NST Part III Experimental and Theoretical Physics Michaelmas 2025
Dr Christopher Lester

Particle Physics Major Option

EXAMPLES SHEET QUESTIONS (ALL)

NATURAL UNITS AND HEAVISIDE-LORENTZ UNITS

(a) In the units he normally uses, your particle-physics lecturer was 101¢/ GeV tall and had a mass of
4.40 x 10%® GeV when aged 2.11 x 1033/ GeV. Calculate his Body Mass Index (BMI) and determine
whether he was obese at this point in his life.

(b) Show that charge can indeed be measured in units of (50710)%. [You may wish to consider dimen-

sional analysis of the Coulomb force law F' = ;122 ]

SOLUTION

(a) The laborious way of working out the height L and mass of M of the lecturer would be to insert
all the right powers of 71 and ¢ and use /i ~ 1.055 x 1073* Js and ¢ = 3.00 x 10% m/s. This requires
many numbers and lots of use of the calculator. Using this bad way to calculate L. we might write
something like:

L =10 ic/ GeV (1)
_ (106) x (1.055 x 10734J5s) x (3.00 x 10® m/s) )
109 x (1.60 x 10-19.7)
(10'%) x (1.055 x 1073%) x (3.00 x 10®)
- 109 x (1.60 x 10-29) " ©)
_ 1055 X 3.00 ) eaaisinn @
1.60
=197 x 10°m 5)
=1.97m. (6)
Much better would be to use 1 = hc = 197 MeV - fm. This nicer approach would give us:

L =10"%/GeV (7
=10'%/GeV x 1 (8)
= 10"/ GeV x (197 MeV - fm) )
= 197 x 1016791615 (10)
=197 x 102 m (11)
=1.97m (12)

(13)



The mass of the lecturer in S.I. units is easier to calculate as E ~ mc? reminds us that masses are
only a factor of ¢? away from energies, and everyone knows c. Therefore

M = 4.40 x 10%® (GeV/c?) (14)
= (4.40 x 10%) x (10 x (1.60 x 107 J))/(3.00 x 10® m/s)? (15)
= (4.40 % 1.60/9.00) * 102719716 kg (16)
=78 kg. (I7)

Hence the BMI (which is mass in kg divided by square of height in metres) is
BMI = 78/(1.97)* = 20.1. (18)

According to Wikipedia (https://en.wikipedia.org/wiki/Body mass_index)the WHO de-
fines obsedity as a BMI over 25 if the person is more than 20 years old, so he is not obese given the
age supplied (44 years).

(b)
[q142] = [Apico Fr?] (19)
= [0 L?] (20)
= [eo(FL)L] 1)
= [eoEL] (22)
= [eo(ET)(L/T)] (23)
= [eohd]. (24)
SPECIAL RELATIVITY

a) Draw the two leading-order Feynman diagrams for ete~ — ete™ involving single photon ex-
change, and write ¢, the 4-momentum of the exchanged virtual photon, in terms of the 4-momenta
of the initial and/or final state particles. By evaluating ¢? in the centre of mass frame, or otherwise,
determine whether ¢ is timelike (¢*> > 0) or spacelike (¢> < 0) in each case.

b) The Mandelstam variables s, t,u in the scattering process a + b — 1 + 2 are defined in terms of
the particle 4-vectors as

s=pa+m)?  t=@.—m)?  u=(p.—p)*.

Show that s + ¢ + u = mg,> + mp2 + mq2 + my>.
¢) Show that /s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons are brought into head-on collision with
820 GeV protons. Calculate the centre of mass energy, /s, of e~ p collisions at HERA, and determine
the beam energy that would be needed to produce e~ p collisions with this value of /s using electrons
incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest, the reaction v + X — ¢ 4+ Y can only
proceed if the incoming neutrino has an energy above a threshold given by

(ml + my)2 — m?X

E, >
2mX
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[ Aside: when revising at the end of the course you may wish to consider reviewing Question 1 of the
January 2017 past Tripos paper for this course as looks more deelply into the connections between
Mandelstam variables and the characteristics of different scattering processes. |

SOLUTION

a) The two leading order Feynman diagrams for ete™ — e™e™ scattering are:

et D1 D3 et

et e
D2 P4

y4 DP3

- b2 Pa _

For diagram 1, the 4-momentum of the virtual photon is ¢ = p; + p». In the centre of mass frame, we
have ¢ = p; + p2 = (2F,0,0,0), and hence

¢ =4E>>0 = ¢*istimelike.

For diagram 2, ¢ = p; — ps. In the centre of mass frame, we have I; = Ej5 (elastic scattering) and
hence ¢ = (0, p, — p;). Therefore

¢ =—(p—p3)? <0 = ¢ is spacelike

b) Since p? = m? etc.:

stt+u=(patp)+ @e—p)°+ Pa—p2)°
= 3p2 + pi + P2 + D3+ 20D — 2Pa-D1 — 2Da-D2
= 3m + mj +m37 +mj + 2pa.(pp — p1 — p2)
= 3m2 + mi +mj +m3 + 2pa. — Pa
=m2+mj +m; +m;
where energy-momentum conservation, p, + p, = p1 + P2, has been used in the last line but one.
¢) In the centre of mass frame, the 4-momenta of particles a and b can be taken to be p, = (E,, 0,0, p),

m = (F,0,0,—p). Hence p, + py = (E, + E3,0,0,0) and s = (p, + p»)*> = (E, + E,)*. Hence
Vs = E, + FEy, the total collision energy in the centre of mass frame.

d) HERA: electron and proton masses can be neglected, so 4-momenta are:
Do = (Eaa Oa 07 Ea) Py = (Eb7 07 07 _Eb) = Pa + Py = (Ea + Eb7 07 07 Ea - Eb)

Hence
s = (pa +pb)2 = (Ea + Eb)2 - (Ea - Eb)2 = 4EaEb 5
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which gives

Vs = 2/ E,E, = 2v/27.5 GeV x 820 GeV = 300 GeV .

For electrons incident on a stationary proton target:
Pa = (Ea,0,0, Ea) Py = (mp,0,0,0) = Da + Db = (Ea +mp70a07 Ea) .

Hence
s = (pa +pb)2 = (Ea + mp)2 - Ef = 2Eamp + m; y

which gives
s—m2  (300GeV)? — (0.938 GeV)?
E, = P — = 47974 GeV .
om, 2 % (0.938 GeV) ¢

e) For the scattering process v + X — ¢ + Y to be kinematically allowed, we must have
Vs > my 4+ my . (25)

This is easily seen by considering the centre of mass frame: at threshold, the particles ¢ and Y are
both produced at rest. Equation (25) involves only Lorentz-invariant quantities, and so can be applied
to any reference frame. In particular, in the lab frame, with X at rest, we have

s:m§(+2p,,-pxzm§<+2E,,mX.

Hence we need
mx +2E,mx > (m; +my)?

which gives a threshold neutrino energy in the lab frame of

(my + my)* — m%

E, >
2mX

a) For a particle of four-momentum p* = (£, p,, py, p.), show that the scalar product
p? = E* —pl —p; —p?
is Lorentz invariant by explicitly transforming the four components of p*.

b) Use the Lorentz transformations to show that the volume element d3p/E in momentum space is

Lorentz invariant, i.e. that
dp,dp,dp.  dp,dp,dp.,

E  F
SOLUTION
a) Lorentz transformation (with ¢ = 1):
E"=~(E — Bp.) Py = Py
Py =v(p. — BE) P, =Dp-



where v = 1/4/1 — f? and 5 = v/c = v. Hence
() = (E")? = (0,)% = (p}) — (1.)?
= 7(E = Bpa)® — v (p= — BE)? — pl — p?
=7°(1 = B*)E* —~+*(1 = B*)p5 — pi — p?
= E? —pl —p) —

b) Since dp;, = dp, and dp, = dp. we have

dp’ dp’
d3/:d/d/d/: xdwd dz: J:d?)

where p), = 7(p, — SE) and E is to be understood as £ = | /p2 + p2 + p2 + m?. The derivative is

dp;:_ d B B dFE
aa‘mﬁ%‘M””C‘ﬂm)

The components p, and p, remain unchanged in the transformation, and so can be treated as constants.
Hence

Pa _ P
Vo tptpitm? E

de  d
2 2 2 2 _
. dpx\/px+py+pz+m

This gives

dp), (1 ﬁpx>_ E—Bp, FE
ap. ! E)- 7B T E°

and therefore
&y :i.gd%:@
E’ E F E

In a 2-body decay, a — 1 + 2, show that the three-momentum of the final state particles in the centre
of mass frame has magnitude

"= g (o P — Gy — )]

SOLUTION

Decay a — 1 + 2: energy conservation gives

ma=E1+E2:\/m%+p*2+\/m%+p*2

Squaring:

m2 = E} + B3 +2E,Ey = m? +mj + 2p*% + 2\/(m% + p*2)(m3 + p*2)

= 2\/(m%+p*2)(m§+p*2):mi—mf—mg—Qp*Z.
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Squaring again:
= Ami+p ) (my +p*?) = (mg —mi —m3 — 2p"%)*.

Multiplying out and rearranging gives

4mzp*? = (mj; —mj —m3)? — (2mymy)
= (m2 —m] —m3 — 2myimy)(m2 — m? —m3 + 2mym,)
= [md — (my +my)?] [m — (m1 — my)?]
Hence
* 1 2 2 2
b = 5o /2 — 2] — (i — o)
TWO BODY DECAY

According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processes p — 7 and K* — K have invariant matrix elements of the
form

Mfi = pr

where C,/C+ = 2//3 and p, is the final state centre of mass momentum. Show that the predicted
ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 4 to obtain p,. Take the 7, p, K and K* meson masses to be 139, 770,
494 and 892 MeV respectively. The measured widths are I'(p — 7m) = 153 £ 2MeV and I'(K* —
K7) =51.3+ 0.8 MeV/]

SOLUTION

a) The matrix element My; = Cp, depends only on the centre of mass momentum p, = p* of the
final state particles, not on their directions, i.e. the decays are isotropic. For any isotropic two-body
decay a — 1 + 2, the decay rate is

p* p* § 02p*3
| Mi|* = (Cp")* =

I' = =
8mm?2

o 2
8mmz

-~ 8mm2
From question 3, the centre of mass momentum is given by

p* = [(mg +mq + ma)(mg — my + ma)(mg +my — msa)(mg —my —ms)]

_ 1/2
2m, ‘

For p — mm, we have m, = m, = 770 MeV, m; = my = m, ~ 140 MeV:

* 1 1 2 2
b= o (my + 2mz).my.my.(m, — 2mz) = 3 V' dmz = 359 MeV
D

For K* — Km, we have m, = mg- = 892MeV, m; = mg =~ 494MeV, my = m, ~ 140 MeV
giving p* = 288 MeV.

L Plp—am) _ G mi. (1) 2\ [892\* (359 3_346
MK —Kr) CZ. m2 \pk.) \V3 770 288) 7
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Data:
F(p — 7r7r) =153 = 2MeV, F(K* — K7r) =51.3 £ 0.8 MeV

giving a measured ratio of 2.98.

The 7+ meson decays almost entirely via the two body decay process 7+ — 111, with an invariant
matrix element given by

’Mf"2 — 2G2 f2m2 (mQ o m?)

1 FJatiiu g o

where Gp = 1.166 x 1075 GeV 2 is the Fermi constant, and fr is related to the size of the pion
wavefunction (the pion being a composite object).

a) Obtain a formula for the 7+ — p*v, decay rate. Assuming f, ~ m,, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[m, = 139.6 MeV, m, = 105.7 MeV.]

b) By replacing m,, by m,, show that the rate of 7+ — e* v, decay is 1.28 x 10~* times smaller than the
corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting
the factor |Mfi|2), the decay rate to electrons would be expected to be greater than the rate to muons.

SOLUTION

a) From question 3, the momentum of the ;1 or v, froma 7™ — p*v, decay, in the 7" rest frame, is

 _ (mw+mu)(mw _mu) o m72r _mi

2m, 2my
and hence the decay rate is
I'= I | Mg |* = —i — 2GR 2m? (m2 —m?2)
grmz " 167mm3 F/m .
_ Gimj

2 2\2
= B, )

(1.166 x 107°)2  0.1052

8T " 0.140
=3.34 x 107" GeV

(0.140% — 0.105%)?

The pion lifetime is therefore
1 1
T = =

T 334x10-17

which can be converted to SI units using i = 6.58 x 1072° GeV.s :

=3.0 x 10" GeV~!

e = (3.0 x 10'%).(6.58 x 107%) = 1.97 x 10™®s

b) Ratio of decay rates:

D(nt —etr,)  m2 (m2—m2\>  [0511\% [139.6° —0.511%\° T
L+ — pty,)  m2 \m2—-m2) — \105.6 139.62 — 105.62)




On the basis of phase space alone, i.e. neglecting the contribution to the decay rate from |M;|*

have

, WE

p*
= xp*.
8mm?2 b

Hence the ratio of decay rates is just the ratio of the centre of mass momenta appropriate to each
decay:

Mt etw) P o) miomd
D(rt = pty,)  pr(rt = pty,)  m2—m2



THE DIRAC EQUATION

Write down a simplified form of the Dirac equation for a spinor 1/ (¢) describing a particle of mass m
at rest. For the standard Pauli-Dirac representation of the v matrices, obtain a differential equation
for each component 1); of the spinor 1), and hence write down a general solution for the evolution of
1. Comment on your result and on its relation to the standard plane wave solutions involving u;(p),

uz(p), v1(p), v2(p).
SOLUTION

For a particle of mass m at rest (p = 0), since p = —iV, we have 9¢/dx = 0v /0y = 0¥ /0z = 0.
Hence ¢ = 1/(t) only, and the Dirac equation simplifies to

0O
0— =
7y T ma|.
In the Pauli-Dirac representation, this is
10 0 0Y) [ i
o1 0 o0 Vo | (o
“loo =1 o || T us ]|
00 0 -1 @ Wy

which gives
i% = miu, @'lbz = ms, —w:s = ms, —W4 =miy .
These equations have the solutions
wl — 1416—1'77’Lt7 ¢2 — AQG_th7 77/}3 — A3€+imt’ ¢4 — A4e+imt 7

where the A; are complex constants. The general solution for v is therefore

Ale—imt
A2€—imt
77Z) = A3€+imt

A4e+imt

This can be expressed as a linear combination of the four independent solutions

e—imt7 N €+imt, N €+imt 7 (26)

o O = O
O = OO
_ o O O

where N = +/2m to normalise to 2/ = 2m particles per unit volume.

Thus both positive energy, e ™, and negative energy, e, solutions unambiguously emerge.

The spinors in Equation (26) can be obtained by setting £/ = m, p, = p, = p. = 0 in the standard
plane wave solutions ;!PT =51 e P-T=Et) )=t P-T=E1) 4y, e=UP-T=Eb) a5 expected.
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8. a) For the standard Pauli-Dirac representation of the -y matrices, and for an arbitrary pair of spinors ¢
and ¢ with components v; and ¢;, show that the current 1)y ¢ is given by

V700 = Didr + i + 303 + Yign
Y6 = Uida + Y305 + Uide + Yo
VY°d = —i(Vda — V33 + V302 — Vi¢n)
V>0 = i3 — Via + Y501 — Vi
b) For a particle or antiparticle with four-momentum p* = (E, p,, py, p.), show that
iy ur = Upyug = vy oy = oyt = 2p*
and that
uyug = Upyup = v1y" v = vayto = 0.

¢) Hence show that the current j* = 1)(p)y*¢(p) corresponding to a general free particle spinor
Y(p) = u(p)e’P-T—EY or antiparticle spinor ¢(p) = v(p)e *P-T~F% is given by j* = 2p*. Write
down the particle density and flux represented by j*.

SOLUTION

a) For an arbitrary pair of spinors ¢ and ¢ say, with spinor components /; and ¢;, standard matrix
multiplication gives, for y = 0,

10 0 0\ (¢

To= (Wi 0~ —6) (g o Dy o || Z| = vien+ vt v+ vier.
00 0 —1) \¢

Similarly, for 4 = 1, 2, 3, we obtain
0 0 0 1\ /¢

e e oo o o e

by ¢:<¢1 vy —3 _¢4> 0 -1 0 0 " = Y1 Py + Vo3 + Y302 + Yyd
1 0 0 0/ \os
0 0 0 —i\ (&

Pro= (i 03 v =) | g 4 o o | || = it - vies + wies - vis)
i 00 0/ \o
001 0\ /¢

Bro=@i v —vi =) [0 oo o ||| = vies - vien+ vio - vies.
0 1.0 O 04

In summary:

0700 = idr + P3¢ + V33 + Vi
VYo = Wi da + V33 + P36 + Vi
VY2 p = —i(hfds — Vs + V502 — Vi)
U0 = i s — h5da + 51 — Yide
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b) For the free particle spinor w4, the first element of the current 4-vector is

p? (p% +1p2) 1

wyt = (B4 m) {1 T Erme T Erme

— (E+m) {Hp—z}

(E +m)?
(B4 m)*+p? _2E2—{—2Em_2E
N E+m ~ E+m ’

where, in the last line, we have made use of the relation E? = p? + m?2.
Repeating this exercise for the remaining terms in the 4-vector current gives, altogether,

w1y uy = 2F; wy'u = 2py; Wy Uy = 2py; Wy ur = 2p,
which can be expressed more compactly as

Y u = (2F, 2py, 2py, 2p.) = 2p" .
Repeating the above exercise for uy, v; and v, in place of u; gives
wy uy = Uy up = 01y vy = Uy oy = 2pF

while the cross-terms are easily seen to vanish:

o _ _ _
w1y ug = Uy ur = 01y vy = vy = 0.

¢) For a particle, with ¢ = u(p)e™*, we have

7 = oy = u(p)y e =m(p)e

and hence o
gt =t =yt

For an antiparticle, we have similarly j# = vy v.
A particle spinor u(p) can always be expressed as a linear combination of the basis spinors u;, us:
— 2 2 _
U = U] + QalUa, \oz1| + ’062| =1.

Hence
Yy u = oo [Py uy + oo [Py uy = 2pt

Thus
The current 4-vector is j* = (p,J) so

p=2E,  3=2p,
p being the particle density and j being the flux.
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9. a) For a particle with 4-momentum p* = (E, psin 6 cos ¢, psin 0 sin ¢, p cos @), show that the spinors
(14 ~5)uy and (1 + +°)uy are not in general proportional to u but become so in the relativistic limit
E>m.

b) Define the terms helicity and chirality. How are chirality and helicity related to the spinors and
result described in part (a) ?

¢) What would be the equivalent result to that described in (a) for the corresponding antiparticle
spinors (1 + ~°)vy and (1 + 7°)vy ?

SOLUTION

a) For p* = (E, psin 6 cos ¢, psin @ sin ¢, p cos §), we have

cos /2 —sin /2
€' sin 62 €' cos 0/2
ut(p) = VE +m o2 | u(p) = vE+m s sin 62
€' sin /2 — €' cos /2
But
1010 1
0101 0
5 _ \/
(I+m=11 o | o|VEF™ p-/(E +m)
0101 (e + ipy)/(E +m)
1+ p./(E+m)
(pz +ipy)/(E +m)
=VE v
T 4 p/(E +m)
(pz +ipy)/(E +m)

which, in general, is clearly not proprtional to 4.

In the limit £ > m, the spinors u; and us become

1 1

f——— 0 0
w=vVE+m p./(E +m) - VE cos

(pz +ip,)/(E +m) e sin @
0 0
=VE 1 VE x
12 tm (pe —ipy)/(E 4+ m) - e~ sin 6
—p./(E+m) —cos
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Hence

1 1+ cos@

0
id o
(1+7%)uy — el O | =vE| S
1

cos 6 1+ cosf
€' sin 0 €' sin

O = O =
—_ O =) O
O = O =

cos /2
' sin 62
cos 0/2
€' sin 62

— 2V/E cos /2 = 2c0s0/2-ur (27)

and similarly:

0 e~ sinf
1 1—cosét
VE e ®sing | VE e~ ginf
—cosf 1 —cosb
e~ cos /2
sin 6/2
e~ cos 6/2
sin 6/2

(1 + ")/5)UQ —

O = O =
— o~ O
O = O =
_ O = O

— 2V E sin /2

=2e“sing/2-up (28)

b) The helicity operator h = X.p gives the projection of the particle spin along the direction of
motion. A particle or antiparticle with the spin vector aligned along (opposite to) the direction of
motion has h = 41 (h = —1) and is said to be right-handed (left-handed).

Any (particle or antiparticle) spinor 1) can be expressed as the sum of its left-handed and right-handed
chiral components

Y =YL, + Yr; YL=31-"") Yr=i1+7")0.

In the extreme relativistic limit (& > m), the left-handed and right-handed chiral components are
also eigenstates of the helicity operator:

For a particle: Yy, has helicity —1 1R has helicity +1
For an antiparticle: 1y, has helicity +1 R has helicity —1

The results in part a) show that, in the relativistic limit, and only in the relativistic limit, the right-
handed chiral components (1 + ~®)u; and (14 ~°)uy are both proportional to w4, i.e. are both positive
helicity eigenstates. Since any particle spinor u can be expressed as a linear combination of u; and
us, this result holds quite generally i.e. in the relativistic limit, the right-handed chiral component
(1 + ~v°)u becomes a right-handed helicity eigenstate for any particle spinor w.

c¢) For antiparticles, the right-handed chiral component %( 1 + 7)1 becomes a left-handed helicity
eigenstate in the relativistic limit. Hence (1 + +®)v; and (1 + ~°)v, will both become proportional to
v, in the relativsitic limit.
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10. a) Without resorting to an explicit representation of the Dirac gamma matrices, show that the matrix
v? = i7°y1y2~3 has the following properties:

(V)P =1,  AT=4% Pyt = b,

b) Show that the adjoint spinors vy, and ¥r corresponding to the left-handed and right-handed com-
ponents ¢, = 1(1 —7°)y and Yr = (1 + )¢ are:

UL =v5(1+19°)

Yr = v3(1-7").

c) Show that ¢ y*¢r = ¢ry*1P1, = 0, and that the current ¢y*¢) can be decomposed as

VY = Sy Yr + PrY“ YR -

SOLUTION

a) Repeatedly use the fact that the v matrices anticommute and satisfy (7°)> = 1, (v!)? = (v*)* =

(v))? =—1:

(7")" = (V"Y' 7*")* = ="' "
_ 7071727()7371727?> since ’7370 = —VOVS
— 010248y 102,8 since  7°7" = —7%°
_ ,yo,yo,yl,yz,yzz,yl,yZﬁﬁ since 7170 = —”YO’Yl
_ 717273717273 since (70)2 =
NI since 7’y = —4'4°
_ 717172737273 since ’yz”yl = —71’72
22 since  (v')* = —1
_ 73727273 since 7273 = —7372
— 4343 since  (v°)* = —1
1

Using 7% =10, 41T = —91, 921 = —2, %1 = —%:

5t — Pttt 0f — 32 1,0
2.1.0.3 1.0.2_.3

==y = Sy YTy = 0y

0123)T7

Y= (@ y vy

0y1n2n3 — ~p
Consider +°~? for example:

Y7 =iV = —ir*Y ' = 0 = iy = =
and Simﬂar]y; 7570 = —7075’ 7571 = —7175, ")/5’)/3 = —’y3’y5 glVlIlg altogether ")/5’}/M = —’}/“’}/5-

b) An adjoint spinor is defined as 1) = 1T, so that

=91 =[50 -7)9]
= 9151 =) since 7" =17
=151 +7°) since 7°7” = —777"
=¥3(1+7°)
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and similarly:

dr=03(1-7).
c¢) Separate the spinor v into its left- and right-handed components via

Y=11-W+ i1+ =1vL+vr

For the adjoint spinor:

P =90 = (Y + Yr)1° = Y%+ Pha° = YL + YR

Hence
o' = [ oL + Or | ¥ WL + UR]
= ry"PL + oLy YR + dRYUL + drYMUR
But
Oy R = ¢3(1+7°) - (1 +7")0
=¢3(1+7°) - 31 =" )"y
-0

since (1 +7°)(1 —~°) =1 — (7°)? = 0. Similarly: ¢gy"+1, = 0 giving
oYY = oy + dr YR

as required. Alternatively, show directly that

oLy = ¢5(1+7°) 4" - 5(1 =270
= p3(1+79°)  3(L+7")"
= o3(1+" )"

and similarly o _
PrY bR = o5(1 — "))

again giving

SLY UL + drY YR = O3 (1 + )V + G5 (1 — V) = oy

Thus, for interactions between spin % particles (or antiparticles) and photons in QED, the left-handed
chiral component of a spinor couples only to another left-handed chiral component (¢r,y*¢1,) and the
right-handed chiral component couples only to another right-handed chiral component (pry*1R).
There is no coupling between the left-handed and right-handed chiral components: (pry" 41,

07 %’y#d)L = 0)

At high energies, the left-handed and right-handed chiral components become helicity eigenstates
with definite helicity and we have helicity conservation in QED: the particle helicity is preserved at

a QED vertex.
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11.

ELECTRON-MUON ELASTIC SCATTERING

a) Show that the general matrix element for e~ — e~ .~ scattering via single photon exchange is

62

My = — B [@(ps)v*u(p1)] [w(pa)y” u(ps)]

(p1 — 3
where p; and ps are the initial and final e~ four-momenta and p, and p, are the initial and final p~
four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoing e~ four-momenta
pi = (E1,0,0,p) and p§ = (E1,psinf,0,pcosf), the electron current for the various possible
electron spin combinations is

uy (ps)YHuy(p1) = 2(F1c, ps, —ips, pc)
ur(ps)yHuy(pr) = 2(ms, 0,0,0)
wr(ps)y'ur(p1) = 2(Exc, ps, ips, pe)
uy (p3)YHur(pr) = —2(ms, 0,0,0)

where m is the electron mass and s = sin 6/2, ¢ = cos 6/2.

¢) Write down the incoming and outgoing muon 4-momenta p, and p4, and the helicity eigenstate
spinors u+(pz2), uy(p2), ur(ps) and u;(ps). [Take the muon mass to be M and the muon energy to be
E5 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

wy(pa)y"uy(p2) = 2(Exc, —ps, —ips, —pc)

Ut (pa) Y uy (p2) = 2(Ms,0,0,0)

Ut (pa) ¥ up(p2) = 2(Fac, —ps, ips, —pc)

Uy (pa)y"us(p2) = —2(Ms,0,0,0)

can be written down (up to overall factors of +1) without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared |MLL|2 for the case where the in-
coming e~ and incoming .~ are both left-handed is given by
4ets?
(p1 —ps)*
where s = (p; + p2)?. Why is the numerator of | M ,|> independent of 6 ?

|MyL” =

f) Find a similar expression for the matrix element | Mgy, |? for a right-handed incoming e~ and a left-
handed incoming ;~, and explain why | Mgy, |* vanishes when 6 = 7. Write down the corresponding
results for | Mgg|? and | Mg |>.

g) Show that, in the relativistic limit, the differential cross section for unpolarised ey~ — e~ ™

scattering in the centre of mass frame is

do 20% 14 ;(1+cosb)?
daQ s (1 — cosf)?

16



h) Show that the spin-averaged matrix element squared (in this ultra-relativistic limit) can be ex-
pressed in Lorentz-invariant form as

(Mif?) = (pg_—p) [(pr.02) (po.ps) + (p1.p2) (p2eps)]

and that a Lorentz invariant form for the differential cross section is

()

do  2ma?

dg>2  ¢*

where ¢ = (p; — p3)°.

The remainder of this question involves the derivation of a general expression for {| Mg;|?) for the case
of finite electron and muon masses, and is optional:

i) Show that the spin-averaged matrix element squared for unpolarised e~ 4~ — e~ 4~ scattering can
be written in the form

64

1
(M) Z|Mf1 = 10—t

LW,
spms 1=P 3)

where the electron and muon tensors L** and W#" are given by

1 = 3" [ulps)y* ulpn)] [@ps )y u(p)]”

spins

Wi = D [a(pa)yuu(pe)] [@(pa) vu(p)]’

spins

j) Using the electron currents from part b) above, show that the components of the electron tensor L
are

Lo rov vz o3 Eic* + m?s*> Epsc 0  Eipc?
LlO Lll L12 L13 _g Elpsc p282 0 p2SC
L20 L21 L22 L23 - 0 0 p282 0 )
LSO L31 L32 L33 E1PC2 pQSC 0 pZCQ
and hence verify that L*” has the Lorentz invariant form
L* = 4 [pps + pipY + g" (m* — prps)]
k) Write down the corresponding expression for W/ #* and hence show that
2 8¢ 2 2 2772
(| Mg;|*) = =)t [(p1-92) (P3-p4) + (P1.P4) (P2.p3) — (p1.p3) M? — (p2.pa)m® + 2m* M?]
SOLUTION

a) The QED process e~ u~ — e~ p~ involves a single Feynman diagram at leading order:

17



W D2 P4 s

Applying the Feynman rules gives

—iMy; = [u(ps) - —iey" - u(py)] - (pl_i—gg;)z [a(ps) - —iey u(ps)]
and hence
My; = ‘@f—pg)?g“” [@(ps) v ulpr)] [@(pa)y" ulp2)] (29)

b) For a particle of mass m with four-momentum p* = (E,psinf cos ¢, psinfsin ¢, pcos @), the
helicity eigenstate spinors are

cos 6/2 —sin /2
e €' sin 62 . e €' cos /2
up = vVE+m p/(E+m)cost/2 |’ w=vE+m p/(E + m)sin 6/2 (30)
p/(E + m)e'® sin /2 —p/(E + m)e' cos 02

For the incoming electron, with p; = (£, 0,0, p), the two possible spinors are:

1 0
0 1

ur(pr) = vV EL +m /(B +m) | uy(p1) =V E+m 0 (31)
0 —p/(E1 +m)

For the outgoing electron, with p3 = (FE4, psin 6, 0, p cos #), the spinors are:

uT(p3):\/El+m p/(El—i—m)c ) u¢<p3):\/E1+m p/(E1+m)s (32)
p/(E1+m)-s —p/(E1+m)-c

where ¢ = cos /2 and s = sin §/2. Noting that the spinors are real, matrix multiplication gives

VY00 = 11 + oo + 33 + Yads
VY ' = 1ds + Va3 + Y3 + Yudy
VY2 = —i(Y1s — a3 + Y3y — Pah)
VY2 = 1y — V204 + 31 — Yago

18



Start with @ (ps) and u (p):

2 E 2 2 2F? +2mE
P B, G E

a,(ps)7 uy(pr) = (Br +m) {C + (B + m)QC (Ey +m) o (E1 +m)

where we have used m? + p? = E? in the last-but-one step. Similarly, for 7!, 2, 4* we have

uy(ps)y uy(pr) = (E1 +m) {El +m8+ 7, —|—m$ ps
= 2 —(E —ip . ip _ 9
o) = (B ) | s = ] = 2ips
w,(p3)7’uy(p1) = (By + m) R R - 2pc
El +m E1 +m
In summary
uy(ps)y*uy(p1) = (2E1c, 2ps, —2ips, 2pc) (33)
Similarly for the other possible spin configurations, giving overall:
uy(ps)y uy(p1) = 2(Evc, ps, —ips, pe) (34)
ur(ps)y"uy(p1) = 2(ms, 0,0,0) (35)
uy(ps)y"ur(pr) = 2(Exc, ps, ips, pe) (36)
_l(pS)fYHuT(pl) = —2(ms, 07 07 0) (37)

¢) For the incoming p~, with four-momentum p, = (E», 0,0, —p) and Ey = \/p? + M?, the helicity
eigenstate spinors can be obtained from Equation (30) by setting # = 7 and ¢ = 0:

0 -1
1 0

ur(p2) = v/ B2 + M 0 ; uy(p2) = Ex+ M p/(Es + M) (38)
p/(Ey+ M) 0

For the outgoing p~, with 4-momentum p; = (Fs, —psinf,0, —pcosf), the helicity eigenstate
spinors can be obtained from Equation (30) by setting § — m — 6 and ¢ = T

ur(pa) = VEs + M p/(EercM)_s D wp) =VE+M p/(EersM)_c
p/(Bs+ M) - —c p/(Es+ M) —s

(39)
using cos(m — 0)/2 = sinf/2 = s and sin(7m — 0)/2 = cos /2 = c.

A comparison of Equations (31) and (38) shows that, if we make the replacement p — —p, then
ur(p2) is of the same form as u (p; ). Similarly, u(ps) is then of the same form as wu(p; ), apart from
an overall normalisation factor of —1.

Similarly, a comparison of Equations (32) and (39) shows that, under p — —p, u4(p4) becomes the
same as u|(p3), and u(p,s) becomes the same as uq(ps), apart from overall normalisation factors of
—1.
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The muon currents can therefore be written down directly using the electron current results, by chang-
ing mto M, Fy to Fy, pto —p, T to | and | to 1:

Uy (pa)yuy(p2) = 2(Eac, —ps, —ips, —pc) (40)
Up(pa)y"uy(p2) = 2(Ms,0,0,0) (41)
Up(pa)V"ur(p2) = 2(Eac, —ps, ips, —pc) (42)
Uy (pa)y ur(p2) = —2(Ms,0,0,0) (43)

d) Some of the currents vanish in the relativistic limit due to helicity conservation. The allowed spin
configurations are those for which the helicity of the e~ and the helicity of the ;= are both preserved
in the scattering:

e) In the relativistic limit, we can set m = M = 0 and E; = E5 = E. The electron currents become

uy (ps)YHuy(pr) = 2E(c, s, —is, c) (44)
Ur(p3)y"uy(p1) = (0,0,0,0) (45)
wy(ps)y"ur(pr) = 2E(c, s, is, ¢) (46)
uy (ps)y*uqr(p1) = (0,0,0,0) 47)
while the muon curents are:
Uy (pa)y" uy(p2) = 2E(c, —s, —is, —c) (48)
Uy (pa)y"uy(p2) = (0,0,0,0) (49)
ur(pa)y*ur(p2) = 2E(c, —s,is, —c) (50)
@y (pa)y"ur(p2) = (0,0,0,0) (51)

When the incoming e~ and x4~ are both left-handed (i.e. negative helicity) we have u(p;) = u;(p1)
and u(p2) = u (p2), and the only non-zero contributions to the electron and muon currents come
from Equations (44) and (48). Hence the scalar product of the electron and muon currents is
2E(c, s, —is,c) - 2E(c, —s, —is, —c) = 4E* - (¢* + §* + ¢* + 5%) = 8E?
and, from Equation (29), the matrix element squared is
et 4ets?
My = ——— - (8E%)* =
(p1 — p3)* (p1 —ps)?

where now s = (p; + p2)? = 4E2.

The numerator of | My |? is independent of 6 because the incoming left-handed e~ and the incoming
left-handed 1+~ have oppositely directed spins, and the total spin of the initial state is .S, = 0. Hence
there is no preferred spatial direction.

f) For Mgy, with the incoming e~ right-handed and the ;~ left-handed, we have u(p;) = us(p1) and
u(pa2) = uy(p2). The only non-zero combination is now given by the scalar product of Equations (46)
and (48):
Mgy, o 2E(c, s,is,¢) - 2E(c, —s, —is, —c) = 4E* - (¢* + 5% — s* + ¢?)
= 8E? cos® /2
=8E” - 1(1+ cosb).
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Hence the non-zero matrix elements can be summarised as

64

(p1 — p3)t

64

(pl - p3)4

|MRR|2 = |MLL|2 = 482

|Mir|* = [Mgo|? = 45% - (1 + cos)?

1
4
where we must have My, = Mgy and Mg = Mgy, by symmetry of the spin configurations.

g) For unpolarised e~ — e~ p~ scattering, sum over the final spins and average over the initial
spins to obtain

(IMg*) = %+ % (IMpo]? + [ Meg|* + [ Mir|® + | Mro]?)
2¢?
- (17—]7)482 [14 5(1+ cos6)?] (52)
1 — M3

With p; = (F,0,0, F) and p; = (F, E'sin6,0, E cos 6), we have
(p1 - p3)2 = p% +p§ — 2p1.p3 = —2p1.p3 = —2E2(1 — Cos 9)

For any 2 — 2 body elastic scattering process in the centre of mass frame, the differential cross

section is given by
do 1

_ 2
a0 647?25<|Mfi| )
Hence:

do et 1+ (14 cosh)?
dQ  8n2s (1 — cosB)?

(53)

h) With 4-momenta

p1=(F,0,0,F) ps = (FE,Esin6,0, E cosf)
pe = (E,0,0,—F) ps = (E,—Esin6,0,—FE cosf)

the scalar products are

p1p2 = ps.ps = 2E° = 357
p1.pa = p2.p3 = E*(1+ cosf) = 1s(1 + cosb)

Hence the spin-averaged matrix element squared of Equation (52) becomes

)0 + () i) |

<|Mfi’2> = i

It was shown in Handout 3 that the Lorentz-invariant cross section do/dt = do/dg? is given by

do 1

— = — | My
3¢ = Btms(e
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where p! is the centre of mass momentum of either of the initial state particles. At high energies when
masses are negligible (as here), we have p; = E and hence 4(p})? = 4E? = s. Hence

do 1 1 8et
_ M12 — R . . . . .

In terms of s and ¢?, the scalar products are

s = (p1+p2)® = 2p1.p2 = 2p3.p4
¢* = (p1 — p3)® = —2p1.ps

P2.P3 = P1-Pa

Hence | 1 g
g e
= o ot [69)39) + (s + 36 (s + 36°)]

d_c]2 - 16mws? ¢t
Using e? = 4mq, this can be written as
2\ 2
1+ (1 + q—) ]
s
¢* = (p1 — p3)® = —2p1.ps = —35(1 — cos )

to transform the cross section directly:

do B 2ra’?
dg? ¢

Alternatively, start from Equation (53) and use

do  |dcost| do 2 do
d¢?2 | d¢® |dcos® s dcosh
2 2
1 —cosf = i
s
2
14 cosf =2 (1—Q—>
s
i) The Lorentz invariant matrix element for a given spin configuration is
2
e
Mijr = —————5 [W(ps)y" wi(p1)] [w(pa) vou; (p
= _p3>2[ k(P3)7" wi(p1)] [ (pa) v (p2)]

where ¢, 7, k,l =7 or | (or = 1,2) specifies the spin state of each of the incoming and outgoing
particles in the collision. For unpolarised e~ = — e~ pu~ scattering, sum over the final spins and
average over the initial e~ and p~ spins to obtain

2

1
50 2 Myl

i:jzkzlzl

DO | —

(IMeil) =

4 2

Tt 2 [Py )] [ (pa)y ()] [0 (pa) vt ()] [ (pa) v (o))

(&

I,

64

—_— "W,
(pl - p3)4 .

IS,
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where the electron and muon tensors L** and W#" are given by

D7 = 3 (o) o)) e (s )y i)

Wiw = Y [W(pa) s (p2)] [@ (pa) v (p2)]°

=1
j) Writing out the sum over spins explicitly, the electron tensor L*" is given by

v *

+ [@y(p3) " ur(p1)] [@r(p3)y" ur (p1)]

Substituting the electron currents given in Equations (34)-(37), and using matrix notation, the sum is

LOO LOl L02 L03 El c ms
LlO Lll L12 L13 ps ] 0
720 21 2 723 =4 ips (Elc ps  1ps pc)—|-4 0 (ms 0 0 0)
L30 L31 L32 L33 pc 0
FEic ms
+4 ps (Ec s —ips c)+4 0 (ms 0 0 0)
ips 1C D ps p 0
pc 0
FEic? +m?s* Eipsc 0  Eipc?
Erpsc p?s? 0 p?sc
8 0 0 p282 0 (54)
E\pc? p?sc 0 p2c?
Now consider
L = 4 [phpl + kot + g™ (m* — prps)]
In matrix notation, this is
P p%
1
v p p :
=4 5[ (8 ps p3 p3)+4]3 () pi pi PY)
Pi D3
} P}
1 0 0 0
0 -1 0 0
o o o1 o | omm)
O 0 0 -1

With p; = (F4,0,0,p) and p3 = (F1, psiné, 0, pcos ), we have

m? — p1.ps = m? — (E? — p*cosf) = p*(cosf — 1) = —2p?*s? ,

23



where we have used E? = p? + m? and 1 — cos 6 = 2sin? §/2 = 2s. Hence

E1 El
y 0 . psin 6
L =4 0 (E1 psinf 0 pcos 9) +4 0 (E1 0 0 p)

P pcosf
1 0 0 0
0 -1 0 0 9 9

+4 0 0 -1 0 2p°s
0o 0 0 -1
2E% —2p*s*  Ejpsing 0 Eip(1 + cos0)

_y Eipsiné 2p?%s? 0 p? sin

B 0 0 2p%s? 0

Eip(1+cosf) p?sinb 0  2p?cos@ + 2p3s?

Using the relations sin § = 2sin 6/2 cos /2 = 2sc, 1 4 cosf = 2 cos? §/2 = 2¢* and E? = p? + m?,
this is readily seen to be equal to Equation (54).

k) The muon tensor W#* can be written down immediately as

W;uz =4 [pQup4u + PapuPov + Guv (M2 - p2p4)} :

Hence
(IMxi|*) = 4—644 (4D + Pt + g (m* — prps)]
(1 — p3) (55)
X [popPav + Pappav + Guw (M? — pa.ps) ]
giving finally
2 8¢t 2 2 20 72
M) = o si [ (aps) + (prpa) (pa-ps) = (o) M = (paepa)m® <+ 2m* M)
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12.

a) The elastic form factors for the proton are well described by the form

o G(0)
Glo) = (1 + |¢2]/0.71)2

with ¢? in GeV?2. Show that an exponential charge distribution in the proton

T

p(r) = poe ™

leads to this form for G(¢?) (insofar as |¢*| = |g?|), and calculate .

b) Show that, for any spherically symmetric charge distribution, the mean square radius is given by
6 [dG(q¢?
0 =~ g ||
G(O) d|q | q2:0
and estimate the r.m.s. charge radius of the proton.

c¢) The pion form factor may be determined in we™ scattering. Use the following data to estimate the
r.m.s. charge radius of the pion.

|¢°| (GeV?) G%(¢%)
0.015 0.944 + 0.007
0.042 0.849 + 0.009
0.074 0.777 + 0.016
0.101 0.680 + 0.017
0.137 0.646 + 0.027
0.173 0.534 + 0.030
0.203 0.529 + 0.040
0.223 0.487 + 0.049

SOLUTION

a) For elastic scattering, there is no energy transfer to the target particle and the 4-momentum transfer
q is of the form ¢* = (0, q). Hence |¢?| = |q|*, and the form factor is given by the Fourier transform
of the charge distribution:

G(¢?) = G(g?) = / e9T () (56)

For a spherically symmetric charge distribution, and choosing the constant vector q to lie along the

+2 axis:
2m +1 0o
G(q2):/ / / '3 o (1)r2drd cos g
o J-1 Jo
+1
2

:27r/ p(r)r / 'm0 cos @ - dr

1

00 eiqrcose +1
= 27r/ p(r)r? - [ , } -dr
0 wyr 14

4 o0
= 1/ p(r)rsin(qr)dr
q Jo

[e=]
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‘e

For the exponential charge distribution p(r) = poe "

_ 4mpo

G(¢%) / re~ sin(qr)dr
0

q
4 I , .
_ 71'/)0_- r [e—)\r+zqr o e—)\r—zqr} dr
q i)y
Integration by parts gives
/OO —Qar 1
re”*dr = —
0 «
for any constant o, so that
21 po 1 1 8T Apo
G(g") == [ N2 '2}: 2 | 2)2°
iq [(A—ig)* (A+ig) (A2 +¢?)

Thus the form factor is of the required (“dipole”) form:

G(0)

Glg) = (1 + |¢2]/0.71)2

with G(0) = 8mpg/\® and

A= V0.71GeV? = 0.84 GeV

Note that, from equation (56), G(0) is just the total charge of the target particle:

For an exponential charge distribution, it is easy to check that

2

G(0) = / poe " - Amridr = 47rp0/ r2e™ M dr = 4mpg - N
0 0

consistent with the expression above. It is conventional and convenient to express the charge density
p in units of +e so that, for a proton target, G(0) = 1. This corresponds to choosing the normalisation
constant pg to be pg = A3 /8.

b) A Taylor expansion gives

G(¢) = /eiq'Tp(r)d?’r = / (1+ig.r — i(g.r)* +---) p(r)d’r
But G(0) = 1 and

/ (q.7)p(r)d’r =0 since the integrand is an odd function of r

so that
Gl) =1~ [ HarPp(r)dr+---
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But the Taylor expansion can also be written as

dG
G =GO+ 5y
dg?
¢*=0
so that
dG
P = [ Harrpmd

@\,
q =

For a spherically symmetric charge distribution, and choosing q to lie along the +z-axis, this becomes

da 2 +1 o8]
qz_2 _ / / / % - ¢*r? cos? 6 - p(r) r?drd cos 8d¢
dg o o J-1 Jo

dg?

d 2r  p+1 poo
G - _ / / 1rt cos® Op(r) drd cos Od¢
o o J-1 Jo
5 o0

= —EW/ rp(r)dr
0

But the mean square radius of the charge distribution is, by definition,

oy 1 2 5. 1 < o 1 <4
<r>—m/rp(r)dr—m/o rp(r)47rrdr—m47r/0 rip(r)dr

and hence

<2>__ 6 dG(q2)
T TGO) die

7*>=0

For the particular case of an exponential charge distribution, we have

G(0)
G(¢*) =
= Ty
and differentiation gives
dG(¢?) A 4@ —2G(0)
= N I e - l = =7\
dg? G(0) + 22 22 = dg? - A2
q =
—2G(0 12
= <T2> - —6- )\2< ) — "

Hence the rms charge radius is

x 0.197 GeV.fm = 0.81 fm

Vi =Y v

A 0.84GeV

where fic = 0.197 GeV.fm has been used to convert from natural units to SI units.
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¢) From a plot of G(q?) versus |¢?|, the slope at ¢ = 0 can be estimated to be

dG(¢?)
d|q?|

~—-19GeV~2.

q?>=0
= V{(r?) & /=6 x —1.9 = 3.38GeV ™" = 3.38GeV ™! x (0.197 GeV.fm) = 0.67 fm
In fact, the “dipole” form G(¢?) = G(0)/(1 + |¢?|/A\?)? provides a good description of the pion form

factor data. The dashed curve in the figure (drawn by eye rather than fitted) shows the function

1
1+ ¢?]/(1.05GeV?)

Ge(q®)

so that A2 ~ 1.05 GeV?. The dotted line shows the tangent to this curve at ¢> = 0, with slope

e _—2G(0) =2
dg? A2 1.05CeV?

7°=0

=—-1.90GeV~2,
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13.

DEEP-INELASTIC SCATTERING

The figure below shows a deep-inelastic scattering event e p — e* X recorded by the H1 experiment
at the HERA collider. The positron beam, of energy F; = 27.5 GeV, enters from the left and the
proton beam, of energy Ey = 820 GeV, enters from the right. The energy of the outgoing positron
is measured to be F5 = 31 GeV. The picture is to scale, so angles may be read off the diagram if
required.

a) Show that the Bjorken scaling variable x is given by

Es 1 —cosf
r=—

EQ 2— (Eg/El)(l + COS@)

where 6 is the angle through which the positron has scattered.
b) Estimate the values of %, x and y for this event.
c¢) Estimate the invariant mass Mx of the final state hadronic system.

d) Draw quark level diagrams to illustrate the possible origins of this event. Using the plot overleaf of
the parton distribution functions xuy (), zdy (z), #7(x) and xd(z), estimate the relative probabilities
of the various possible quark-level processes for the event. Note that the (Q? in the plot overleaf need
not be exactly the same as the Q? in this event — Bjorken scaling requires only that it be similar. So
do not worry about any relatively small differences between the two Q2 scales.

[Neglect contributions from the heavier quarks s, c, b, t.]

e) Estimate the relative contributions of the F; and F5 terms to the deep-inelastic cross section for the
x and ? values corresponding to this event.
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SOLUTION
a) For e"p — e*X at HERA, choose four-momenta to be:
= (£1,0,0,Ey), po = (E5,0,0,—FE5), ps = (B3, E3sin 6,0, F5cos ) .
Then
¢ = —2p1.p3 = —2E, E3(1 — cos )
P2.q = p2.p1 — P2.p3 = 2B, Ey — EyFE3(1 4 cos0)

The Bjorken scaling variable x is defined as

2p2.q

Tr =

Hence

Es 1 —cosf
r=—

EQ 2— <E3/E1)(1 + COS@)

b) For the particular event shown, we can estimate the e scattering angle to be 6 ~ 50°. We are given

E, =275GeV, By =820GeV, B3 = 31 GeV. Hence

31 1 — cosbH0°

= = 0.091 .
820 |2 — (31/27.5)(1 + cos 50°)

T

Q* =2E,F3(1 — cos ) = 2 x 27.5 x 31 x (1 — cos 50°) = 609 GeV?

P2q | P2Ps E3(1+ cosf) 1 31 x (14 cos50°)
y —= = —_——_— = _——_ — —

=0.074
D2-P1 D2.P1 2k, 2 x27.5

¢) The final state hadronic system has four-momentum p, = p, + ¢. Hence its invariant mass My is
given by

2
M>2<=(pz+q)2=M2+2p2.q—Q2:M2+%_Q2.
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Hence

609
= . 2 _— = . .
Mx \/(0 938)2 + 0.001 609 = 78.0 GeV

d) At quark level, the possible origins of the event are etu — etu, etd — e'd, efu — e',

etd — etd.

The parton model prediction for the e™p cross section is

d2oeP 2ma? 4 1 4 1-
= 1+ (1—9)? |= —d -7 —d
wagr ~ g v [9“@) T gdlo) + gule) + gd()
Hence the relative probability for these processes is
— 4 1 4 1-
u:d:u:d= §u(x) ; §d(m) : §H(m) : §d(x) :

From the plot, for z ~ 0.09, we can estimate

06l Q% =500 GeV?® |
xf(x)

0.4

0.2

PP B B 1 PP n PP IR
0O 01 02 03 04 05 06 07 08 09 1
Bjorken x

zuy(x) ~ 0.52, zdy(z) =~ 0.26, 2u(x) = 0.10, zd(z) ~ 0.14 .

Remembering that

we obtain the estimates

u(z) =~ (0.52 4+ 0.10)/0.09 = 6.89
d(z) = (0.26 + 0.14)/0.09 = 4.44
u(z) ~0.10/0.09 = 1.11

d(z) ~0.14/0.09 = 1.56 .
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Including the factors of 4/9 or 1/9, the relative probabilities are therefore

u:d:u:d~3.06:0.494:0.494:0.173=0.73:0.12:0.12:0.04|.

e) The deep-inelastic e™p cross section is

d?oep Ao P 1 2zF7P
5 = " (1 — y)i + _y2—1
dxdQ Q T 2 x
Therefore, assuming the Callan-Gross relation F,* = 22 F®, the F, and F} terms contribute to the
cross section in the ratio

F:F=(1-y):3y*=1-0.075:3(0.075)* ~ 1 : 0.0028 .

1
2

In other words, the cross section is dominated by the F;, term, with the /3 term contributing only
about 0.3% of events.
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a) Show that the lab frame differential cross section d%c /d F3d(2 for deep-inelastic scattering is related
to the Lorentz invariant differential cross section d*c/dvd@Q? via
dQO' . E1E3 d20' . E1E3 d20'
dE;dQ 7 dE;dQ? 71 dvdQ?

where E) and Es are the energies of the incoming and outgoing lepton, v = E; — Es, and Q? =
—q¢*> = —(p1 — p3)®. [ When you do this, make sure you understand that differential cross sections
transform as Jacobians, not as partial derivatives! |

Show further that
d?o B OMx? d%o0

dvd@?  Q? dazdQ?
where M is the mass of the target nucleon and z = Q?/2Muv.

b) Show that

and that
M 2p2y? _ Ey 0
Q? E 2

1—y

c¢) Show that the Lorentz invariant cross section for deep-inelastic electromagnetic scattering,

d’c  4ma® {(1 - M%Qy?) B N y_22xF1}

dzdQ? Q4 Q? x 2 x
becomes
d?o o? F 29+2F1 . o0
= — cos” = + —sin” =
dE;dQ  4F?sin*0/2 | v 2 M 2

in the lab frame.

d) An experiment consists of an electron beam of maximum energy 20 GeV and a variable angle
spectrometer which can detect scattered electrons with energies greater than 2 GeV. Find the range of
values of @ over which deep-inelastic scattering events can be studied for z = 0.2 and Q% = 2 GeV?.

[You may find it helpful to determine F; — Fj (fixed), and F; E3 in terms of 6, and then sketch the
various constraints on £} and F5 on a 2D plot of E3 against F.]

e) Outline a possible experimental strategy for measuring Fi(z, Q?) and Fy(x,Q?) for the above
values of z and Q2.

SOLUTION

a) Changing variables from df) = 27d cos 6 to
Q* = —¢* = 2E,F3(1 — cos )

gives
d?o 1 d?c

d%o 1 d%o 1
= —2F Ey—
dE,dQ? ~ 27 VTP dE,dQ2

AdBsdQ ~ 2rdEsdcosf  2r

dQ?
dcosf
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and hence

d20' . E1E3 dQO' . E1E3 dQO' (57)
dE;dQ 7 dE3dQ? w1 dvdQ?
To change variables from v to z, use
@ @7
v 2Mv = v 2Mx
d?o _|dv d?c
dzdQ?  |dz| dvdQ?
which gives directly
d?o B 2Mz? d%o (58)
dvd@?  @Q? dzdQ?
b) Since
Q* = 4E, F3sin® /2
and
_ v
we have 5 ) 0%
3 .. 92 Yy
— 02 = — = )
S 2= =

Using v = Q?/2M z, we then obtain

= ——sin“ = (59)

Hence

= " cos’ = |. (60)

c¢) The Lorentz invariant cross section for deep-inelastic electromagnetic scattering is

d’c  4wa® {(1 L M2:L'2y2> B N y_QQxFl}

dedQ? Q4 Q? x 2 x
Combining Equations (57) and (58), we have

d20' _E1E3 d20' _E1E32M£L'2 d20'
dE;dQ 7 dvd@Q? 1 Q? dxdQ?

The F5 term contains the combination of factors

2M 2?2 1 M2 222
7 B Q2

1_2MCL’E3 20_1E3 26

O Elcos 2—VE1COS 5
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where we have used Equation (60). Using Equation (59) for the /| term, we then obtain

d20' E1E3 47’(’0&2 1 E3 2 0 1 Eg . 92 0
dBdQ 7 QF K__COS _) ot (__Sm _) ZFl}

Since Q? = 4F, E3sin® 6/2, we finally obtain

d20' . Oé2 F2 2 0 2F1 . 92 0
dE;dQ  4E%sin*0/2 | v 2 M 2

d) Given z = 0.2 and Q? = 2 GeV?, the electron energies F; and I3 are fixed via

Q? 2GeV?
E —_ E — = — . 61
L = S T I (0938 Gev) x 02 eV @D
and
Q2
BBy = —5 62
T Asin? 6/2 (62)

The experimental constraints F; < 20 GeV and E5 > 2 GeV then lead to constraints on the angle 6.
To obtain these, it may help to think in terms of a graphical solution of Equations (61) and (62) on a
plot of E5 versus F;. Equation (61) corresponds to a straight line running at 45° while Equation (62)
gives an infinite set of hyperbolae, each hyperbola corresponding to a different possible value of 6.

The minimum possible value of 6 corresponds to taking the maximum possible beam energy F; =
20 GeV:
Q° 2

— =1.70 x 1073
4B Fs 4 %20 x (20 — 5.33)

sin? §/2 =

which gives
Omin = 4.73° .

The maximum possible value of 6 is determined by the minimum detectable scattered electron energy
of £3 =2GeV:
Q° 2

in2g/2 = —
S = I T Tx (01533 %2

=0.034

which gives
Omax = 21.3° .

Strategy: choose several values of 6 between about 5° and 20°, measure reduced cross section at each
value of § and plot versus tan? /2. Should give a straight line (note v is fixed) with slope 2F; /M and

intercept Fy/v:
d*o a? cos? 6/2 F, 2F,  ,0
SRRy = |—+ —tan’ =
dE3dQY /) 4E%sin®0/2 v M 2

Each 0 setting requires a different beam energy given by solving the quadratic equation

Q2
4 sin? /2
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This gives

02
sin? /2

Gives E; = 19.1 GeV for § = 5° and E; = 7.5 GeV for § = 20°.

2F) = 5.33 + \/(5.33)2 +

Note that y = (E; — F3)/E); varies between 0.28 and 0.71 so get healthy contribution from F}.
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