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EXAMPLES SHEET QUESTIONS (ALL)

NATURAL UNITS AND HEAVISIDE-LORENTZ UNITS

1. (a) In the units he normally uses, your particle-physics lecturer was 1016/GeV tall and had a mass of
4.40→10

28
GeV when aged 2.11→10

33/GeV. Calculate his Body Mass Index (BMI) and determine
whether he was obese at this point in his life.

(b) Show that charge can indeed be measured in units of (ω0h̄c)
1
2 . [You may wish to consider dimen-

sional analysis of the Coulomb force law F =
q1q2

4ωε0r2
.]

SOLUTION

(a) The laborious way of working out the height L and mass of M of the lecturer would be to insert
all the right powers of h̄ and c and use h̄ ↑ 1.055→ 10

→34 Js and c = 3.00→ 10
8 m/s. This requires

many numbers and lots of use of the calculator. Using this bad way to calculate L we might write
something like:

L = 10
16 h̄c/GeV (1)

=
(10

16
)→ (1.055→ 10

→34Js)→ (3.00→ 10
8 m/s)

109 → (1.60→ 10→19J)
(2)

=
(10

16
)→ (1.055→ 10

→34
)→ (3.00→ 10

8
)

109 → (1.60→ 10→19)
m (3)

=
1.055→ 3.00

1.60
→ 10

16→34+8+10 m (4)

= 1.97→ 10
0 m (5)

= 1.97 m. (6)

Much better would be to use 1 = h̄c = 197 MeV · fm. This nicer approach would give us:

L = 10
16/GeV (7)

= 10
16/GeV → 1 (8)

= 10
16/GeV → (197 MeV · fm) (9)

= 197→ 10
16→9+6→15 m (10)

= 197→ 10
→2 m (11)

= 1.97 m (12)
(13)

1



The mass of the lecturer in S.I. units is easier to calculate as E ↓ mc2 reminds us that masses are
only a factor of c2 away from energies, and everyone knows c. Therefore

M = 4.40→ 10
28

(GeV/c2) (14)
= (4.40→ 10

28
)→ (10

9 → (1.60→ 10
→19 J))/(3.00→ 10

8 m/s)2 (15)
= (4.40 ↔ 1.60/9.00) ↔ 1028→10→16

kg (16)
= 78 kg. (17)

Hence the BMI (which is mass in kg divided by square of height in metres) is

BMI = 78/(1.97)2 = 20.1. (18)

According to Wikipedia (https://en.wikipedia.org/wiki/Body mass index) the WHO de-
fines obsedity as a BMI over 25 if the person is more than 20 years old, so he is not obese given the
age supplied (44 years).

(b)

[q1q2] = [4piω0Fr2] (19)
= [ω0FL2

] (20)
= [ω0(FL)L] (21)
= [ω0EL] (22)
= [ω0(ET )(L/T )] (23)
= [ω0h̄c]. (24)

SPECIAL RELATIVITY

2. a) Draw the two leading-order Feynman diagrams for e+e→ ↗ e+e→ involving single photon ex-
change, and write q, the 4-momentum of the exchanged virtual photon, in terms of the 4-momenta
of the initial and/or final state particles. By evaluating q2 in the centre of mass frame, or otherwise,
determine whether q is timelike (q2 > 0) or spacelike (q2 < 0) in each case.

b) The Mandelstam variables s, t, u in the scattering process a + b ↗ 1 + 2 are defined in terms of
the particle 4-vectors as

s = (pa + pb)
2, t = (pa ↘ p1)

2, u = (pa ↘ p2)
2 .

Show that s+ t+ u = ma
2
+mb

2
+m1

2
+m2

2.

c) Show that
≃
s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons are brought into head-on collision with
820 GeV protons. Calculate the centre of mass energy,

≃
s, of e→p collisions at HERA, and determine

the beam energy that would be needed to produce e→p collisions with this value of
≃
s using electrons

incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest, the reaction ε + X ↗ ϑ + Y can only
proceed if the incoming neutrino has an energy above a threshold given by

Eϑ >
(ml +mY )

2 ↘m2

X

2mX
.
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[ Aside: when revising at the end of the course you may wish to consider reviewing Question 1 of the
January 2017 past Tripos paper for this course as looks more deelply into the connections between
Mandelstam variables and the characteristics of different scattering processes. ]

SOLUTION

a) The two leading order Feynman diagrams for e+e→ ↗ e+e→ scattering are:

e+

e→

e+

e→

p2

p1

p4

p3

q

e+ e+

e→ e→

p1 p3

p2 p4

q

For diagram 1, the 4-momentum of the virtual photon is q = p1 + p2. In the centre of mass frame, we
have q = p1 + p2 = (2E, 0, 0, 0), and hence

q2 = 4E2 > 0 ⇐ q2 is timelike.

For diagram 2, q = p1 ↘ p3. In the centre of mass frame, we have E1 = E3 (elastic scattering) and
hence q = (0,p

1
↘ p

3
). Therefore

q2 = ↘(p
1
↘ p

3
)
2 < 0 ⇐ q2 is spacelike

b) Since p2a = m2

a etc.:

s+ t+ u = (pa + pb)
2
+ (pa ↘ p1)

2
+ (pa ↘ p2)

2

= 3p2a + p2b + p2
1
+ p2

2
+ 2pa.pb ↘ 2pa.p1 ↘ 2pa.p2

= 3m2

a +m2

b +m2

1
+m2

2
+ 2pa.(pb ↘ p1 ↘ p2)

= 3m2

a +m2

b +m2

1
+m2

2
+ 2pa.↘ pa

= m2

a +m2

b +m2

1
+m2

2

where energy-momentum conservation, pa + pb = p1 + p2, has been used in the last line but one.

c) In the centre of mass frame, the 4-momenta of particles a and b can be taken to be pa = (Ea, 0, 0, p),
pb = (Eb, 0, 0,↘p). Hence pa + pb = (Ea + Eb, 0, 0, 0) and s = (pa + pb)2 = (Ea + Eb)

2. Hence≃
s = Ea + Eb, the total collision energy in the centre of mass frame.

d) HERA: electron and proton masses can be neglected, so 4-momenta are:

pa = (Ea, 0, 0, Ea) pb = (Eb, 0, 0,↘Eb) ⇐ pa + pb = (Ea + Eb, 0, 0, Ea ↘ Eb)

Hence
s = (pa + pb)

2
= (Ea + Eb)

2 ↘ (Ea ↘ Eb)
2
= 4EaEb ,
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which gives ≃
s = 2

√
EaEb = 2

≃
27.5GeV ↔ 820GeV = 300GeV .

For electrons incident on a stationary proton target:

pa = (Ea, 0, 0, Ea) pb = (mp, 0, 0, 0) ⇐ pa + pb = (Ea +mp, 0, 0, Ea) .

Hence
s = (pa + pb)

2
= (Ea +mp)

2 ↘ E2

a = 2Eamp +m2

p ,

which gives

Ea =
s↘m2

p

2mp
=

(300GeV)
2 ↘ (0.938GeV)

2

2→ (0.938GeV)
= 47974GeV .

e) For the scattering process ε +X ↗ ϑ+Y to be kinematically allowed, we must have
≃
s > ml +mY . (25)

This is easily seen by considering the centre of mass frame: at threshold, the particles ϑ and Y are
both produced at rest. Equation (25) involves only Lorentz-invariant quantities, and so can be applied
to any reference frame. In particular, in the lab frame, with X at rest, we have

s = m2

X + 2pϑ · pX = m2

X + 2EϑmX .

Hence we need
m2

X + 2EϑmX > (ml +mY )
2

which gives a threshold neutrino energy in the lab frame of

Eϑ >
(ml +mY )

2 ↘m2

X

2mX
.

3. a) For a particle of four-momentum pµ = (E, px, py, pz), show that the scalar product

p2 = E2 ↘ p2x ↘ p2y ↘ p2z

is Lorentz invariant by explicitly transforming the four components of pµ.

b) Use the Lorentz transformations to show that the volume element d3p/E in momentum space is
Lorentz invariant, i.e. that

dpxdpydpz
E

=
dp↑xdp

↑
ydp

↑
z

E ↑ .

SOLUTION

a) Lorentz transformation (with c = 1):

E ↑
= ϖ(E ↘ ϱpx) p↑y = py

p↑x = ϖ(px ↘ ϱE) p↑z = pz
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where ϖ = 1/
√

1↘ ϱ2 and ϱ = v/c = v. Hence

(p↑)2 = (E ↑
)
2 ↘ (p↑x)

2 ↘ (p↑y)
2 ↘ (p↑z)

2

= ϖ2
(E ↘ ϱpx)

2 ↘ ϖ2
(px ↘ ϱE)

2 ↘ p2y ↘ p2z
= ϖ2

(1↘ ϱ2
)E2 ↘ ϖ2

(1↘ ϱ2
)p2x ↘ p2y ↘ p2z

= E2 ↘ p2x ↘ p2y ↘ p2z
= p2

b) Since dp↑y = dpy and dp↑z = dpz we have

d
3p↑ = dp↑xdp

↑
ydp

↑
z =

dp↑x
dpx

· dpxdpydpz =
dp↑x
dpx

d
3p

where p↑x = ϖ(px ↘ ϱE) and E is to be understood as E =
√

p2x + p2y + p2z +m2. The derivative is

dp↑x
dpx

=
d

dpx
[ϖ(px ↘ ϱE)] = ϖ

(
1↘ ϱ

dE

dpx

)
.

The components py and pz remain unchanged in the transformation, and so can be treated as constants.
Hence

dE

dpx
=

d

dpx

√
p2x + p2y + p2z +m2 =

px√
p2x + p2y + p2z +m2

=
px
E

.

This gives
dp↑x
dpx

= ϖ
(
1↘ ϱ

px
E

)
= ϖ

E ↘ ϱpx
E

=
E ↑

E
,

and therefore
d
3p↑

E ↑ =
1

E ↑ ·
E ↑

E
d
3p =

d
3p

E

4. In a 2-body decay, a ↗ 1 + 2, show that the three-momentum of the final state particles in the centre
of mass frame has magnitude

p↓ =
1

2ma

√
[m2

a ↘ (m1 +m2)
2] [m2

a ↘ (m1 ↘m2)
2] .

SOLUTION

Decay a ↗ 1 + 2: energy conservation gives

ma = E1 + E2 =

√
m2

1
+ p↓ 2 +

√
m2

2
+ p↓ 2

Squaring:

m2

a = E2

1
+ E2

2
+ 2E1E2 = m2

1
+m2

2
+ 2p↓ 2 + 2

√
(m2

1
+ p↓ 2)(m2

2
+ p↓ 2)

⇐ 2

√
(m2

1
+ p↓ 2)(m2

2
+ p↓ 2) = m2

a ↘m2

1
↘m2

2
↘ 2p↓ 2 .
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Squaring again:

⇐ 4(m2

1
+ p↓ 2)(m2

2
+ p↓ 2) = (m2

a ↘m2

1
↘m2

2
↘ 2p↓ 2)2 .

Multiplying out and rearranging gives

4m2

ap
↓ 2

= (m2

a ↘m2

1
↘m2

2
)
2 ↘ (2m1m2)

2

= (m2

a ↘m2

1
↘m2

2
↘ 2m1m2)(m

2

a ↘m2

1
↘m2

2
+ 2m1m2)

=
[
m2

a ↘ (m1 +m2)
2
] [

m2

a ↘ (m1 ↘m2)
2
]
.

Hence

p↓ =
1

2ma

√
[m2

a ↘ (m1 +m2)
2] [m2

a ↘ (m1 ↘m2)
2] .

TWO BODY DECAY

5. According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processes ς ↗ φφ and K

↓ ↗ Kφ have invariant matrix elements of the
form

Mf i = Cpω

where Cϖ/CK→ = 2/
≃
3 and pω is the final state centre of mass momentum. Show that the predicted

ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 4 to obtain pω. Take the φ, ς, K and K
↓ meson masses to be 139, 770,

494 and 892 MeV respectively. The measured widths are !(ς ↗ φφ) = 153 ± 2MeV and !(K
↓ ↗

Kφ) = 51.3± 0.8MeV.]

SOLUTION

a) The matrix element Mf i = Cpω depends only on the centre of mass momentum pω = p↓ of the
final state particles, not on their directions, i.e. the decays are isotropic. For any isotropic two-body
decay a ↗ 1 + 2, the decay rate is

! =
p↓

8φm2
a

|Mf i|2 =
p↓

8φm2
a

· (Cp↓)2 =
C2p↓ 3

8φm2
a

.

From question 3, the centre of mass momentum is given by

p↓ =
1

2ma
[(ma +m1 +m2)(ma ↘m1 +m2)(ma +m1 ↘m2)(ma ↘m1 ↘m2)]

1/2 .

For ς ↗ φφ, we have ma = mϖ = 770MeV, m1 = m2 = mω ↑ 140MeV:

p↓ =
1

2mϖ

√
(mϖ + 2mω).mϖ.mϖ.(mϖ ↘ 2mω) =

1

2

√
m2

ϖ ↘ 4m2
ω = 359MeV

For K↓ ↗ Kφ, we have ma = mK→ = 892MeV, m1 = mK ↑ 494MeV, m2 = mω ↑ 140MeV
giving p↓ = 288MeV.

⇐ !(ς ↗ φφ)

!(K↓ ↗ Kφ)
=

C2

ϖ

C2

K→
· m

2

K→

m2
ϖ

·
(

p↓ϖ
p↓
K→

)3

=

(
2≃
3

)2

·
(
892

770

)2

·
(
359

288

)3

= 3.46
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Data:
!(ς ↗ φφ) = 153± 2MeV, !(K

↓ ↗ Kφ) = 51.3± 0.8MeV

giving a measured ratio of 2.98 .

6. The φ+ meson decays almost entirely via the two body decay process φ+↗µ+εµ, with an invariant
matrix element given by

|Mf i|2 = 2G2

F
f 2

ωm
2

µ(m
2

ω ↘m2

µ)

where GF = 1.166 → 10
→5

GeV
→2 is the Fermi constant, and fω is related to the size of the pion

wavefunction (the pion being a composite object).

a) Obtain a formula for the φ+ ↗ µ+εµ decay rate. Assuming fω ↓ mω, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[mω = 139.6MeV, mµ = 105.7MeV.]

b) By replacing mµ by me, show that the rate of φ+ ↗ e+εe decay is 1.28→10
→4 times smaller than the

corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting
the factor |Mf i|2), the decay rate to electrons would be expected to be greater than the rate to muons.

SOLUTION

a) From question 3, the momentum of the µ+ or εµ from a φ+ ↗ µ+εµ decay, in the φ+ rest frame, is

p↓ =
(mω +mµ)(mω ↘mµ)

2mω
=

m2

ω ↘m2

µ

2mω

and hence the decay rate is

! =
p↓

8φm2
ω

|Mf i|2 =
m2

ω ↘m2

µ

16φm3
ω

· 2G2

F
f 2

ωm
2

µ(m
2

ω ↘m2

µ)

=
G2

F

8φ

m2

µ

mω
(m2

ω ↘m2

µ)
2

=
(1.166→ 10

→5
)
2

8φ
· 0.105

2

0.140
(0.1402 ↘ 0.1052)2

= 3.34→ 10
→17 GeV

The pion lifetime is therefore

↼ω =
1

!
=

1

3.34→ 10→17
= 3.0→ 10

16 GeV→1

which can be converted to SI units using h̄ = 6.58→ 10
→25 GeV.s :

↼ω = (3.0→ 10
16
).(6.58→ 10

→25
) = 1.97→ 10

→8 s

b) Ratio of decay rates:

!(φ+ ↗ e+εe)

!(φ+ ↗ µ+εµ)
=

m2

e

m2
µ

·
(
m2

ω ↘m2

e

m2
ω ↘m2

µ

)2

=

(
0.511

105.6

)2

·
(
139.62 ↘ 0.5112

139.62 ↘ 105.62

)2

= 1.28→ 10
→4
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On the basis of phase space alone, i.e. neglecting the contribution to the decay rate from |Mf i|2, we
have

! =
p↓

8φm2
ω

⇒ p↓ .

Hence the ratio of decay rates is just the ratio of the centre of mass momenta appropriate to each
decay:

!(φ+ ↗ e+εe)

!(φ+ ↗ µ+εµ)
=

p↓(φ+ ↗ e+εe)

p↓(φ+ ↗ µ+εµ)
=

m2

ω ↘m2

e

m2
ω ↘m2

µ

= 2.34

8



THE DIRAC EQUATION

7. Write down a simplified form of the Dirac equation for a spinor ↽(t) describing a particle of mass m
at rest. For the standard Pauli-Dirac representation of the ϖ matrices, obtain a differential equation
for each component ↽i of the spinor ↽, and hence write down a general solution for the evolution of
↽. Comment on your result and on its relation to the standard plane wave solutions involving u1(p),
u2(p), v1(p), v2(p).

SOLUTION

For a particle of mass m at rest (p = 0), since p = ↘i→, we have ⇀↽/⇀x = ⇀↽/⇀y = ⇀↽/⇀z = 0.
Hence ↽ = ↽(t) only, and the Dirac equation simplifies to

iϖ0
⇀↽

⇀t
= m↽ .

In the Pauli-Dirac representation, this is

i





1 0 0 0

0 1 0 0

0 0 ↘1 0

0 0 0 ↘1









↽̇1

↽̇2

↽̇3

↽̇4



 = m





↽1

↽2

↽3

↽4



 ,

which gives

i↽̇1 = m↽1, i↽̇2 = m↽2, ↘i↽̇3 = m↽3, ↘i↽̇4 = m↽4 .

These equations have the solutions

↽1 = A1e
→imt, ↽2 = A2e

→imt, ↽3 = A3e
+imt, ↽4 = A4e

+imt ,

where the Ai are complex constants. The general solution for ↽ is therefore

↽ =





A1e→imt

A2e→imt

A3e+imt

A4e+imt



 .

This can be expressed as a linear combination of the four independent solutions

↽ = N





1

0

0

0



 e→imt, N





0

1

0

0



 e→imt, N





0

0

1

0



 e+imt, N





0

0

0

1



 e+imt , (26)

where N =
≃
2m to normalise to 2E = 2m particles per unit volume.

Thus both positive energy, e→imt, and negative energy, e+imt, solutions unambiguously emerge.

The spinors in Equation (26) can be obtained by setting E = m, px = py = pz = 0 in the standard
plane wave solutions u1ei(p.r→Et), u2ei(p.r→Et), v2e→i(p.r→Et), v1e→i(p.r→Et), as expected.
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8. a) For the standard Pauli-Dirac representation of the ϖ matrices, and for an arbitrary pair of spinors ↽
and ⇁ with components ↽i and ⇁i, show that the current ↽ϖµ⇁ is given by

↽ϖ0⇁ = ↽↓
1
⇁1 + ↽↓

2
⇁2 + ↽↓

3
⇁3 + ↽↓

4
⇁4

↽ϖ1⇁ = ↽↓
1
⇁4 + ↽↓

2
⇁3 + ↽↓

3
⇁2 + ↽↓

4
⇁1

↽ϖ2⇁ = ↘i(↽↓
1
⇁4 ↘ ↽↓

2
⇁3 + ↽↓

3
⇁2 ↘ ↽↓

4
⇁1)

↽ϖ3⇁ = ↽↓
1
⇁3 ↘ ↽↓

2
⇁4 + ↽↓

3
⇁1 ↘ ↽↓

4
⇁2

b) For a particle or antiparticle with four-momentum pµ = (E, px, py, pz), show that

u1ϖ
µu1 = u2ϖ

µu2 = v1ϖ
µv1 = v2ϖ

µv2 = 2pµ

and that
u1ϖ

µu2 = u2ϖ
µu1 = v1ϖ

µv2 = v2ϖ
µv1 = 0 .

c) Hence show that the current jµ = ↽(p)ϖµ↽(p) corresponding to a general free particle spinor
↽(p) = u(p)ei(p.r→Et) or antiparticle spinor ↽(p) = v(p)e→i(p.r→Et) is given by jµ = 2pµ. Write
down the particle density and flux represented by jµ.

SOLUTION

a) For an arbitrary pair of spinors ↽ and ⇁ say, with spinor components ↽i and ⇁i, standard matrix
multiplication gives, for µ = 0,

↽ϖ0⇁ =
(
↽↓
1

↽↓
2

↘↽↓
3

↘↽↓
4







1 0 0 0

0 1 0 0

0 0 ↘1 0

0 0 0 ↘1









⇁1

⇁2

⇁3

⇁4



 = ↽↓
1
⇁1 + ↽↓

2
⇁2 + ↽↓

3
⇁3 + ↽↓

4
⇁4 .

Similarly, for µ = 1, 2, 3, we obtain

↽ϖ1⇁ =
(
↽↓
1

↽↓
2

↘↽↓
3

↘↽↓
4







0 0 0 1

0 0 1 0

0 ↘1 0 0

↘1 0 0 0









⇁1

⇁2

⇁3

⇁4



 = ↽↓
1
⇁4 + ↽↓

2
⇁3 + ↽↓

3
⇁2 + ↽↓

4
⇁1

↽ϖ2⇁ =
(
↽↓
1

↽↓
2

↘↽↓
3

↘↽↓
4







0 0 0 ↘i
0 0 i 0

0 i 0 0

↘i 0 0 0









⇁1

⇁2

⇁3

⇁4



 = ↘i(↽↓
1
⇁4 ↘ ↽↓

2
⇁3 + ↽↓

3
⇁2 ↘ ↽↓

4
⇁1)

↽ϖ3⇁ =
(
↽↓
1

↽↓
2

↘↽↓
3

↘↽↓
4







0 0 1 0

0 0 0 ↘1

↘1 0 0 0

0 1 0 0









⇁1

⇁2

⇁3

⇁4



 = ↽↓
1
⇁3 ↘ ↽↓

2
⇁4 + ↽↓

3
⇁1 ↘ ↽↓

4
⇁2 .

In summary:

↽ϖ0⇁ = ↽↓
1
⇁1 + ↽↓

2
⇁2 + ↽↓

3
⇁3 + ↽↓

4
⇁4

↽ϖ1⇁ = ↽↓
1
⇁4 + ↽↓

2
⇁3 + ↽↓

3
⇁2 + ↽↓

4
⇁1

↽ϖ2⇁ = ↘i(↽↓
1
⇁4 ↘ ↽↓

2
⇁3 + ↽↓

3
⇁2 ↘ ↽↓

4
⇁1)

↽ϖ3⇁ = ↽↓
1
⇁3 ↘ ↽↓

2
⇁4 + ↽↓

3
⇁1 ↘ ↽↓

4
⇁2
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b) For the free particle spinor u1, the first element of the current 4-vector is

u1ϖ
0u1 = (E +m)


1 +

p2z
(E +m)2

+
(p2x + p2y)

(E +m)2



= (E +m)


1 +

p2

(E +m)2



=
(E +m)

2
+ p2

E +m
=

2E2
+ 2Em

E +m
= 2E ,

where, in the last line, we have made use of the relation E2
= p2 +m2.

Repeating this exercise for the remaining terms in the 4-vector current gives, altogether,

u1ϖ
0u1 = 2E; u1ϖ

1u1 = 2px; u1ϖ
2u1 = 2py; u1ϖ

3u1 = 2pz

which can be expressed more compactly as

u1ϖ
µu1 = (2E, 2px, 2py, 2pz) = 2pµ .

Repeating the above exercise for u2, v1 and v2 in place of u1 gives

u1ϖ
µu1 = u2ϖ

µu2 = v1ϖ
µv1 = v2ϖ

µv2 = 2pµ ,

while the cross-terms are easily seen to vanish:

u1ϖ
µu2 = u2ϖ

µu1 = v1ϖ
µv2 = v2ϖ

µv1 = 0 .

c) For a particle, with ↽ = u(p)eip.x, we have

↽ = ↽†ϖ0
= u(p)†ϖ0e→ip.x

= u(p)e→ip.x ,

and hence
jµ = ↽ϖµ↽ = uϖµu .

For an antiparticle, we have similarly jµ = vϖµv.

A particle spinor u(p) can always be expressed as a linear combination of the basis spinors u1, u2:

u = α1u1 + α2u2, |α1|2 + |α2|2 = 1 .

Hence
uϖµu = |α1|2u1ϖ

µu1 + |α2|2u2ϖ
µu2 = 2pµ .

Thus
jµ = 2pµ .

The current 4-vector is jµ = (ς, j) so

ς = 2E, j = 2p ,

ς being the particle density and j being the flux.
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9. a) For a particle with 4-momentum pµ = (E, p sin θ cos⇁, p sin θ sin⇁, p cos θ), show that the spinors
(1 + ϖ5

)u1 and (1 + ϖ5
)u2 are not in general proportional to u↔ but become so in the relativistic limit

E ⇑ m.

b) Define the terms helicity and chirality. How are chirality and helicity related to the spinors and
result described in part (a) ?

c) What would be the equivalent result to that described in (a) for the corresponding antiparticle
spinors (1 + ϖ5

)v1 and (1 + ϖ5
)v2 ?

SOLUTION

a) For pµ = (E, p sin θ cos⇁, p sin θ sin⇁, p cos θ), we have

u↔(p) =
≃
E +m





cos θ/2
eiϱ sin θ/2
p

E+m cos θ/2
p

E+meiϱ sin θ/2



 , u↗(p) =
≃
E +m





↘ sin θ/2
eiϱ cos θ/2
p

E+m sin θ/2
↘ p

E+meiϱ cos θ/2





But

(1 + ϖ5
)u1 =





1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1




≃
E +m





1

0

pz/(E +m)

(px + ipy)/(E +m)





=

≃
E +m





1 + pz/(E +m)

(px + ipy)/(E +m)

1 + pz/(E +m)

(px + ipy)/(E +m)





which, in general, is clearly not proprtional to u↔.

In the limit E ⇑ m, the spinors u1 and u2 become

u1 =

≃
E +m





1

0

pz/(E +m)

(px + ipy)/(E +m)



 ↗
≃
E





1

0

cos θ
eiϱ sin θ





u2 =

≃
E +m





0

1

(px ↘ ipy)/(E +m)

↘pz/(E +m)



 ↗
≃
E





0

1

e→iϱ
sin θ

↘ cos θ



 .
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Hence

(1 + ϖ5
)u1 ↗





1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1




≃
E





1

0

cos θ
eiϱ sin θ



 =

≃
E





1 + cos θ
eiϱ sin θ
1 + cos θ
eiϱ sin θ





= 2

≃
E cos θ/2





cos θ/2
eiϱ sin θ/2
cos θ/2

eiϱ sin θ/2



 = 2 cos θ/2 · u↔ (27)

and similarly:

(1 + ϖ5
)u2 ↗





1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1




≃
E





0

1

e→iϱ
sin θ

↘ cos θ



 =

≃
E





e→iϱ
sin θ

1↘ cos θ
e→iϱ

sin θ
1↘ cos θ





= 2

≃
E sin θ/2





e→iϱ
cos θ/2

sin θ/2
e→iϱ

cos θ/2
sin θ/2



 = 2e→iϱ
sin θ/2 · u↔ (28)

b) The helicity operator h = !.p̂ gives the projection of the particle spin along the direction of
motion. A particle or antiparticle with the spin vector aligned along (opposite to) the direction of
motion has h = +1 (h = ↘1) and is said to be right-handed (left-handed).

Any (particle or antiparticle) spinor ↽ can be expressed as the sum of its left-handed and right-handed
chiral components

↽ = ↽L + ↽R; ↽L ⇓ 1

2
(1↘ ϖ5

)↽ ↽R ⇓ 1

2
(1 + ϖ5

)↽ .

In the extreme relativistic limit (E ⇑ m), the left-handed and right-handed chiral components are
also eigenstates of the helicity operator:

For a particle: ↽L has helicity ↘1 ↽R has helicity +1

For an antiparticle: ↽L has helicity +1 ↽R has helicity ↘1

The results in part a) show that, in the relativistic limit, and only in the relativistic limit, the right-
handed chiral components (1+ϖ5

)u1 and (1+ϖ5
)u2 are both proportional to u↔, i.e. are both positive

helicity eigenstates. Since any particle spinor u can be expressed as a linear combination of u1 and
u2, this result holds quite generally i.e. in the relativistic limit, the right-handed chiral component
(1 + ϖ5

)u becomes a right-handed helicity eigenstate for any particle spinor u.

c) For antiparticles, the right-handed chiral component 1

2
(1 + ϖ5

)↽ becomes a left-handed helicity
eigenstate in the relativistic limit. Hence (1 + ϖ5

)v1 and (1 + ϖ5
)v2 will both become proportional to

v↗ in the relativsitic limit.

13



10. a) Without resorting to an explicit representation of the Dirac gamma matrices, show that the matrix
ϖ5 ⇓ iϖ0ϖ1ϖ2ϖ3 has the following properties:

(ϖ5
)
2
= 1, ϖ5†

= ϖ5, ϖ5ϖµ
= ↘ϖµϖ5 .

b) Show that the adjoint spinors ↽L and ↽R corresponding to the left-handed and right-handed com-
ponents ↽L ⇓ 1

2
(1↘ ϖ5

)↽ and ↽R ⇓ 1

2
(1 + ϖ5

)↽ are:

↽L = ↽ 1

2
(1 + ϖ5

)

↽R = ↽ 1

2
(1↘ ϖ5

) .

c) Show that ⇁Lϖµ↽R = ⇁Rϖµ↽L = 0, and that the current ⇁ϖµ↽ can be decomposed as

⇁ϖµ↽ = ⇁Lϖ
µ↽L + ⇁Rϖ

µ↽R .

SOLUTION

a) Repeatedly use the fact that the ϖ matrices anticommute and satisfy (ϖ0
)
2
= 1, (ϖ1

)
2
= (ϖ2

)
2
=

(ϖ3
)
2
= ↘1:

(ϖ5
)
2
= (iϖ0ϖ1ϖ2ϖ3

)
2
= ↘ϖ0ϖ1ϖ2ϖ3ϖ0ϖ1ϖ2ϖ3

= ϖ0ϖ1ϖ2ϖ0ϖ3ϖ1ϖ2ϖ3 since ϖ3ϖ0
= ↘ϖ0ϖ3

= ↘ϖ0ϖ1ϖ0ϖ2ϖ3ϖ1ϖ2ϖ3 since ϖ2ϖ0
= ↘ϖ0ϖ2

= ϖ0ϖ0ϖ1ϖ2ϖ3ϖ1ϖ2ϖ3 since ϖ1ϖ0
= ↘ϖ0ϖ1

= ϖ1ϖ2ϖ3ϖ1ϖ2ϖ3 since (ϖ0
)
2
= 1

= ↘ϖ1ϖ2ϖ1ϖ3ϖ2ϖ3 since ϖ3ϖ1
= ↘ϖ1ϖ3

= ϖ1ϖ1ϖ2ϖ3ϖ2ϖ3 since ϖ2ϖ1
= ↘ϖ1ϖ2

= ↘ϖ2ϖ3ϖ2ϖ3 since (ϖ1
)
2
= ↘1

= ϖ3ϖ2ϖ2ϖ3 since ϖ2ϖ3
= ↘ϖ3ϖ2

= ↘ϖ3ϖ3 since (ϖ2
)
2
= ↘1

= 1

Using ϖ0†
= ϖ0, ϖ1†

= ↘ϖ1, ϖ2†
= ↘ϖ2, ϖ3†

= ↘ϖ3:

ϖ5†
= (iϖ0ϖ1ϖ2ϖ3

)
†
= ↘iϖ3†ϖ2†ϖ1†ϖ0†

= iϖ3ϖ2ϖ1ϖ0

= ↘iϖ2ϖ1ϖ0ϖ3
= ↘iϖ1ϖ0ϖ2ϖ3

= iϖ0ϖ1ϖ2ϖ3
= ϖ5

Consider ϖ5ϖ2 for example:

ϖ5ϖ2
= iϖ0ϖ1ϖ2ϖ3ϖ2

= ↘iϖ0ϖ1ϖ2ϖ2ϖ3
= iϖ0ϖ2ϖ1ϖ2ϖ3

= ↘iϖ2ϖ0ϖ1ϖ2ϖ3
= ↘ϖ2ϖ5

and similarly: ϖ5ϖ0
= ↘ϖ0ϖ5, ϖ5ϖ1

= ↘ϖ1ϖ5, ϖ5ϖ3
= ↘ϖ3ϖ5 giving altogether ϖ5ϖµ

= ↘ϖµϖ5.

b) An adjoint spinor is defined as ↽ ⇓ ↽†ϖ0, so that

↽L = ↽†
Lϖ

0
=

[
1

2
(1↘ ϖ5

)↽
]†
ϖ0

= ↽† 1
2
(1↘ ϖ5

)ϖ0 since ϖ5†
= ϖ5

= ↽†ϖ0 1

2
(1 + ϖ5

) since ϖ0ϖ5
= ↘ϖ5ϖ0

= ↽ 1

2
(1 + ϖ5

)
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and similarly:
↽R = ↽ 1

2
(1↘ ϖ5

) .

c) Separate the spinor ↽ into its left- and right-handed components via

↽ =
1

2
(1↘ ϖ5

)↽ +
1

2
(1 + ϖ5

)↽ = ↽L + ↽R

For the adjoint spinor:

↽ = ↽†ϖ0
= (↽L + ↽R)

†ϖ0
= ↽†

L
ϖ0

+ ↽†
R
ϖ0

= ↽L + ↽R

Hence

⇁ϖµ↽ =
[
⇁L + ⇁R

]
ϖµ

[↽L + ↽R]

= ⇁Lϖ
µ↽L + ⇁Lϖ

µ↽R + ⇁Rϖ
µ↽L + ⇁Rϖ

µ↽R

But

⇁Lϖ
µ↽R = ⇁1

2
(1 + ϖ5

) · ϖµ · 1

2
(1 + ϖ5

)↽

= ⇁1

2
(1 + ϖ5

) · 1

2
(1↘ ϖ5

)ϖµ↽

= 0

since (1 + ϖ5
)(1↘ ϖ5

) = 1↘ (ϖ5
)
2
= 0. Similarly: ⇁Rϖµ↽L = 0 giving

⇁ϖµ↽ = ⇁Lϖ
µ↽L + ⇁Rϖ

µ↽R

as required. Alternatively, show directly that

⇁Lϖ
µ↽L = ⇁1

2
(1 + ϖ5

) · ϖµ · 1

2
(1↘ ϖ5

)↽

= ⇁1

2
(1 + ϖ5

) · 1

2
(1 + ϖ5

)ϖµ↽

= ⇁1

2
(1 + ϖ5

)ϖµ↽

and similarly
⇁Rϖ

µ↽R = ⇁1

2
(1↘ ϖ5

)ϖµ↽ ,

again giving

⇁Lϖ
µ↽L + ⇁Rϖ

µ↽R = ⇁1

2
(1 + ϖ5

)ϖµ↽ + ⇁1

2
(1↘ ϖ5

)ϖµ↽ = ⇁ϖµ↽ .

Thus, for interactions between spin 1

2
particles (or antiparticles) and photons in QED, the left-handed

chiral component of a spinor couples only to another left-handed chiral component (⇁Lϖµ↽L) and the
right-handed chiral component couples only to another right-handed chiral component (⇁Rϖµ↽R).
There is no coupling between the left-handed and right-handed chiral components: (⇁Rϖµ↽L =

0,⇁Rϖµ↽L = 0).

At high energies, the left-handed and right-handed chiral components become helicity eigenstates
with definite helicity and we have helicity conservation in QED: the particle helicity is preserved at
a QED vertex.
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ELECTRON-MUON ELASTIC SCATTERING

11. a) Show that the general matrix element for e→µ→ ↗ e→µ→ scattering via single photon exchange is

Mf i = ↘ e2

(p1 ↘ p3)2
gµϑ [u(p3)ϖ

µu(p1)] [u(p4)ϖ
ϑu(p2)]

where p1 and p3 are the initial and final e→ four-momenta and p2 and p4 are the initial and final µ→

four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoing e→ four-momenta
pµ
1

= (E1, 0, 0, p) and pµ
3

= (E1, p sin θ, 0, p cos θ), the electron current for the various possible
electron spin combinations is

u↗(p3)ϖ
µu↗(p1) = 2(E1c, ps,↘ips, pc)

u↔(p3)ϖ
µu↗(p1) = 2(ms, 0, 0, 0)

u↔(p3)ϖ
µu↔(p1) = 2(E1c, ps, ips, pc)

u↗(p3)ϖ
µu↔(p1) = ↘2(ms, 0, 0, 0)

where m is the electron mass and s ⇓ sin θ/2, c ⇓ cos θ/2.

c) Write down the incoming and outgoing muon 4-momenta p2 and p4, and the helicity eigenstate
spinors u↔(p2), u↗(p2), u↔(p4) and u↗(p4). [Take the muon mass to be M and the muon energy to be
E2 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

u↗(p4)ϖ
µu↗(p2) = 2(E2c,↘ps,↘ips,↘pc)

u↔(p4)ϖ
µu↗(p2) = 2(Ms, 0, 0, 0)

u↔(p4)ϖ
µu↔(p2) = 2(E2c,↘ps, ips,↘pc)

u↗(p4)ϖ
µu↔(p2) = ↘2(Ms, 0, 0, 0)

can be written down (up to overall factors of ±1) without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared |MLL|2 for the case where the in-
coming e→ and incoming µ→ are both left-handed is given by

|MLL|2 =
4e4s2

(p1 ↘ p3)4

where s = (p1 + p2)2. Why is the numerator of |MLL|2 independent of θ ?

f) Find a similar expression for the matrix element |MRL|2 for a right-handed incoming e→ and a left-
handed incoming µ→, and explain why |MRL|2 vanishes when θ = φ. Write down the corresponding
results for |MRR|2 and |MLR|2.

g) Show that, in the relativistic limit, the differential cross section for unpolarised e→µ→ ↗ e→µ→

scattering in the centre of mass frame is

d▷

d”
=

2α2

s
·
1 +

1

4
(1 + cos θ)2

(1↘ cos θ)2
.
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h) Show that the spin-averaged matrix element squared (in this ultra-relativistic limit) can be ex-
pressed in Lorentz-invariant form as


|Mf i|2


=

8e4

(p1 ↘ p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] ,

and that a Lorentz invariant form for the differential cross section is

d▷

dq2
=

2φα2

q4


1 +

(
1 +

q2

s

)2


where q2 = (p1 ↘ p3)2.

The remainder of this question involves the derivation of a general expression for ⇔|Mf i|2↖ for the case
of finite electron and muon masses, and is optional:

i) Show that the spin-averaged matrix element squared for unpolarised e→µ→ ↗ e→µ→ scattering can
be written in the form


|Mf i|2


=

1

4



spins

|Mf i|2 =
1

4

e4

(p1 ↘ p3)4
LµϑWµϑ

where the electron and muon tensors Lµϑ and W µϑ are given by

Lµϑ ⇓


spins

[u(p3)ϖ
µu(p1)] [u(p3)ϖ

ϑu(p1)]
↓

Wµϑ ⇓


spins

[u(p4)ϖµu(p2)] [u(p4)ϖϑu(p2)]
↓

j) Using the electron currents from part b) above, show that the components of the electron tensor Lµϑ

are 



L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33



 = 8





E2

1
c2 +m2s2 E1psc 0 E1pc2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc2 p2sc 0 p2c2



 ,

and hence verify that Lµϑ has the Lorentz invariant form

Lµϑ
= 4

[
pµ
1
pϑ
3
+ pµ

3
pϑ
1
+ gµϑ

(
m2 ↘ p1.p3

]
.

k) Write down the corresponding expression for W µϑ and hence show that

⇔|Mf i|2↖ =
8e4

(p1 ↘ p3)4
[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)↘ (p1.p3)M

2 ↘ (p2.p4)m
2
+ 2m2M2

]

SOLUTION

a) The QED process e→µ→ ↗ e→µ→ involves a single Feynman diagram at leading order:
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e→ e→

µ→ µ→

p1 p3

p2 p4

q

µ

ε

Applying the Feynman rules gives

↘iMf i = [u(p3) ·↘ieϖµ · u(p1)] ·
↘igµϑ

(p1 ↘ p3)2
· [u(p4) ·↘ieϖϑu(p2)]

and hence

Mf i = ↘ e2

(p1 ↘ p3)2
gµϑ [u(p3)ϖ

µu(p1)] [u(p4)ϖ
ϑu(p2)] (29)

b) For a particle of mass m with four-momentum pµ = (E, p sin θ cos⇁, p sin θ sin⇁, p cos θ), the
helicity eigenstate spinors are

u↔ =
≃
E +m





cos θ/2
eiϱ sin θ/2

p/(E +m) cos θ/2
p/(E +m)eiϱ sin θ/2



 ; u↗ =
≃
E +m





↘ sin θ/2
eiϱ cos θ/2

p/(E +m) sin θ/2
↘p/(E +m)eiϱ cos θ/2



 (30)

For the incoming electron, with p1 = (E1, 0, 0, p), the two possible spinors are:

u↔(p1) =
√
E1 +m





1

0

p/(E1 +m)

0



 ; u↗(p1) =
√
E1 +m





0

1

0

↘p/(E1 +m)



 (31)

For the outgoing electron, with p3 = (E1, p sin θ, 0, p cos θ), the spinors are:

u↔(p3) =
√

E1 +m





c
s

p/(E1 +m) · c
p/(E1 +m) · s



 ; u↗(p3) =
√

E1 +m





↘s
c

p/(E1 +m) · s
↘p/(E1 +m) · c



 (32)

where c ⇓ cos θ/2 and s ⇓ sin θ/2. Noting that the spinors are real, matrix multiplication gives

↽ϖ0⇁ = ↽1⇁1 + ↽2⇁2 + ↽3⇁3 + ↽4⇁4

↽ϖ1⇁ = ↽1⇁4 + ↽2⇁3 + ↽3⇁2 + ↽4⇁1

↽ϖ2⇁ = ↘i(↽1⇁4 ↘ ↽2⇁3 + ↽3⇁2 ↘ ↽4⇁1)

↽ϖ3⇁ = ↽1⇁3 ↘ ↽2⇁4 + ↽3⇁1 ↘ ↽4⇁2
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Start with u↗(p3) and u↗(p1):

u↗(p3)ϖ
0u↗(p1) = (E1 +m)


c+

p2

(E1 +m)2
c


=

(E1 +m)
2
+ p2

(E1 +m)
c =

2E2

1
+ 2mE1

(E1 +m)
c = 2E1c

where we have used m2
+ p2 = E2

1
in the last-but-one step. Similarly, for ϖ1, ϖ2, ϖ3 we have

u↗(p3)ϖ
1u↗(p1) = (E1 +m)


p

E1 +m
s+

p

E1 +m
s


= 2ps

u↗(p3)ϖ
2u↗(p1) = (E1 +m)


↘ip

E1 +m
s↘ ip

E1 +m
s


= ↘2ips

u↗(p3)ϖ
3u↗(p1) = (E1 +m)


p

E1 +m
c+

p

E1 +m
c


= 2pc

In summary
u↗(p3)ϖ

µu↗(p1) = (2E1c, 2ps,↘2ips, 2pc) (33)

Similarly for the other possible spin configurations, giving overall:

u↗(p3)ϖ
µu↗(p1) = 2(E1c, ps,↘ips, pc) (34)

u↔(p3)ϖ
µu↗(p1) = 2(ms, 0, 0, 0) (35)

u↔(p3)ϖ
µu↔(p1) = 2(E1c, ps, ips, pc) (36)

u↗(p3)ϖ
µu↔(p1) = ↘2(ms, 0, 0, 0) (37)

c) For the incoming µ→, with four-momentum p2 = (E2, 0, 0,↘p) and E2 =

√
p2 +M2, the helicity

eigenstate spinors can be obtained from Equation (30) by setting θ = φ and ⇁ = 0:

u↔(p2) =
√
E2 +M





0

1

0

p/(E2 +M)



 ; u↗(p2) =
√
E2 +M





↘1

0

p/(E2 +M)

0



 (38)

For the outgoing µ→, with 4-momentum p4 = (E2,↘p sin θ, 0,↘p cos θ), the helicity eigenstate
spinors can be obtained from Equation (30) by setting θ ↗ φ ↘ θ and ⇁ = φ:

u↔(p4) =
√

E2 +M





s
↘c

p/(E2 +M) · s
p/(E2 +M) ·↘c



 ; u↗(p4) =
√
E2 +M





↘c
↘s

p/(E2 +M) · c
↘p/(E2 +M) ·↘s





(39)
using cos(φ ↘ θ)/2 = sin θ/2 = s and sin(φ ↘ θ)/2 = cos θ/2 = c.

A comparison of Equations (31) and (38) shows that, if we make the replacement p ↗ ↘p, then
u↔(p2) is of the same form as u↗(p1). Similarly, u↗(p2) is then of the same form as u↔(p1), apart from
an overall normalisation factor of ↘1.

Similarly, a comparison of Equations (32) and (39) shows that, under p ↗ ↘p, u↔(p4) becomes the
same as u↗(p3), and u↗(p4) becomes the same as u↔(p3), apart from overall normalisation factors of
↘1.
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The muon currents can therefore be written down directly using the electron current results, by chang-
ing m to M , E1 to E2, p to ↘p, ↙ to ∝ and ∝ to ↙:

u↗(p4)ϖ
µu↗(p2) = 2(E2c,↘ps,↘ips,↘pc) (40)

u↔(p4)ϖ
µu↗(p2) = 2(Ms, 0, 0, 0) (41)

u↔(p4)ϖ
µu↔(p2) = 2(E2c,↘ps, ips,↘pc) (42)

u↗(p4)ϖ
µu↔(p2) = ↘2(Ms, 0, 0, 0) (43)

d) Some of the currents vanish in the relativistic limit due to helicity conservation. The allowed spin
configurations are those for which the helicity of the e→ and the helicity of the µ→ are both preserved
in the scattering:

e) In the relativistic limit, we can set m = M = 0 and E1 = E2 = E. The electron currents become

u↗(p3)ϖ
µu↗(p1) = 2E(c, s,↘is, c) (44)

u↔(p3)ϖ
µu↗(p1) = (0, 0, 0, 0) (45)

u↔(p3)ϖ
µu↔(p1) = 2E(c, s, is, c) (46)

u↗(p3)ϖ
µu↔(p1) = (0, 0, 0, 0) (47)

while the muon curents are:

u↗(p4)ϖ
µu↗(p2) = 2E(c,↘s,↘is,↘c) (48)

u↔(p4)ϖ
µu↗(p2) = (0, 0, 0, 0) (49)

u↔(p4)ϖ
µu↔(p2) = 2E(c,↘s, is,↘c) (50)

u↗(p4)ϖ
µu↔(p2) = (0, 0, 0, 0) (51)

When the incoming e→ and µ→ are both left-handed (i.e. negative helicity) we have u(p1) = u↗(p1)
and u(p2) = u↗(p2), and the only non-zero contributions to the electron and muon currents come
from Equations (44) and (48). Hence the scalar product of the electron and muon currents is

2E(c, s,↘is, c) · 2E(c,↘s,↘is,↘c) = 4E2 · (c2 + s2 + c2 + s2) = 8E2

and, from Equation (29), the matrix element squared is

|MLL|2 =
e4

(p1 ↘ p3)4
· (8E2

)
2
=

4e4s2

(p1 ↘ p3)4

where now s ⇓ (p1 + p2)2 = 4E2.

The numerator of |MLL|2 is independent of θ because the incoming left-handed e→ and the incoming
left-handed µ→ have oppositely directed spins, and the total spin of the initial state is Sz = 0. Hence
there is no preferred spatial direction.

f) For MRL, with the incoming e→ right-handed and the µ→ left-handed, we have u(p1) = u↔(p1) and
u(p2) = u↗(p2). The only non-zero combination is now given by the scalar product of Equations (46)
and (48):

MRL ⇒ 2E(c, s, is, c) · 2E(c,↘s,↘is,↘c) = 4E2 · (c2 + s2 ↘ s2 + c2)

= 8E2
cos

2 θ/2

= 8E2 · 1

2
(1 + cos θ) .
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Hence the non-zero matrix elements can be summarised as

|MRR|2 = |MLL|2 =
e4

(p1 ↘ p3)4
4s2

|MLR|2 = |MRL|2 =
e4

(p1 ↘ p3)4
4s2 · 1

4
(1 + cos θ)2

where we must have MLL = MRR and MLR = MRL by symmetry of the spin configurations.

g) For unpolarised e→µ→ ↗ e→µ→ scattering, sum over the final spins and average over the initial
spins to obtain


|Mf i|2


=

1

2
· 1

2
·
(
|MLL|2 + |MRR|2 + |MLR|2 + |MRL|2



=
2e4

(p1 ↘ p3)4
s2

[
1 +

1

4
(1 + cos θ)2

]
(52)

With p1 = (E, 0, 0, E) and p3 = (E,E sin θ, 0, E cos θ), we have

(p1 ↘ p3)
2
= p2

1
+ p2

3
↘ 2p1.p3 = ↘2p1.p3 = ↘2E2

(1↘ cos θ)

For any 2 ↗ 2 body elastic scattering process in the centre of mass frame, the differential cross
section is given by

d▷

d”
=

1

64φ2s
⇔|Mf i|2↖

Hence:
d▷

d”
=

e4

8φ2s
·
1 +

1

4
(1 + cos θ)2

(1↘ cos θ)2
(53)

h) With 4-momenta

p1 = (E, 0, 0, E) p3 = (E,E sin θ, 0, E cos θ)

p2 = (E, 0, 0,↘E) p4 = (E,↘E sin θ, 0,↘E cos θ)

the scalar products are

p1.p2 = p3.p4 = 2E2
=

1

2
s2

p1.p4 = p2.p3 = E2
(1 + cos θ) = 1

4
s(1 + cos θ)

Hence the spin-averaged matrix element squared of Equation (52) becomes


|Mf i|2


=

8e4

(p1 ↘ p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] .

It was shown in Handout 3 that the Lorentz-invariant cross section d▷/dt = d▷/dq2 is given by

d▷

dq2
=

1

64φs(p↓
i
)2
|Mf i|2
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where p↓
i

is the centre of mass momentum of either of the initial state particles. At high energies when
masses are negligible (as here), we have p↓

i
= E and hence 4(p↓

i
)
2
= 4E2

= s. Hence

d▷

dq2
=

1

16φs2
|Mf i|2 =

1

16φs2
· 8e

4

q4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] .

In terms of s and q2, the scalar products are

s = (p1 + p2)
2
= 2p1.p2 = 2p3.p4

q2 = (p1 ↘ p3)
2
= ↘2p1.p3

p1.p4 = p1.(p1 + p2 ↘ p3) = p1.p2 ↘ p1.p3 =
1

2
s+ 1

2
q2

p2.p3 = p1.p4

Hence
d▷

dq2
=

1

16φs2
· 8e

4

q4
[
(
1

2
s)(1

2
s) + (

1

2
s+ 1

2
q2)(1

2
s+ 1

2
q2)

]
.

Using e2 = 4φα, this can be written as

d▷

dq2
=

2φα2

q4


1 +

(
1 +

q2

s

)2


.

Alternatively, start from Equation (53) and use

q2 = (p1 ↘ p3)
2
= ↘2p1.p3 = ↘1

2
s(1↘ cos θ)

to transform the cross section directly:

d▷

dq2
=


d cos θ

dq2


d▷

d cos θ
=

2

s
· d▷

d cos θ

1↘ cos θ =
2Q2

s

1 + cos θ = 2

(
1↘ Q2

s

)

i) The Lorentz invariant matrix element for a given spin configuration is

Mijkl = ↘ e2

(p1 ↘ p3)2
[uk(p3)ϖ

µui(p1)] [ul(p4)ϖϑuj(p2)]

where i, j, k, l =↙ or ∝ (or = 1, 2) specifies the spin state of each of the incoming and outgoing
particles in the collision. For unpolarised e→µ→ ↗ e→µ→ scattering, sum over the final spins and
average over the initial e→ and µ→ spins to obtain


|Mf i|2


=

1

2
· 1
2
·

2

i,j,k,l=1

|Mijkl|2

=
1

4

e4

(p1 ↘ p3)4

2

i,j,k,l=1

[uk(p3)ϖ
µui(p1)] [uk(p3)ϖ

ϑui(p1)]
↓
[ul(p4)ϖµuj(p2)] [ul(p4)ϖϑuj(p2)]

↓

=
1

4

e4

(p1 ↘ p3)4
LµϑWµϑ
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where the electron and muon tensors Lµϑ and W µϑ are given by

Lµϑ ⇓
2

i,k=1

[uk(p3)ϖ
µui(p1)] [uk(p3)ϖ

ϑui(p1)]
↓

Wµϑ ⇓
2

j,l=1

[ul(p4)ϖµuj(p2)] [ul(p4)ϖϑuj(p2)]
↓

j) Writing out the sum over spins explicitly, the electron tensor Lµϑ is given by

Lµϑ
= [u↗(p3)ϖ

µu↗(p1)] [u↗(p3)ϖ
ϑu↗(p1)]

↓
+ [u↔(p3)ϖ

µu↗(p1)] [u↔(p3)ϖ
ϑu↗(p1)]

↓

+ [u↔(p3)ϖ
µu↔(p1)] [u↔(p3)ϖ

ϑu↔(p1)]
↓
+ [u↗(p3)ϖ

µu↔(p1)] [u↗(p3)ϖ
ϑu↔(p1)]

↓ .

Substituting the electron currents given in Equations (34)-(37), and using matrix notation, the sum is




L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33



 = 4





E1c
ps

↘ips
pc




(
E1c ps ips pc


+ 4





ms
0

0

0




(
ms 0 0 0



+ 4





E1c
ps
ips
pc




(
E1c ps ↘ips pc


+ 4





ms
0

0

0




(
ms 0 0 0



= 8





E2

1
c2 +m2s2 E1psc 0 E1pc2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc2 p2sc 0 p2c2



 (54)

Now consider
Lµϑ

= 4
[
pµ
1
pϑ
3
+ pµ

3
pϑ
1
+ gµϑ

(
m2 ↘ p1.p3

]
.

In matrix notation, this is

Lµϑ
= 4





p0
1

p1
1

p2
1

p3
1




(
p0
3

p1
3

p2
3

p3
3


+ 4





p0
3

p1
3

p2
3

p3
3




(
p0
1

p1
1

p2
1

p3
1



+ 4





1 0 0 0

0 ↘1 0 0

0 0 ↘1 0

0 0 0 ↘1



 · (m2 ↘ p1.p3)

With p1 = (E1, 0, 0, p) and p3 = (E1, p sin θ, 0, p cos θ), we have

m2 ↘ p1.p3 = m2 ↘ (E2

1
↘ p2 cos θ) = p2(cos θ ↘ 1) = ↘2p2s2 ,
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where we have used E2

1
= p2 +m2 and 1↘ cos θ = 2 sin

2 θ/2 = 2s2. Hence

Lµϑ
= 4





E1

0

0

p




(
E1 p sin θ 0 p cos θ


+ 4





E1

p sin θ
0

p cos θ




(
E1 0 0 p



+ 4





1 0 0 0

0 ↘1 0 0

0 0 ↘1 0

0 0 0 ↘1



 ·↘2p2s2

= 4





2E2

1
↘ 2p2s2 E1p sin θ 0 E1p(1 + cos θ)

E1p sin θ 2p2s2 0 p2 sin θ
0 0 2p2s2 0

E1p(1 + cos θ) p2 sin θ 0 2p2 cos θ + 2p2s2





Using the relations sin θ = 2 sin θ/2 cos θ/2 = 2sc, 1 + cos θ = 2 cos
2 θ/2 = 2c2 and E2

1
= p2 +m2,

this is readily seen to be equal to Equation (54).

k) The muon tensor W µϑ can be written down immediately as

Wµϑ = 4
[
p2µp4ϑ + p4µp2ϑ + gµϑ

(
M2 ↘ p2.p4

]
.

Hence


|Mf i|2


=

4e4

(p1 ↘ p3)4
[
pµ
1
pϑ
3
+ pµ

3
pϑ
1
+ gµϑ

(
m2 ↘ p1.p3

]

→
[
p2µp4ϑ + p4µp2ϑ + gµϑ

(
M2 ↘ p2.p4

] (55)

giving finally


|Mf i|2


=

8e4

(p1 ↘ p3)4
[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)↘ (p1.p3)M

2 ↘ (p2.p4)m
2
+ 2m2M2

]
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12. a) The elastic form factors for the proton are well described by the form

G(q2) =
G(0)

(1 + |q2|/0.71)2

with q2 in GeV2. Show that an exponential charge distribution in the proton

ς(r) = ς0e
→ςr

leads to this form for G(q2) (insofar as |q2| = |q2|), and calculate ◁.

b) Show that, for any spherically symmetric charge distribution, the mean square radius is given by

⇔r2↖ = ↘ 6

G(0)


dG(q2)

d|q2|



q2=0

and estimate the r.m.s. charge radius of the proton.

c) The pion form factor may be determined in φe→ scattering. Use the following data to estimate the
r.m.s. charge radius of the pion.

|q2| (GeV2) G2

E(q
2
)

0.015 0.944 ± 0.007
0.042 0.849 ± 0.009
0.074 0.777 ± 0.016
0.101 0.680 ± 0.017
0.137 0.646 ± 0.027
0.173 0.534 ± 0.030
0.203 0.529 ± 0.040
0.223 0.487 ± 0.049

SOLUTION

a) For elastic scattering, there is no energy transfer to the target particle and the 4-momentum transfer
q is of the form qµ = (0, q). Hence |q2| = |q|2, and the form factor is given by the Fourier transform
of the charge distribution:

G(q2) = G(q2
) =


eiq.rς(r)d3r (56)

For a spherically symmetric charge distribution, and choosing the constant vector q to lie along the
+z axis:

G(q2) =


2ω

0


+1

→1

 ↘

0

eiqr cos φς(r)r2drd cos θd⇁

= 2φ

 ↘

0

ς(r)r2 ·


+1

→1

eiqr cos φd cos θ · dr

= 2φ

 ↘

0

ς(r)r2 ·

eiqr cos φ

iqr

+1

→1

· dr

=
4φ

q

 ↘

0

ς(r)r sin(qr)dr
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For the exponential charge distribution ς(r) = ς0e→ςr:

G(q2) =
4φς0
q

 ↘

0

re→ςr
sin(qr)dr

=
4φς0
q

1

2i

 ↘

0

r
[
e→ςr+iqr ↘ e→ςr→iqr

]
dr

Integration by parts gives  ↘

0

re→↼r
dr =

1

α2

for any constant α, so that

G(q2) =
2φς0
iq


1

(◁↘ iq)2
↘ 1

(◁+ iq)2


=

8φ◁ς0
(◁2 + q2)2

.

Thus the form factor is of the required (“dipole”) form:

G(q2) =
G(0)

(1 + |q2|/0.71)2

with G(0) = 8φς0/◁3 and

◁ =

√
0.71GeV2

= 0.84GeV

Note that, from equation (56), G(0) is just the total charge of the target particle:

G(0) =


ς(r)d3r = Q .

For an exponential charge distribution, it is easy to check that

G(0) =

 ↘

0

ς0e
→ςr · 4φr2dr = 4φς0

 ↘

0

r2e→ςr
dr = 4φς0 ·

2

◁3
,

consistent with the expression above. It is conventional and convenient to express the charge density
ς in units of +e so that, for a proton target, G(0) = 1. This corresponds to choosing the normalisation
constant ς0 to be ς0 = ◁3/8φ.

b) A Taylor expansion gives

G(q2) =


eiq.rς(r)d3r =

 (
1 + iq.r ↘ 1

2
(q.r)2 + · · ·


ς(r)d3r

But G(0) = 1 and


(q.r)ς(r)d3r = 0 since the integrand is an odd function of r

so that
G(q2) = 1↘


1

2
(q.r)2ς(r)d3r + · · · .
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But the Taylor expansion can also be written as

G(q2) = G(0) + q2
dG

dq2


q2=0

+ · · ·

so that

q2
dG

dq2


q2=0

= ↘


1

2
(q.r)2ς(r)d3r .

For a spherically symmetric charge distribution, and choosing q to lie along the +z-axis, this becomes

q2
dG

dq2


q2=0

= ↘


2ω

0


+1

→1

 ↘

0

1

2
· q2r2 cos2 θ · ς(r) r2drd cos θd⇁

⇐ dG

dq2


q2=0

= ↘


2ω

0


+1

→1

 ↘

0

1

2
r4 cos2 θς(r) drd cos θd⇁

= ↘2

3
φ

 ↘

0

r4ς(r)dr

But the mean square radius of the charge distribution is, by definition,

⇔r2↖ = 1

G(0)


r2ς(r)d3r =

1

G(0)

 ↘

0

r2ς(r) 4φr2dr =
1

G(0)
4φ

 ↘

0

r4ς(r) dr

and hence

⇔r2↖ = ↘ 6

G(0)

dG(q2)

d|q2|


q2=0

For the particular case of an exponential charge distribution, we have

G(q2) =
G(0)

(1 + |q2|/◁2)2

and differentiation gives

dG(q2)

dq2
= G(0) ·↘2

(
1 +

|q2|
◁2

)→3

· 1

◁2
⇐ dG

dq2


q2=0

=
↘2G(0)

◁2

⇐ ⇔r2↖ = ↘6 · ↘2G(0)

◁2
=

12

◁2
.

Hence the rms charge radius is

√
⇔r2↖ =

≃
12

◁
=

≃
12

0.84GeV
→ 0.197GeV.fm = 0.81 fm

where h̄c = 0.197GeV.fm has been used to convert from natural units to SI units.
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c) From a plot of GE(q2) versus |q2|, the slope at q2 = 0 can be estimated to be

dG(q2)

d|q2|


q2=0

↑ ↘1.9GeV→2 .

⇐
√

⇔r2↖ ↑
≃
↘6→↘1.9 = 3.38GeV→1

= 3.38GeV→1 → (0.197GeV.fm) = 0.67 fm

In fact, the “dipole” form G(q2) = G(0)/(1 + |q2|/◁2
)
2 provides a good description of the pion form

factor data. The dashed curve in the figure (drawn by eye rather than fitted) shows the function

GE(q
2
) =

1

1 + |q2|/(1.05GeV
2
)
,

so that ◁2 ↑ 1.05GeV
2. The dotted line shows the tangent to this curve at q2 = 0, with slope

dG

dq2


q2=0

=
↘2G(0)

◁2
=

↘2

1.05GeV
2
= ↘1.90GeV

→2 .
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DEEP-INELASTIC SCATTERING

13. The figure below shows a deep-inelastic scattering event e+p ↗ e+X recorded by the H1 experiment
at the HERA collider. The positron beam, of energy E1 = 27.5GeV, enters from the left and the
proton beam, of energy E2 = 820GeV, enters from the right. The energy of the outgoing positron
is measured to be E3 = 31GeV. The picture is to scale, so angles may be read off the diagram if
required.

a) Show that the Bjorken scaling variable x is given by

x =
E3

E2


1↘ cos θ

2↘ (E3/E1)(1 + cos θ)



where θ is the angle through which the positron has scattered.

b) Estimate the values of Q2, x and y for this event.

c) Estimate the invariant mass MX of the final state hadronic system.

d) Draw quark level diagrams to illustrate the possible origins of this event. Using the plot overleaf of
the parton distribution functions xuV(x), xdV(x), xu(x) and xd(x), estimate the relative probabilities
of the various possible quark-level processes for the event. Note that the Q2 in the plot overleaf need
not be exactly the same as the Q2 in this event – Bjorken scaling requires only that it be similar. So
do not worry about any relatively small differences between the two Q2 scales.

[Neglect contributions from the heavier quarks s, c, b, t.]

e) Estimate the relative contributions of the F1 and F2 terms to the deep-inelastic cross section for the
x and Q2 values corresponding to this event.
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SOLUTION

a) For e+p ↗ e+X at HERA, choose four-momenta to be:

p1 = (E1, 0, 0, E1) , p2 = (E2, 0, 0,↘E2) , p3 = (E3, E3 sin θ, 0, E3 cos θ) .

Then
q2 = ↘2p1.p3 = ↘2E1E3(1↘ cos θ)

p2.q = p2.p1 ↘ p2.p3 = 2E1E2 ↘ E2E3(1 + cos θ)

The Bjorken scaling variable x is defined as

x ⇓ ↘q2

2p2.q

Hence

x =
E3

E2


1↘ cos θ

2↘ (E3/E1)(1 + cos θ)


.

b) For the particular event shown, we can estimate the e+ scattering angle to be θ ↑ 50
≃. We are given

E1 = 27.5GeV, E2 = 820GeV, E3 = 31GeV. Hence

x =
31

820


1↘ cos 50

≃

2↘ (31/27.5)(1 + cos 50≃)


= 0.091 .

Q2
= 2E1E3(1↘ cos θ) = 2→ 27.5→ 31→ (1↘ cos 50

≃
) = 609GeV

2

y =
p2.q

p2.p1
= 1↘ p2.p3

p2.p1
= 1↘ E3(1 + cos θ)

2E1

= 1↘ 31→ (1 + cos 50
≃
)

2→ 27.5
= 0.074

c) The final state hadronic system has four-momentum p4 = p2 + q. Hence its invariant mass MX is
given by

M2

X
= (p2 + q)2 = M2

+ 2p2.q ↘Q2
= M2

+
Q2

x
↘Q2 .
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Hence

MX =


(0.938)2 +

609

0.091
↘ 609 = 78.0GeV .

d) At quark level, the possible origins of the event are e+u ↗ e+u, e+d ↗ e+d, e+u ↗ e+u,
e+d ↗ e+d.

The parton model prediction for the e+p cross section is

d
2▷ep

dxdQ2
=

2φα2

Q4

[
1 + (1↘ y)2

] 4
9
u(x) +

1

9
d(x) +

4

9
u(x) +

1

9
d(x)


.

Hence the relative probability for these processes is

u : d : u : d =
4

9
u(x) :

1

9
d(x) :

4

9
u(x) :

1

9
d(x) .

From the plot, for x ↑ 0.09, we can estimate
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xuV(x) ↑ 0.52, xdV(x) ↑ 0.26, xu(x) ↑ 0.10, xd(x) ↑ 0.14 .

Remembering that

u(x) = uV(x) + uS(x) = uV(x) + u(x)

d(x) = dV(x) + dS(x) = dV(x) + d(x) ,

we obtain the estimates

u(x) ↑ (0.52 + 0.10)/0.09 = 6.89

d(x) ↑ (0.26 + 0.14)/0.09 = 4.44

u(x) ↑ 0.10/0.09 = 1.11

d(x) ↑ 0.14/0.09 = 1.56 .
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Including the factors of 4/9 or 1/9, the relative probabilities are therefore

u : d : u : d ↑ 3.06 : 0.494 : 0.494 : 0.173 = 0.73 : 0.12 : 0.12 : 0.04 .

e) The deep-inelastic e+p cross section is

d
2▷ep

dxdQ2
=

4φα2

Q4


(1↘ y)

F ep
2

x
+

1

2
y2

2xF ep
1

x



Therefore, assuming the Callan-Gross relation F ep
2

= 2xF ep
1

, the F2 and F1 terms contribute to the
cross section in the ratio

F2 : F1 = (1↘ y) : 1

2
y2 = 1↘ 0.075 :

1

2
(0.075)2 ↑ 1 : 0.0028 .

In other words, the cross section is dominated by the F2 term, with the F1 term contributing only
about 0.3% of events.
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14. a) Show that the lab frame differential cross section d
2▷/dE3d” for deep-inelastic scattering is related

to the Lorentz invariant differential cross section d
2▷/dεdQ2 via

d
2▷

dE3d”
=

E1E3

φ

d
2▷

dE3dQ2
=

E1E3

φ

d
2▷

dεdQ2

where E1 and E3 are the energies of the incoming and outgoing lepton, ε = E1 ↘ E3, and Q2
=

↘q2 = ↘(p1 ↘ p3)2. [ When you do this, make sure you understand that differential cross sections
transform as Jacobians, not as partial derivatives! ]

Show further that
d
2▷

dεdQ2
=

2Mx2

Q2

d
2▷

dxdQ2

where M is the mass of the target nucleon and x = Q2/2Mε.

b) Show that
2Mx2

Q2
· y

2

2
=

1

M

E3

E1

sin
2
θ

2

and that
1↘ y ↘ M2x2y2

Q2
=

E3

E1

cos
2
θ

2
.

c) Show that the Lorentz invariant cross section for deep-inelastic electromagnetic scattering,

d
2▷

dxdQ2
=

4φα2

Q4

(
1↘ y ↘ M2x2y2

Q2

)
F2

x
+

y2

2

2xF1

x



becomes
d
2▷

dE3d”
=

α2

4E2

1
sin

4 θ/2


F2

ε
cos

2
θ

2
+

2F1

M
sin

2
θ

2



in the lab frame.

d) An experiment consists of an electron beam of maximum energy 20GeV and a variable angle
spectrometer which can detect scattered electrons with energies greater than 2GeV. Find the range of
values of θ over which deep-inelastic scattering events can be studied for x = 0.2 and Q2

= 2GeV
2.

[You may find it helpful to determine E1 ↘ E3 (fixed), and E1E3 in terms of θ, and then sketch the
various constraints on E1 and E3 on a 2D plot of E3 against E1.]

e) Outline a possible experimental strategy for measuring F1(x,Q2
) and F2(x,Q2

) for the above
values of x and Q2.

SOLUTION

a) Changing variables from d” = 2φd cos θ to

Q2
= ↘q2 = 2E1E3(1↘ cos θ)

gives
d
2▷

dE3d”
=

1

2φ

d
2▷

dE3d cos θ
=

1

2φ


dQ2

d cos θ


d
2▷

dE3dQ2
=

1

2φ
2E1E3

d
2▷

dE3dQ2
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and hence
d
2▷

dE3d”
=

E1E3

φ

d
2▷

dE3dQ2
=

E1E3

φ

d
2▷

dεdQ2
(57)

To change variables from ε to x, use

x =
Q2

2Mε
⇐ ε =

Q2

2Mx

d
2▷

dxdQ2
=


dε

dx


d
2▷

dεdQ2

which gives directly
d
2▷

dεdQ2
=

2Mx2

Q2

d
2▷

dxdQ2
(58)

b) Since
Q2

= 4E1E3 sin
2 θ/2

and
y =

ε

E1

we have
E3

E1

sin
2 θ/2 =

Q2

4E2

1

=
Q2y2

4ε2
.

Using ε = Q2/2Mx, we then obtain

2Mx2

Q2
· 1

2
y2 =

1

M

E3

E1

sin
2
θ

2
(59)

Hence

1↘ y ↘ M2x2y2

Q2
=

E3

E1

cos
2
θ

2
. (60)

c) The Lorentz invariant cross section for deep-inelastic electromagnetic scattering is

d
2▷

dxdQ2
=

4φα2

Q4

(
1↘ y ↘ M2x2y2

Q2

)
F2

x
+

y2

2

2xF1

x



Combining Equations (57) and (58), we have

d
2▷

dE3d”
=

E1E3

φ

d
2▷

dεdQ2
=

E1E3

φ

2Mx2

Q2

d
2▷

dxdQ2

The F2 term contains the combination of factors

2Mx2

Q2

(
1↘ y ↘ M2x2y2

Q2

)
1

x
=

2Mx

Q2

E3

E1

cos
2
θ

2
=

1

ε

E3

E1

cos
2
θ

2
,
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where we have used Equation (60). Using Equation (59) for the F1 term, we then obtain

d
2▷

dE3d”
=

E1E3

φ

4φα2

Q4

(
1

ε

E3

E1

cos
2
θ

2

)
F2 +

(
1

M

E3

E1

sin
2
θ

2

)
2F1



Since Q2
= 4E1E3 sin

2 θ/2, we finally obtain

d
2▷

dE3d”
=

α2

4E2

1
sin

4 θ/2


F2

ε
cos

2
θ

2
+

2F1

M
sin

2
θ

2



d) Given x = 0.2 and Q2
= 2GeV

2, the electron energies E1 and E3 are fixed via

E1 ↘ E3 =
Q2

2Mx
=

2GeV
2

2→ (0.938GeV)→ 0.2
= 5.33GeV (61)

and
E1E3 =

Q2

4 sin
2 θ/2

. (62)

The experimental constraints E1 < 20GeV and E3 > 2GeV then lead to constraints on the angle θ.
To obtain these, it may help to think in terms of a graphical solution of Equations (61) and (62) on a
plot of E3 versus E1. Equation (61) corresponds to a straight line running at 45≃ while Equation (62)
gives an infinite set of hyperbolae, each hyperbola corresponding to a different possible value of θ.

The minimum possible value of θ corresponds to taking the maximum possible beam energy E1 =

20GeV:
sin

2 θ/2 =
Q2

4E1E3

=
2

4→ 20→ (20↘ 5.33)
= 1.70→ 10

→3

which gives
θmin = 4.73≃ .

The maximum possible value of θ is determined by the minimum detectable scattered electron energy
of E3 = 2GeV:

sin
2 θ/2 =

Q2

4E1E3

=
2

4→ (2 + 5.33)→ 2
= 0.034

which gives
θmax = 21.3≃ .

Strategy: choose several values of θ between about 5≃ and 20
≃, measure reduced cross section at each

value of θ and plot versus tan2 θ/2. Should give a straight line (note ε is fixed) with slope 2F1/M and
intercept F2/ε:

d
2▷

dE3d”


α2

cos
2 θ/2

4E2

1
sin

4 θ/2
=


F2

ε
+

2F1

M
tan

2
θ

2



Each θ setting requires a different beam energy given by solving the quadratic equation

E1(E1 ↘ 5.33) =
Q2

4 sin
2 θ/2
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This gives

2E1 = 5.33 +



(5.33)2 +
Q2

sin
2 θ/2

Gives E1 = 19.1GeV for θ = 5
≃ and E1 = 7.5GeV for θ = 20

≃.

Note that y = (E1 ↘ E3)/E1 varies between 0.28 and 0.71 so get healthy contribution from F1.
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