√
m2 + a2 + a cosα

M
using the answer to (f) again.

(h) Determine and then sketch the shape of the parton distribution function F(x) of the
Fat Zark. Make sure to show how the key features of F(x) depend on χ and M. [2]

Unseen
In the answer to part (b) the candidates should have stated that cosα is distributed

uniformly in [−1, 1]. Everything else in x is constant (for a given type of Zark). Therefore
x is uniformly distributed between its max and min values, i.e. the values it would take
when cosα = ±1. This means that the shape of F(x) is a top-hat function. The width of
this top hat will generically be wid = 2a/M. For the Fat Zark we have
a = |k| = 1

2

√
M2 − χ2 from an earlier part of the question, and hence the width of the Fat

Zark’s top hat is
√

1 − χ2/M2 which we will call L:

L =
√

1 − χ2/M2
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The centre xmid of the top-hat is generically at xmid =
√

m2 + a2/M. For the Fat Zark this

is specifically at xFat
mid =

√
(χ2 )2 + 1

4 (M2 − χ2)/M = 1
2 .

The height of the top-hat should be the reciprocal of its width, since the integral∫
f (x)dx should equal 1 as there is only one Fat Zark in each Zarquon.

In summary: F(x) is a top hat of width L and height 1/L centred on x = 1/2.

(i) Determine and then sketch the shape of the parton distribution function f (x) of the
Ferret Zark. Make sure to show how the key features of f (x) depend on χ and M. [2]

Unseen
The Ferret Zark is similar to the Fat Zark, the only differences are that (i) its a and its

m are half those of the Ferret Zark, and (ii) there are two of them instead of one per
Zarquon. Since the generic top-hat width and location expressions given in the last answer
(wid = 2a/M and xmid =

√
m2 + a2/K) scale linearly with coupled changes to m and a, the

PDF for the Ferret Zark is still a top hat but its width is half what it was previously and it
will be centred on 1/4 instead of on 1/3. The area must this time be 2 however (since there
are two Ferret Zarks per Zarquon) and so the height must be four times what it was
previously. In summary:

f (x) is a top-hat centred on 1/4 with width L/2 and height 4/L.

(j) What value would you expect the integral
∫ 1

0
(xF(x) + x f (x)) dx to take and why?

[You are not required to evaluate the above integral explicitly.] [1]

Straightforward
The expression

∫ 1
0 xF(x)dx should evaluate total fraction of the momentum of the

Zarquon that is carried by the Fat Zarks, in the infinite momentum frame. Likewise the
expression

∫ 1
0 x f (x)dx should evaluate total fraction of the momentum of the Zarquon that

is carried by the Ferret Zarks, in the infinite momentum frame. Since they are the only
things in the Zarquon, their total should sum to 1. The intention of asking this question is
that a student will realise (if they have not already done so) that they can use this as a check
that their answer to the preceding part(s) is correct. I.e. a candidate who wishes to make a
check can evaluate this integral explicitly and use any deviation from 1 to find and fix
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numerical errors or slips they have made earlier. The integral is not hard to do explicitly:∫ 1

0
xF(x) + .x f (x)dx =

∫ 1
2 (1+L)

1
2 (1−L)

x
1
L

dx +
∫ 1

4 (1+L)

1
4 (1−L)

x
4
L

dx

=
1

2L

[
x2

] 1
2 (1+L)
1
2 (1−L)

+
2
L

[
x2

] 1
4 (1+L)
1
4 (1−L)

=
1

8L

[
x2

](1+L)

(1−L)
+

1
8L

[
x2

](1+L)

(1−L)

=
1

4L

[
x2

](1+L)

(1−L)

=
1

4L
(4L)

= 1.

END OF PAPER
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