
NST Part III Experimental and Theoretical Physics Michaelmas 2025

Dr Christopher Lester

Particle Physics Major Option

EXAMPLES SHEET QUESTIONS (ALL)

NATURAL UNITS AND HEAVISIDE-LORENTZ UNITS

1. (a) In the units he normally uses, your particle-physics lecturer was 1016/GeV tall and had a mass of
4.40×1028 GeV when aged 2.11×1033/GeV. Calculate his Body Mass Index (BMI) and determine
whether he was obese at this point in his life.

(b) Show that charge can indeed be measured in units of (ε0h̄c)
1
2 . [You may wish to consider dimen-

sional analysis of the Coulomb force law F = q1q2
4πε0r2

.]

SOLUTION

(a) The laborious way of working out the height L and mass of M of the lecturer would be to insert
all the right powers of h̄ and c and use h̄ ≈ 1.055× 10−34 Js and c = 3.00× 108 m/s. This requires
many numbers and lots of use of the calculator. Using this bad way to calculate L we might write
something like:

L = 1016 h̄c/GeV (1)

=
(1016)× (1.055× 10−34Js)× (3.00× 108 m/s)

109 × (1.60× 10−19J)
(2)

=
(1016)× (1.055× 10−34)× (3.00× 108)

109 × (1.60× 10−19)
m (3)

=
1.055× 3.00

1.60
× 1016−34+8+10 m (4)

= 1.97× 100 m (5)
= 1.97m. (6)

Much better would be to use 1 = h̄c = 197 MeV · fm. This nicer approach would give us:

L = 1016/GeV (7)
= 1016/GeV × 1 (8)
= 1016/GeV × (197 MeV · fm) (9)
= 197× 1016−9+6−15 m (10)
= 197× 10−2 m (11)
= 1.97m (12)

(13)

1



The mass of the lecturer in S.I. units is easier to calculate as E ∼ mc2 reminds us that masses are
only a factor of c2 away from energies, and everyone knows c. Therefore

M = 4.40× 1028 (GeV/c2) (14)
= (4.40× 1028)× (109 × (1.60× 10−19 J))/(3.00× 108 m/s)2 (15)
= (4.40 ∗ 1.60/9.00) ∗ 1028−10−16 kg (16)
= 78 kg. (17)

Hence the BMI (which is mass in kg divided by square of height in metres) is

BMI = 78/(1.97)2 = 20.1. (18)

According to Wikipedia (https://en.wikipedia.org/wiki/Body mass index) the WHO de-
fines obsedity as a BMI over 25 if the person is more than 20 years old, so he is not obese given the
age supplied (44 years).

(b)

[q1q2] = [4piε0Fr
2] (19)

= [ε0FL
2] (20)

= [ε0(FL)L] (21)
= [ε0EL] (22)
= [ε0(ET )(L/T )] (23)
= [ε0h̄c]. (24)

SPECIAL RELATIVITY

2. a) Draw the two leading-order Feynman diagrams for e+e− → e+e− involving single photon ex-
change, and write q, the 4-momentum of the exchanged virtual photon, in terms of the 4-momenta
of the initial and/or final state particles. By evaluating q2 in the centre of mass frame, or otherwise,
determine whether q is timelike (q2 > 0) or spacelike (q2 < 0) in each case.

b) The Mandelstam variables s, t, u in the scattering process a + b → 1 + 2 are defined in terms of
the particle 4-vectors as

s = (pa + pb)
2, t = (pa − p1)

2, u = (pa − p2)
2 .

Show that s+ t+ u = ma
2 +mb

2 +m1
2 +m2

2.

c) Show that
√
s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons are brought into head-on collision with
820 GeV protons. Calculate the centre of mass energy,

√
s, of e−p collisions at HERA, and determine

the beam energy that would be needed to produce e−p collisions with this value of
√
s using electrons

incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest, the reaction ν + X → ℓ + Y can only
proceed if the incoming neutrino has an energy above a threshold given by

Eν >
(ml +mY )

2 −m2
X

2mX

.
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[ Aside: when revising at the end of the course you may wish to consider reviewing Question 1 of the
January 2017 past Tripos paper for this course as looks more deelply into the connections between
Mandelstam variables and the characteristics of different scattering processes. ]

SOLUTION

a) The two leading order Feynman diagrams for e+e− → e+e− scattering are:

e+

e−

e+

e−

p2

p1

p4

p3

q

e+ e+

e− e−

p1 p3

p2 p4

q

For diagram 1, the 4-momentum of the virtual photon is q = p1 + p2. In the centre of mass frame, we
have q = p1 + p2 = (2E, 0, 0, 0), and hence

q2 = 4E2 > 0 ⇒ q2 is timelike.

For diagram 2, q = p1 − p3. In the centre of mass frame, we have E1 = E3 (elastic scattering) and
hence q = (0,p1 − p3). Therefore

q2 = −(p1 − p3)
2 < 0 ⇒ q2 is spacelike

b) Since p2a = m2
a etc.:

s+ t+ u = (pa + pb)
2 + (pa − p1)

2 + (pa − p2)
2

= 3p2a + p2b + p21 + p22 + 2pa.pb − 2pa.p1 − 2pa.p2

= 3m2
a +m2

b +m2
1 +m2

2 + 2pa.(pb − p1 − p2)

= 3m2
a +m2

b +m2
1 +m2

2 + 2pa.− pa

= m2
a +m2

b +m2
1 +m2

2

where energy-momentum conservation, pa + pb = p1 + p2, has been used in the last line but one.

c) In the centre of mass frame, the 4-momenta of particles a and b can be taken to be pa = (Ea, 0, 0, p),
pb = (Eb, 0, 0,−p). Hence pa + pb = (Ea + Eb, 0, 0, 0) and s = (pa + pb)

2 = (Ea + Eb)
2. Hence√

s = Ea + Eb, the total collision energy in the centre of mass frame.

d) HERA: electron and proton masses can be neglected, so 4-momenta are:

pa = (Ea, 0, 0, Ea) pb = (Eb, 0, 0,−Eb) ⇒ pa + pb = (Ea + Eb, 0, 0, Ea − Eb)

Hence
s = (pa + pb)

2 = (Ea + Eb)
2 − (Ea − Eb)

2 = 4EaEb ,
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which gives √
s = 2

√
EaEb = 2

√
27.5GeV ∗ 820GeV = 300GeV .

For electrons incident on a stationary proton target:

pa = (Ea, 0, 0, Ea) pb = (mp, 0, 0, 0) ⇒ pa + pb = (Ea +mp, 0, 0, Ea) .

Hence
s = (pa + pb)

2 = (Ea +mp)
2 − E2

a = 2Eamp +m2
p ,

which gives

Ea =
s−m2

p

2mp

=
(300GeV)2 − (0.938GeV)2

2× (0.938GeV)
= 47974GeV .

e) For the scattering process ν +X → ℓ+Y to be kinematically allowed, we must have
√
s > ml +mY . (25)

This is easily seen by considering the centre of mass frame: at threshold, the particles ℓ and Y are
both produced at rest. Equation (25) involves only Lorentz-invariant quantities, and so can be applied
to any reference frame. In particular, in the lab frame, with X at rest, we have

s = m2
X + 2pν · pX = m2

X + 2EνmX .

Hence we need
m2

X + 2EνmX > (ml +mY )
2

which gives a threshold neutrino energy in the lab frame of

Eν >
(ml +mY )

2 −m2
X

2mX

.

3. a) For a particle of four-momentum pµ = (E, px, py, pz), show that the scalar product

p2 = E2 − p2x − p2y − p2z

is Lorentz invariant by explicitly transforming the four components of pµ.

b) Use the Lorentz transformations to show that the volume element d3p/E in momentum space is
Lorentz invariant, i.e. that

dpxdpydpz
E

=
dp′xdp

′
ydp

′
z

E ′ .

SOLUTION

a) Lorentz transformation (with c = 1):

E ′ = γ(E − βpx) p′y = py

p′x = γ(px − βE) p′z = pz
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where γ = 1/
√

1− β2 and β = v/c = v. Hence

(p′)2 = (E ′)2 − (p′x)
2 − (p′y)

2 − (p′z)
2

= γ2(E − βpx)
2 − γ2(px − βE)2 − p2y − p2z

= γ2(1− β2)E2 − γ2(1− β2)p2x − p2y − p2z

= E2 − p2x − p2y − p2z

= p2

b) Since dp′y = dpy and dp′z = dpz we have

d3p′ = dp′xdp
′
ydp

′
z =

dp′x
dpx

· dpxdpydpz =
dp′x
dpx

d3p

where p′x = γ(px − βE) and E is to be understood as E =
√
p2x + p2y + p2z +m2. The derivative is

dp′x
dpx

=
d

dpx
[γ(px − βE)] = γ

(
1− β

dE

dpx

)
.

The components py and pz remain unchanged in the transformation, and so can be treated as constants.
Hence

dE

dpx
=

d

dpx

√
p2x + p2y + p2z +m2 =

px√
p2x + p2y + p2z +m2

=
px
E
.

This gives
dp′x
dpx

= γ
(
1− β

px
E

)
= γ

E − βpx
E

=
E ′

E
,

and therefore
d3p′

E ′ =
1

E ′ ·
E ′

E
d3p =

d3p

E

4. In a 2-body decay, a→ 1 + 2, show that the three-momentum of the final state particles in the centre
of mass frame has magnitude

p∗ =
1

2ma

√
[m2

a − (m1 +m2)2] [m2
a − (m1 −m2)2] .

SOLUTION

Decay a→ 1 + 2: energy conservation gives

ma = E1 + E2 =
√
m2

1 + p∗ 2 +
√
m2

2 + p∗ 2

Squaring:

m2
a = E2

1 + E2
2 + 2E1E2 = m2

1 +m2
2 + 2p∗ 2 + 2

√
(m2

1 + p∗ 2)(m2
2 + p∗ 2)

⇒ 2
√

(m2
1 + p∗ 2)(m2

2 + p∗ 2) = m2
a −m2

1 −m2
2 − 2p∗ 2 .
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Squaring again:

⇒ 4(m2
1 + p∗ 2)(m2

2 + p∗ 2) = (m2
a −m2

1 −m2
2 − 2p∗ 2)2 .

Multiplying out and rearranging gives

4m2
ap

∗ 2 = (m2
a −m2

1 −m2
2)

2 − (2m1m2)
2

= (m2
a −m2

1 −m2
2 − 2m1m2)(m

2
a −m2

1 −m2
2 + 2m1m2)

=
[
m2

a − (m1 +m2)
2
] [
m2

a − (m1 −m2)
2
]
.

Hence

p∗ =
1

2ma

√
[m2

a − (m1 +m2)2] [m2
a − (m1 −m2)2] .

TWO BODY DECAY

5. According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processes ρ→ ππ and K∗ → Kπ have invariant matrix elements of the
form

Mf i = Cpπ

where Cρ/CK∗ = 2/
√
3 and pπ is the final state centre of mass momentum. Show that the predicted

ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 4 to obtain pπ. Take the π, ρ, K and K∗ meson masses to be 139, 770,
494 and 892 MeV respectively. The measured widths are Γ(ρ → ππ) = 153 ± 2MeV and Γ(K∗ →
Kπ) = 51.3± 0.8MeV.]

SOLUTION

a) The matrix element Mf i = Cpπ depends only on the centre of mass momentum pπ = p∗ of the
final state particles, not on their directions, i.e. the decays are isotropic. For any isotropic two-body
decay a→ 1 + 2, the decay rate is

Γ =
p∗

8πm2
a

|Mf i|2 =
p∗

8πm2
a

· (Cp∗)2 = C2p∗ 3

8πm2
a

.

From question 3, the centre of mass momentum is given by

p∗ =
1

2ma

[(ma +m1 +m2)(ma −m1 +m2)(ma +m1 −m2)(ma −m1 −m2)]
1/2 .

For ρ→ ππ, we have ma = mρ = 770MeV, m1 = m2 = mπ ≈ 140MeV:

p∗ =
1

2mρ

√
(mρ + 2mπ).mρ.mρ.(mρ − 2mπ) =

1
2

√
m2

ρ − 4m2
π = 359MeV

For K∗ → Kπ, we have ma = mK∗ = 892MeV, m1 = mK ≈ 494MeV, m2 = mπ ≈ 140MeV
giving p∗ = 288MeV.

⇒ Γ(ρ→ ππ)

Γ(K∗ → Kπ)
=

C2
ρ

C2
K∗

· m
2
K∗

m2
ρ

·
(
p∗ρ
p∗K∗

)3

=

(
2√
3

)2

·
(
892

770

)2

·
(
359

288

)3

= 3.46
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Data:
Γ(ρ→ ππ) = 153± 2MeV, Γ(K∗ → Kπ) = 51.3± 0.8MeV

giving a measured ratio of 2.98 .

6. The π+ meson decays almost entirely via the two body decay process π+→µ+νµ, with an invariant
matrix element given by

|Mf i|2 = 2G2
Ff

2
πm

2
µ(m

2
π −m2

µ)

where GF = 1.166 × 10−5GeV−2 is the Fermi constant, and fπ is related to the size of the pion
wavefunction (the pion being a composite object).

a) Obtain a formula for the π+ → µ+νµ decay rate. Assuming fπ ∼ mπ, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[mπ = 139.6MeV, mµ = 105.7MeV.]

b) By replacingmµ byme, show that the rate of π+ → e+νe decay is 1.28×10−4 times smaller than the
corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting
the factor |Mf i|2), the decay rate to electrons would be expected to be greater than the rate to muons.

SOLUTION

a) From question 3, the momentum of the µ+ or νµ from a π+ → µ+νµ decay, in the π+ rest frame, is

p∗ =
(mπ +mµ)(mπ −mµ)

2mπ

=
m2

π −m2
µ

2mπ

and hence the decay rate is

Γ =
p∗

8πm2
π

|Mf i|2 =
m2

π −m2
µ

16πm3
π

· 2G2
Ff

2
πm

2
µ(m

2
π −m2

µ)

=
G2

F

8π

m2
µ

mπ

(m2
π −m2

µ)
2

=
(1.166× 10−5)2

8π
· 0.105

2

0.140
(0.1402 − 0.1052)2

= 3.34× 10−17 GeV

The pion lifetime is therefore

τπ =
1

Γ
=

1

3.34× 10−17
= 3.0× 1016 GeV−1

which can be converted to SI units using h̄ = 6.58× 10−25 GeV.s :

τπ = (3.0× 1016).(6.58× 10−25) = 1.97× 10−8 s

b) Ratio of decay rates:

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=
m2

e

m2
µ

·
(
m2

π −m2
e

m2
π −m2

µ

)2

=

(
0.511

105.6

)2

·
(
139.62 − 0.5112

139.62 − 105.62

)2

= 1.28× 10−4
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On the basis of phase space alone, i.e. neglecting the contribution to the decay rate from |Mf i|2, we
have

Γ =
p∗

8πm2
π

∝ p∗ .

Hence the ratio of decay rates is just the ratio of the centre of mass momenta appropriate to each
decay:

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=
p∗(π+ → e+νe)

p∗(π+ → µ+νµ)
=
m2

π −m2
e

m2
π −m2

µ

= 2.34
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THE DIRAC EQUATION

7. Write down a simplified form of the Dirac equation for a spinor ψ(t) describing a particle of mass m
at rest. For the standard Pauli-Dirac representation of the γ matrices, obtain a differential equation
for each component ψi of the spinor ψ, and hence write down a general solution for the evolution of
ψ. Comment on your result and on its relation to the standard plane wave solutions involving u1(p),
u2(p), v1(p), v2(p).

SOLUTION

For a particle of mass m at rest (p = 0), since p = −i∇, we have ∂ψ/∂x = ∂ψ/∂y = ∂ψ/∂z = 0.
Hence ψ = ψ(t) only, and the Dirac equation simplifies to

iγ0
∂ψ

∂t
= mψ .

In the Pauli-Dirac representation, this is

i


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



ψ̇1

ψ̇2

ψ̇3

ψ̇4

 = m


ψ1

ψ2

ψ3

ψ4

 ,

which gives

iψ̇1 = mψ1, iψ̇2 = mψ2, −iψ̇3 = mψ3, −iψ̇4 = mψ4 .

These equations have the solutions

ψ1 = A1e
−imt, ψ2 = A2e

−imt, ψ3 = A3e
+imt, ψ4 = A4e

+imt ,

where the Ai are complex constants. The general solution for ψ is therefore

ψ =


A1e

−imt

A2e
−imt

A3e
+imt

A4e
+imt

 .

This can be expressed as a linear combination of the four independent solutions

ψ = N


1
0
0
0

 e−imt, N


0
1
0
0

 e−imt, N


0
0
1
0

 e+imt, N


0
0
0
1

 e+imt , (26)

where N =
√
2m to normalise to 2E = 2m particles per unit volume.

Thus both positive energy, e−imt, and negative energy, e+imt, solutions unambiguously emerge.

The spinors in Equation (26) can be obtained by setting E = m, px = py = pz = 0 in the standard
plane wave solutions u1ei(p.r−Et), u2ei(p.r−Et), v2e−i(p.r−Et), v1e−i(p.r−Et), as expected.
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8. a) For the standard Pauli-Dirac representation of the γ matrices, and for an arbitrary pair of spinors ψ
and ϕ with components ψi and ϕi, show that the current ψγµϕ is given by

ψγ0ϕ = ψ∗
1ϕ1 + ψ∗

2ϕ2 + ψ∗
3ϕ3 + ψ∗

4ϕ4

ψγ1ϕ = ψ∗
1ϕ4 + ψ∗

2ϕ3 + ψ∗
3ϕ2 + ψ∗

4ϕ1

ψγ2ϕ = −i(ψ∗
1ϕ4 − ψ∗

2ϕ3 + ψ∗
3ϕ2 − ψ∗

4ϕ1)

ψγ3ϕ = ψ∗
1ϕ3 − ψ∗

2ϕ4 + ψ∗
3ϕ1 − ψ∗

4ϕ2

b) For a particle or antiparticle with four-momentum pµ = (E, px, py, pz), show that

u1γ
µu1 = u2γ

µu2 = v1γ
µv1 = v2γ

µv2 = 2pµ

and that
u1γ

µu2 = u2γ
µu1 = v1γ

µv2 = v2γ
µv1 = 0 .

c) Hence show that the current jµ = ψ(p)γµψ(p) corresponding to a general free particle spinor
ψ(p) = u(p)ei(p.r−Et) or antiparticle spinor ψ(p) = v(p)e−i(p.r−Et) is given by jµ = 2pµ. Write
down the particle density and flux represented by jµ.

SOLUTION

a) For an arbitrary pair of spinors ψ and ϕ say, with spinor components ψi and ϕi, standard matrix
multiplication gives, for µ = 0,

ψγ0ϕ =
(
ψ∗
1 ψ∗

2 −ψ∗
3 −ψ∗

4

)
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



ϕ1

ϕ2

ϕ3

ϕ4

 = ψ∗
1ϕ1 + ψ∗

2ϕ2 + ψ∗
3ϕ3 + ψ∗

4ϕ4 .

Similarly, for µ = 1, 2, 3, we obtain

ψγ1ϕ =
(
ψ∗
1 ψ∗

2 −ψ∗
3 −ψ∗

4

)
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



ϕ1

ϕ2

ϕ3

ϕ4

 = ψ∗
1ϕ4 + ψ∗

2ϕ3 + ψ∗
3ϕ2 + ψ∗

4ϕ1

ψγ2ϕ =
(
ψ∗
1 ψ∗

2 −ψ∗
3 −ψ∗

4

)
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



ϕ1

ϕ2

ϕ3

ϕ4

 = −i(ψ∗
1ϕ4 − ψ∗

2ϕ3 + ψ∗
3ϕ2 − ψ∗

4ϕ1)

ψγ3ϕ =
(
ψ∗
1 ψ∗

2 −ψ∗
3 −ψ∗

4

)
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



ϕ1

ϕ2

ϕ3

ϕ4

 = ψ∗
1ϕ3 − ψ∗

2ϕ4 + ψ∗
3ϕ1 − ψ∗

4ϕ2 .

In summary:

ψγ0ϕ = ψ∗
1ϕ1 + ψ∗

2ϕ2 + ψ∗
3ϕ3 + ψ∗

4ϕ4

ψγ1ϕ = ψ∗
1ϕ4 + ψ∗

2ϕ3 + ψ∗
3ϕ2 + ψ∗

4ϕ1

ψγ2ϕ = −i(ψ∗
1ϕ4 − ψ∗

2ϕ3 + ψ∗
3ϕ2 − ψ∗

4ϕ1)

ψγ3ϕ = ψ∗
1ϕ3 − ψ∗

2ϕ4 + ψ∗
3ϕ1 − ψ∗

4ϕ2
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b) For the free particle spinor u1, the first element of the current 4-vector is

u1γ
0u1 = (E +m)

[
1 +

p2z
(E +m)2

+
(p2x + p2y)

(E +m)2

]
= (E +m)

[
1 +

p2

(E +m)2

]
=

(E +m)2 + p2

E +m
=

2E2 + 2Em

E +m
= 2E ,

where, in the last line, we have made use of the relation E2 = p2 +m2.

Repeating this exercise for the remaining terms in the 4-vector current gives, altogether,

u1γ
0u1 = 2E; u1γ

1u1 = 2px; u1γ
2u1 = 2py; u1γ

3u1 = 2pz

which can be expressed more compactly as

u1γ
µu1 = (2E, 2px, 2py, 2pz) = 2pµ .

Repeating the above exercise for u2, v1 and v2 in place of u1 gives

u1γ
µu1 = u2γ

µu2 = v1γ
µv1 = v2γ

µv2 = 2pµ ,

while the cross-terms are easily seen to vanish:

u1γ
µu2 = u2γ

µu1 = v1γ
µv2 = v2γ

µv1 = 0 .

c) For a particle, with ψ = u(p)eip.x, we have

ψ = ψ†γ0 = u(p)†γ0e−ip.x = u(p)e−ip.x ,

and hence
jµ = ψγµψ = uγµu .

For an antiparticle, we have similarly jµ = vγµv.

A particle spinor u(p) can always be expressed as a linear combination of the basis spinors u1, u2:

u = α1u1 + α2u2, |α1|2 + |α2|2 = 1 .

Hence
uγµu = |α1|2u1γµu1 + |α2|2u2γµu2 = 2pµ .

Thus
jµ = 2pµ .

The current 4-vector is jµ = (ρ, j) so

ρ = 2E, j = 2p ,

ρ being the particle density and j being the flux.

11



9. a) For a particle with 4-momentum pµ = (E, p sin θ cosϕ, p sin θ sinϕ, p cos θ), show that the spinors
(1 + γ5)u1 and (1 + γ5)u2 are not in general proportional to u↑ but become so in the relativistic limit
E ≫ m.

b) Define the terms helicity and chirality. How are chirality and helicity related to the spinors and
result described in part (a) ?

c) What would be the equivalent result to that described in (a) for the corresponding antiparticle
spinors (1 + γ5)v1 and (1 + γ5)v2 ?

SOLUTION

a) For pµ = (E, p sin θ cosϕ, p sin θ sinϕ, p cos θ), we have

u↑(p) =
√
E +m


cos θ/2
eiϕ sin θ/2
p

E+m
cos θ/2

p
E+m

eiϕ sin θ/2

 , u↓(p) =
√
E +m


− sin θ/2
eiϕ cos θ/2
p

E+m
sin θ/2

− p
E+m

eiϕ cos θ/2


But

(1 + γ5)u1 =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

√
E +m


1
0

pz/(E +m)
(px + ipy)/(E +m)



=
√
E +m


1 + pz/(E +m)

(px + ipy)/(E +m)
1 + pz/(E +m)

(px + ipy)/(E +m)


which, in general, is clearly not proprtional to u↑.

In the limit E ≫ m, the spinors u1 and u2 become

u1 =
√
E +m


1
0

pz/(E +m)
(px + ipy)/(E +m)

 →
√
E


1
0

cos θ
eiϕ sin θ



u2 =
√
E +m


0
1

(px − ipy)/(E +m)
−pz/(E +m)

 →
√
E


0
1

e−iϕ sin θ
− cos θ

 .
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Hence

(1 + γ5)u1 →


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

√
E


1
0

cos θ
eiϕ sin θ

 =
√
E


1 + cos θ
eiϕ sin θ
1 + cos θ
eiϕ sin θ



= 2
√
E cos θ/2


cos θ/2
eiϕ sin θ/2
cos θ/2
eiϕ sin θ/2

 = 2 cos θ/2 · u↑ (27)

and similarly:

(1 + γ5)u2 →


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

√
E


0
1

e−iϕ sin θ
− cos θ

 =
√
E


e−iϕ sin θ
1− cos θ
e−iϕ sin θ
1− cos θ



= 2
√
E sin θ/2


e−iϕ cos θ/2
sin θ/2

e−iϕ cos θ/2
sin θ/2

 = 2e−iϕ sin θ/2 · u↑ (28)

b) The helicity operator h = Σ.p̂ gives the projection of the particle spin along the direction of
motion. A particle or antiparticle with the spin vector aligned along (opposite to) the direction of
motion has h = +1 (h = −1) and is said to be right-handed (left-handed).

Any (particle or antiparticle) spinor ψ can be expressed as the sum of its left-handed and right-handed
chiral components

ψ = ψL + ψR; ψL ≡ 1
2
(1− γ5)ψ ψR ≡ 1

2
(1 + γ5)ψ .

In the extreme relativistic limit (E ≫ m), the left-handed and right-handed chiral components are
also eigenstates of the helicity operator:

For a particle: ψL has helicity −1 ψR has helicity +1
For an antiparticle: ψL has helicity +1 ψR has helicity −1

The results in part a) show that, in the relativistic limit, and only in the relativistic limit, the right-
handed chiral components (1+γ5)u1 and (1+γ5)u2 are both proportional to u↑, i.e. are both positive
helicity eigenstates. Since any particle spinor u can be expressed as a linear combination of u1 and
u2, this result holds quite generally i.e. in the relativistic limit, the right-handed chiral component
(1 + γ5)u becomes a right-handed helicity eigenstate for any particle spinor u.

c) For antiparticles, the right-handed chiral component 1
2
(1 + γ5)ψ becomes a left-handed helicity

eigenstate in the relativistic limit. Hence (1 + γ5)v1 and (1 + γ5)v2 will both become proportional to
v↓ in the relativsitic limit.
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10. a) Without resorting to an explicit representation of the Dirac gamma matrices, show that the matrix
γ5 ≡ iγ0γ1γ2γ3 has the following properties:

(γ5)2 = 1, γ5† = γ5, γ5γµ = −γµγ5 .

b) Show that the adjoint spinors ψL and ψR corresponding to the left-handed and right-handed com-
ponents ψL ≡ 1

2
(1− γ5)ψ and ψR ≡ 1

2
(1 + γ5)ψ are:

ψL = ψ 1
2
(1 + γ5)

ψR = ψ 1
2
(1− γ5) .

c) Show that ϕLγ
µψR = ϕRγ

µψL = 0, and that the current ϕγµψ can be decomposed as

ϕγµψ = ϕLγ
µψL + ϕRγ

µψR .

SOLUTION

a) Repeatedly use the fact that the γ matrices anticommute and satisfy (γ0)2 = 1, (γ1)2 = (γ2)2 =
(γ3)2 = −1:

(γ5)2 = (iγ0γ1γ2γ3)2 = −γ0γ1γ2γ3γ0γ1γ2γ3

= γ0γ1γ2γ0γ3γ1γ2γ3 since γ3γ0 = −γ0γ3

= −γ0γ1γ0γ2γ3γ1γ2γ3 since γ2γ0 = −γ0γ2

= γ0γ0γ1γ2γ3γ1γ2γ3 since γ1γ0 = −γ0γ1

= γ1γ2γ3γ1γ2γ3 since (γ0)2 = 1

= −γ1γ2γ1γ3γ2γ3 since γ3γ1 = −γ1γ3

= γ1γ1γ2γ3γ2γ3 since γ2γ1 = −γ1γ2

= −γ2γ3γ2γ3 since (γ1)2 = −1

= γ3γ2γ2γ3 since γ2γ3 = −γ3γ2

= −γ3γ3 since (γ2)2 = −1

= 1

Using γ0† = γ0, γ1† = −γ1, γ2† = −γ2, γ3† = −γ3:

γ5† = (iγ0γ1γ2γ3)† = −iγ3†γ2†γ1†γ0† = iγ3γ2γ1γ0

= −iγ2γ1γ0γ3 = −iγ1γ0γ2γ3 = iγ0γ1γ2γ3 = γ5

Consider γ5γ2 for example:

γ5γ2 = iγ0γ1γ2γ3γ2 = −iγ0γ1γ2γ2γ3 = iγ0γ2γ1γ2γ3 = −iγ2γ0γ1γ2γ3 = −γ2γ5

and similarly: γ5γ0 = −γ0γ5, γ5γ1 = −γ1γ5, γ5γ3 = −γ3γ5 giving altogether γ5γµ = −γµγ5.

b) An adjoint spinor is defined as ψ ≡ ψ†γ0, so that

ψL = ψ†
Lγ

0 =
[
1
2
(1− γ5)ψ

]†
γ0

= ψ† 1
2
(1− γ5)γ0 since γ5† = γ5

= ψ†γ0 1
2
(1 + γ5) since γ0γ5 = −γ5γ0

= ψ 1
2
(1 + γ5)
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and similarly:
ψR = ψ 1

2
(1− γ5) .

c) Separate the spinor ψ into its left- and right-handed components via

ψ = 1
2
(1− γ5)ψ + 1

2
(1 + γ5)ψ = ψL + ψR

For the adjoint spinor:

ψ = ψ†γ0 = (ψL + ψR)
†γ0 = ψ†

Lγ
0 + ψ†

Rγ
0 = ψL + ψR

Hence

ϕγµψ =
[
ϕL + ϕR

]
γµ [ψL + ψR]

= ϕLγ
µψL + ϕLγ

µψR + ϕRγ
µψL + ϕRγ

µψR

But

ϕLγ
µψR = ϕ1

2
(1 + γ5) · γµ · 1

2
(1 + γ5)ψ

= ϕ1
2
(1 + γ5) · 1

2
(1− γ5)γµψ

= 0

since (1 + γ5)(1− γ5) = 1− (γ5)2 = 0. Similarly: ϕRγ
µψL = 0 giving

ϕγµψ = ϕLγ
µψL + ϕRγ

µψR

as required. Alternatively, show directly that

ϕLγ
µψL = ϕ1

2
(1 + γ5) · γµ · 1

2
(1− γ5)ψ

= ϕ1
2
(1 + γ5) · 1

2
(1 + γ5)γµψ

= ϕ1
2
(1 + γ5)γµψ

and similarly
ϕRγ

µψR = ϕ1
2
(1− γ5)γµψ ,

again giving

ϕLγ
µψL + ϕRγ

µψR = ϕ1
2
(1 + γ5)γµψ + ϕ1

2
(1− γ5)γµψ = ϕγµψ .

Thus, for interactions between spin 1
2

particles (or antiparticles) and photons in QED, the left-handed
chiral component of a spinor couples only to another left-handed chiral component (ϕLγ

µψL) and the
right-handed chiral component couples only to another right-handed chiral component (ϕRγ

µψR).
There is no coupling between the left-handed and right-handed chiral components: (ϕRγ

µψL =
0, ϕRγ

µψL = 0).

At high energies, the left-handed and right-handed chiral components become helicity eigenstates
with definite helicity and we have helicity conservation in QED: the particle helicity is preserved at
a QED vertex.
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ELECTRON-MUON ELASTIC SCATTERING

11. a) Show that the general matrix element for e−µ− → e−µ− scattering via single photon exchange is

Mf i = − e2

(p1 − p3)2
gµν [u(p3)γ

µu(p1)] [u(p4)γ
νu(p2)]

where p1 and p3 are the initial and final e− four-momenta and p2 and p4 are the initial and final µ−

four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoing e− four-momenta
pµ1 = (E1, 0, 0, p) and pµ3 = (E1, p sin θ, 0, p cos θ), the electron current for the various possible
electron spin combinations is

u↓(p3)γ
µu↓(p1) = 2(E1c, ps,−ips, pc)

u↑(p3)γ
µu↓(p1) = 2(ms, 0, 0, 0)

u↑(p3)γ
µu↑(p1) = 2(E1c, ps, ips, pc)

u↓(p3)γ
µu↑(p1) = −2(ms, 0, 0, 0)

where m is the electron mass and s ≡ sin θ/2, c ≡ cos θ/2.

c) Write down the incoming and outgoing muon 4-momenta p2 and p4, and the helicity eigenstate
spinors u↑(p2), u↓(p2), u↑(p4) and u↓(p4). [Take the muon mass to be M and the muon energy to be
E2 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

u↓(p4)γ
µu↓(p2) = 2(E2c,−ps,−ips,−pc)

u↑(p4)γ
µu↓(p2) = 2(Ms, 0, 0, 0)

u↑(p4)γ
µu↑(p2) = 2(E2c,−ps, ips,−pc)

u↓(p4)γ
µu↑(p2) = −2(Ms, 0, 0, 0)

can be written down (up to overall factors of ±1) without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared |MLL|2 for the case where the in-
coming e− and incoming µ− are both left-handed is given by

|MLL|2 =
4e4s2

(p1 − p3)4

where s = (p1 + p2)
2. Why is the numerator of |MLL|2 independent of θ ?

f) Find a similar expression for the matrix element |MRL|2 for a right-handed incoming e− and a left-
handed incoming µ−, and explain why |MRL|2 vanishes when θ = π. Write down the corresponding
results for |MRR|2 and |MLR|2.

g) Show that, in the relativistic limit, the differential cross section for unpolarised e−µ− → e−µ−

scattering in the centre of mass frame is

dσ

dΩ
=

2α2

s
·
1 + 1

4
(1 + cos θ)2

(1− cos θ)2
.
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h) Show that the spin-averaged matrix element squared (in this ultra-relativistic limit) can be ex-
pressed in Lorentz-invariant form as

〈
|Mf i|2

〉
=

8e4

(p1 − p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] ,

and that a Lorentz invariant form for the differential cross section is

dσ

dq2
=

2πα2

q4

[
1 +

(
1 +

q2

s

)2
]

where q2 = (p1 − p3)
2.

The remainder of this question involves the derivation of a general expression for ⟨|Mf i|2⟩ for the case
of finite electron and muon masses, and is optional:

i) Show that the spin-averaged matrix element squared for unpolarised e−µ− → e−µ− scattering can
be written in the form 〈

|Mf i|2
〉
=

1

4

∑
spins

|Mf i|2 =
1

4

e4

(p1 − p3)4
LµνWµν

where the electron and muon tensors Lµν and W µν are given by

Lµν ≡
∑
spins

[u(p3)γ
µu(p1)] [u(p3)γ

νu(p1)]
∗

Wµν ≡
∑
spins

[u(p4)γµu(p2)] [u(p4)γνu(p2)]
∗

j) Using the electron currents from part b) above, show that the components of the electron tensor Lµν

are 
L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

 = 8


E2

1c
2 +m2s2 E1psc 0 E1pc

2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc
2 p2sc 0 p2c2

 ,

and hence verify that Lµν has the Lorentz invariant form

Lµν = 4
[
pµ1p

ν
3 + pµ3p

ν
1 + gµν

(
m2 − p1.p3

)]
.

k) Write down the corresponding expression for W µν and hence show that

⟨|Mf i|2⟩ =
8e4

(p1 − p3)4
[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)− (p1.p3)M

2 − (p2.p4)m
2 + 2m2M2

]
SOLUTION

a) The QED process e−µ− → e−µ− involves a single Feynman diagram at leading order:
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e− e−

µ− µ−

p1 p3

p2 p4

q

µ

ν

Applying the Feynman rules gives

−iMf i = [u(p3) · −ieγµ · u(p1)] ·
−igµν

(p1 − p3)2
· [u(p4) · −ieγνu(p2)]

and hence

Mf i = − e2

(p1 − p3)2
gµν [u(p3)γ

µu(p1)] [u(p4)γ
νu(p2)] (29)

b) For a particle of mass m with four-momentum pµ = (E, p sin θ cosϕ, p sin θ sinϕ, p cos θ), the
helicity eigenstate spinors are

u↑ =
√
E +m


cos θ/2
eiϕ sin θ/2

p/(E +m) cos θ/2
p/(E +m)eiϕ sin θ/2

 ; u↓ =
√
E +m


− sin θ/2
eiϕ cos θ/2

p/(E +m) sin θ/2
−p/(E +m)eiϕ cos θ/2

 (30)

For the incoming electron, with p1 = (E1, 0, 0, p), the two possible spinors are:

u↑(p1) =
√
E1 +m


1
0

p/(E1 +m)
0

 ; u↓(p1) =
√
E1 +m


0
1
0

−p/(E1 +m)

 (31)

For the outgoing electron, with p3 = (E1, p sin θ, 0, p cos θ), the spinors are:

u↑(p3) =
√
E1 +m


c
s

p/(E1 +m) · c
p/(E1 +m) · s

 ; u↓(p3) =
√
E1 +m


−s
c

p/(E1 +m) · s
−p/(E1 +m) · c

 (32)

where c ≡ cos θ/2 and s ≡ sin θ/2. Noting that the spinors are real, matrix multiplication gives

ψγ0ϕ = ψ1ϕ1 + ψ2ϕ2 + ψ3ϕ3 + ψ4ϕ4

ψγ1ϕ = ψ1ϕ4 + ψ2ϕ3 + ψ3ϕ2 + ψ4ϕ1

ψγ2ϕ = −i(ψ1ϕ4 − ψ2ϕ3 + ψ3ϕ2 − ψ4ϕ1)

ψγ3ϕ = ψ1ϕ3 − ψ2ϕ4 + ψ3ϕ1 − ψ4ϕ2
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Start with u↓(p3) and u↓(p1):

u↓(p3)γ
0u↓(p1) = (E1 +m)

[
c+

p2

(E1 +m)2
c

]
=

(E1 +m)2 + p2

(E1 +m)
c =

2E2
1 + 2mE1

(E1 +m)
c = 2E1c

where we have used m2 + p2 = E2
1 in the last-but-one step. Similarly, for γ1, γ2, γ3 we have

u↓(p3)γ
1u↓(p1) = (E1 +m)

[
p

E1 +m
s+

p

E1 +m
s

]
= 2ps

u↓(p3)γ
2u↓(p1) = (E1 +m)

[
−ip

E1 +m
s− ip

E1 +m
s

]
= −2ips

u↓(p3)γ
3u↓(p1) = (E1 +m)

[
p

E1 +m
c+

p

E1 +m
c

]
= 2pc

In summary
u↓(p3)γ

µu↓(p1) = (2E1c, 2ps,−2ips, 2pc) (33)

Similarly for the other possible spin configurations, giving overall:

u↓(p3)γ
µu↓(p1) = 2(E1c, ps,−ips, pc) (34)

u↑(p3)γ
µu↓(p1) = 2(ms, 0, 0, 0) (35)

u↑(p3)γ
µu↑(p1) = 2(E1c, ps, ips, pc) (36)

u↓(p3)γ
µu↑(p1) = −2(ms, 0, 0, 0) (37)

c) For the incoming µ−, with four-momentum p2 = (E2, 0, 0,−p) and E2 =
√
p2 +M2, the helicity

eigenstate spinors can be obtained from Equation (30) by setting θ = π and ϕ = 0:

u↑(p2) =
√
E2 +M


0
1
0

p/(E2 +M)

 ; u↓(p2) =
√
E2 +M


−1
0

p/(E2 +M)
0

 (38)

For the outgoing µ−, with 4-momentum p4 = (E2,−p sin θ, 0,−p cos θ), the helicity eigenstate
spinors can be obtained from Equation (30) by setting θ → π − θ and ϕ = π:

u↑(p4) =
√
E2 +M


s
−c

p/(E2 +M) · s
p/(E2 +M) · −c

 ; u↓(p4) =
√
E2 +M


−c
−s

p/(E2 +M) · c
−p/(E2 +M) · −s


(39)

using cos(π − θ)/2 = sin θ/2 = s and sin(π − θ)/2 = cos θ/2 = c.

A comparison of Equations (31) and (38) shows that, if we make the replacement p → −p, then
u↑(p2) is of the same form as u↓(p1). Similarly, u↓(p2) is then of the same form as u↑(p1), apart from
an overall normalisation factor of −1.

Similarly, a comparison of Equations (32) and (39) shows that, under p → −p, u↑(p4) becomes the
same as u↓(p3), and u↓(p4) becomes the same as u↑(p3), apart from overall normalisation factors of
−1.
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The muon currents can therefore be written down directly using the electron current results, by chang-
ing m to M , E1 to E2, p to −p, ↑ to ↓ and ↓ to ↑:

u↓(p4)γ
µu↓(p2) = 2(E2c,−ps,−ips,−pc) (40)

u↑(p4)γ
µu↓(p2) = 2(Ms, 0, 0, 0) (41)

u↑(p4)γ
µu↑(p2) = 2(E2c,−ps, ips,−pc) (42)

u↓(p4)γ
µu↑(p2) = −2(Ms, 0, 0, 0) (43)

d) Some of the currents vanish in the relativistic limit due to helicity conservation. The allowed spin
configurations are those for which the helicity of the e− and the helicity of the µ− are both preserved
in the scattering:

e) In the relativistic limit, we can set m =M = 0 and E1 = E2 = E. The electron currents become

u↓(p3)γ
µu↓(p1) = 2E(c, s,−is, c) (44)

u↑(p3)γ
µu↓(p1) = (0, 0, 0, 0) (45)

u↑(p3)γ
µu↑(p1) = 2E(c, s, is, c) (46)

u↓(p3)γ
µu↑(p1) = (0, 0, 0, 0) (47)

while the muon curents are:

u↓(p4)γ
µu↓(p2) = 2E(c,−s,−is,−c) (48)

u↑(p4)γ
µu↓(p2) = (0, 0, 0, 0) (49)

u↑(p4)γ
µu↑(p2) = 2E(c,−s, is,−c) (50)

u↓(p4)γ
µu↑(p2) = (0, 0, 0, 0) (51)

When the incoming e− and µ− are both left-handed (i.e. negative helicity) we have u(p1) = u↓(p1)
and u(p2) = u↓(p2), and the only non-zero contributions to the electron and muon currents come
from Equations (44) and (48). Hence the scalar product of the electron and muon currents is

2E(c, s,−is, c) · 2E(c,−s,−is,−c) = 4E2 · (c2 + s2 + c2 + s2) = 8E2

and, from Equation (29), the matrix element squared is

|MLL|2 =
e4

(p1 − p3)4
· (8E2)2 =

4e4s2

(p1 − p3)4

where now s ≡ (p1 + p2)
2 = 4E2.

The numerator of |MLL|2 is independent of θ because the incoming left-handed e− and the incoming
left-handed µ− have oppositely directed spins, and the total spin of the initial state is Sz = 0. Hence
there is no preferred spatial direction.

f) For MRL, with the incoming e− right-handed and the µ− left-handed, we have u(p1) = u↑(p1) and
u(p2) = u↓(p2). The only non-zero combination is now given by the scalar product of Equations (46)
and (48):

MRL ∝ 2E(c, s, is, c) · 2E(c,−s,−is,−c) = 4E2 · (c2 + s2 − s2 + c2)

= 8E2 cos2 θ/2

= 8E2 · 1
2
(1 + cos θ) .
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Hence the non-zero matrix elements can be summarised as

|MRR|2 = |MLL|2 =
e4

(p1 − p3)4
4s2

|MLR|2 = |MRL|2 =
e4

(p1 − p3)4
4s2 · 1

4
(1 + cos θ)2

where we must have MLL =MRR and MLR =MRL by symmetry of the spin configurations.

g) For unpolarised e−µ− → e−µ− scattering, sum over the final spins and average over the initial
spins to obtain 〈

|Mf i|2
〉
= 1

2
· 1
2
·
(
|MLL|2 + |MRR|2 + |MLR|2 + |MRL|2

)
=

2e4

(p1 − p3)4
s2

[
1 + 1

4
(1 + cos θ)2

]
(52)

With p1 = (E, 0, 0, E) and p3 = (E,E sin θ, 0, E cos θ), we have

(p1 − p3)
2 = p21 + p23 − 2p1.p3 = −2p1.p3 = −2E2(1− cos θ)

For any 2 → 2 body elastic scattering process in the centre of mass frame, the differential cross
section is given by

dσ

dΩ
=

1

64π2s
⟨|Mf i|2⟩

Hence:
dσ

dΩ
=

e4

8π2s
·
1 + 1

4
(1 + cos θ)2

(1− cos θ)2
(53)

h) With 4-momenta

p1 = (E, 0, 0, E) p3 = (E,E sin θ, 0, E cos θ)

p2 = (E, 0, 0,−E) p4 = (E,−E sin θ, 0,−E cos θ)

the scalar products are

p1.p2 = p3.p4 = 2E2 = 1
2
s2

p1.p4 = p2.p3 = E2(1 + cos θ) = 1
4
s(1 + cos θ)

Hence the spin-averaged matrix element squared of Equation (52) becomes

〈
|Mf i|2

〉
=

8e4

(p1 − p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] .

It was shown in Handout 3 that the Lorentz-invariant cross section dσ/dt = dσ/dq2 is given by

dσ

dq2
=

1

64πs(p∗i )
2
|Mf i|2
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where p∗i is the centre of mass momentum of either of the initial state particles. At high energies when
masses are negligible (as here), we have p∗i = E and hence 4(p∗i )

2 = 4E2 = s. Hence

dσ

dq2
=

1

16πs2
|Mf i|2 =

1

16πs2
· 8e

4

q4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] .

In terms of s and q2, the scalar products are

s = (p1 + p2)
2 = 2p1.p2 = 2p3.p4

q2 = (p1 − p3)
2 = −2p1.p3

p1.p4 = p1.(p1 + p2 − p3) = p1.p2 − p1.p3 =
1
2
s+ 1

2
q2

p2.p3 = p1.p4

Hence
dσ

dq2
=

1

16πs2
· 8e

4

q4
[
(1
2
s)(1

2
s) + (1

2
s+ 1

2
q2)(1

2
s+ 1

2
q2)

]
.

Using e2 = 4πα, this can be written as

dσ

dq2
=

2πα2

q4

[
1 +

(
1 +

q2

s

)2
]
.

Alternatively, start from Equation (53) and use

q2 = (p1 − p3)
2 = −2p1.p3 = −1

2
s(1− cos θ)

to transform the cross section directly:

dσ

dq2
=

∣∣∣∣d cos θdq2

∣∣∣∣ dσ

d cos θ
=

2

s
· dσ

d cos θ

1− cos θ =
2Q2

s

1 + cos θ = 2

(
1− Q2

s

)
i) The Lorentz invariant matrix element for a given spin configuration is

Mijkl = − e2

(p1 − p3)2
[uk(p3)γ

µui(p1)] [ul(p4)γνuj(p2)]

where i, j, k, l =↑ or ↓ (or = 1, 2) specifies the spin state of each of the incoming and outgoing
particles in the collision. For unpolarised e−µ− → e−µ− scattering, sum over the final spins and
average over the initial e− and µ− spins to obtain〈
|Mf i|2

〉
=

1

2
· 1
2
·

2∑
i,j,k,l=1

|Mijkl|2

=
1

4

e4

(p1 − p3)4

2∑
i,j,k,l=1

[uk(p3)γ
µui(p1)] [uk(p3)γ

νui(p1)]
∗ [ul(p4)γµuj(p2)] [ul(p4)γνuj(p2)]

∗

=
1

4

e4

(p1 − p3)4
LµνWµν
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where the electron and muon tensors Lµν and W µν are given by

Lµν ≡
2∑

i,k=1

[uk(p3)γ
µui(p1)] [uk(p3)γ

νui(p1)]
∗

Wµν ≡
2∑

j,l=1

[ul(p4)γµuj(p2)] [ul(p4)γνuj(p2)]
∗

j) Writing out the sum over spins explicitly, the electron tensor Lµν is given by

Lµν = [u↓(p3)γ
µu↓(p1)] [u↓(p3)γ

νu↓(p1)]
∗ + [u↑(p3)γ

µu↓(p1)] [u↑(p3)γ
νu↓(p1)]

∗

+ [u↑(p3)γ
µu↑(p1)] [u↑(p3)γ

νu↑(p1)]
∗ + [u↓(p3)γ

µu↑(p1)] [u↓(p3)γ
νu↑(p1)]

∗ .

Substituting the electron currents given in Equations (34)-(37), and using matrix notation, the sum is
L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

 = 4


E1c
ps

−ips
pc

(
E1c ps ips pc

)
+ 4


ms
0
0
0

(
ms 0 0 0

)

+ 4


E1c
ps
ips
pc

(
E1c ps −ips pc

)
+ 4


ms
0
0
0

(
ms 0 0 0

)

= 8


E2

1c
2 +m2s2 E1psc 0 E1pc

2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc
2 p2sc 0 p2c2

 (54)

Now consider
Lµν = 4

[
pµ1p

ν
3 + pµ3p

ν
1 + gµν

(
m2 − p1.p3

)]
.

In matrix notation, this is

Lµν = 4


p01
p11
p21
p31

(
p03 p13 p23 p33

)
+ 4


p03
p13
p23
p33

(
p01 p11 p21 p31

)

+ 4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 · (m2 − p1.p3)

With p1 = (E1, 0, 0, p) and p3 = (E1, p sin θ, 0, p cos θ), we have

m2 − p1.p3 = m2 − (E2
1 − p2 cos θ) = p2(cos θ − 1) = −2p2s2 ,
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where we have used E2
1 = p2 +m2 and 1− cos θ = 2 sin2 θ/2 = 2s2. Hence

Lµν = 4


E1

0
0
p

(
E1 p sin θ 0 p cos θ

)
+ 4


E1

p sin θ
0

p cos θ

(
E1 0 0 p

)

+ 4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 · −2p2s2

= 4


2E2

1 − 2p2s2 E1p sin θ 0 E1p(1 + cos θ)
E1p sin θ 2p2s2 0 p2 sin θ

0 0 2p2s2 0
E1p(1 + cos θ) p2 sin θ 0 2p2 cos θ + 2p2s2


Using the relations sin θ = 2 sin θ/2 cos θ/2 = 2sc, 1 + cos θ = 2 cos2 θ/2 = 2c2 and E2

1 = p2 +m2,
this is readily seen to be equal to Equation (54).

k) The muon tensor W µν can be written down immediately as

Wµν = 4
[
p2µp4ν + p4µp2ν + gµν

(
M2 − p2.p4

)]
.

Hence 〈
|Mf i|2

〉
=

4e4

(p1 − p3)4
[
pµ1p

ν
3 + pµ3p

ν
1 + gµν

(
m2 − p1.p3

)]
×
[
p2µp4ν + p4µp2ν + gµν

(
M2 − p2.p4

)] (55)

giving finally

〈
|Mf i|2

〉
=

8e4

(p1 − p3)4
[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3)− (p1.p3)M

2 − (p2.p4)m
2 + 2m2M2

]
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12. a) The elastic form factors for the proton are well described by the form

G(q2) =
G(0)

(1 + |q2|/0.71)2

with q2 in GeV2. Show that an exponential charge distribution in the proton

ρ(r) = ρ0e
−λr

leads to this form for G(q2) (insofar as |q2| = |q2|), and calculate λ.

b) Show that, for any spherically symmetric charge distribution, the mean square radius is given by

⟨r2⟩ = − 6

G(0)

[
dG(q2)

d|q2|

]
q2=0

and estimate the r.m.s. charge radius of the proton.

c) The pion form factor may be determined in πe− scattering. Use the following data to estimate the
r.m.s. charge radius of the pion.

|q2| (GeV2) G2
E(q

2)

0.015 0.944 ± 0.007
0.042 0.849 ± 0.009
0.074 0.777 ± 0.016
0.101 0.680 ± 0.017
0.137 0.646 ± 0.027
0.173 0.534 ± 0.030
0.203 0.529 ± 0.040
0.223 0.487 ± 0.049

SOLUTION

a) For elastic scattering, there is no energy transfer to the target particle and the 4-momentum transfer
q is of the form qµ = (0, q). Hence |q2| = |q|2, and the form factor is given by the Fourier transform
of the charge distribution:

G(q2) = G(q2) =

∫
eiq.rρ(r)d3r (56)

For a spherically symmetric charge distribution, and choosing the constant vector q to lie along the
+z axis:

G(q2) =

∫ 2π

0

∫ +1

−1

∫ ∞

0

eiqr cos θρ(r)r2drd cos θdϕ

= 2π

∫ ∞

0

ρ(r)r2 ·
∫ +1

−1

eiqr cos θd cos θ · dr

= 2π

∫ ∞

0

ρ(r)r2 ·
[
eiqr cos θ

iqr

]+1

−1

· dr

=
4π

q

∫ ∞

0

ρ(r)r sin(qr)dr
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For the exponential charge distribution ρ(r) = ρ0e
−λr:

G(q2) =
4πρ0
q

∫ ∞

0

re−λr sin(qr)dr

=
4πρ0
q

1

2i

∫ ∞

0

r
[
e−λr+iqr − e−λr−iqr

]
dr

Integration by parts gives ∫ ∞

0

re−αrdr =
1

α2

for any constant α, so that

G(q2) =
2πρ0
iq

[
1

(λ− iq)2
− 1

(λ+ iq)2

]
=

8πλρ0
(λ2 + q2)2

.

Thus the form factor is of the required (“dipole”) form:

G(q2) =
G(0)

(1 + |q2|/0.71)2

with G(0) = 8πρ0/λ
3 and

λ =
√
0.71GeV2 = 0.84GeV

Note that, from equation (56), G(0) is just the total charge of the target particle:

G(0) =

∫
ρ(r)d3r = Q .

For an exponential charge distribution, it is easy to check that

G(0) =

∫ ∞

0

ρ0e
−λr · 4πr2dr = 4πρ0

∫ ∞

0

r2e−λrdr = 4πρ0 ·
2

λ3
,

consistent with the expression above. It is conventional and convenient to express the charge density
ρ in units of +e so that, for a proton target, G(0) = 1. This corresponds to choosing the normalisation
constant ρ0 to be ρ0 = λ3/8π.

b) A Taylor expansion gives

G(q2) =

∫
eiq.rρ(r)d3r =

∫ (
1 + iq.r − 1

2
(q.r)2 + · · ·

)
ρ(r)d3r

But G(0) = 1 and∫
(q.r)ρ(r)d3r = 0 since the integrand is an odd function of r

so that
G(q2) = 1−

∫
1
2
(q.r)2ρ(r)d3r + · · · .
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But the Taylor expansion can also be written as

G(q2) = G(0) + q2
dG

dq2

∣∣∣∣∣
q2=0

+ · · ·

so that

q2
dG

dq2

∣∣∣∣∣
q2=0

= −
∫

1
2
(q.r)2ρ(r)d3r .

For a spherically symmetric charge distribution, and choosing q to lie along the +z-axis, this becomes

q2
dG

dq2

∣∣∣∣∣
q2=0

= −
∫ 2π

0

∫ +1

−1

∫ ∞

0

1
2
· q2r2 cos2 θ · ρ(r) r2drd cos θdϕ

⇒ dG

dq2

∣∣∣∣∣
q2=0

= −
∫ 2π

0

∫ +1

−1

∫ ∞

0

1
2
r4 cos2 θρ(r) drd cos θdϕ

= −2
3
π

∫ ∞

0

r4ρ(r)dr

But the mean square radius of the charge distribution is, by definition,

⟨r2⟩ = 1

G(0)

∫
r2ρ(r)d3r =

1

G(0)

∫ ∞

0

r2ρ(r) 4πr2dr =
1

G(0)
4π

∫ ∞

0

r4ρ(r) dr

and hence

⟨r2⟩ = − 6

G(0)

dG(q2)

d|q2|

∣∣∣∣∣
q2=0

For the particular case of an exponential charge distribution, we have

G(q2) =
G(0)

(1 + |q2|/λ2)2

and differentiation gives

dG(q2)

dq2
= G(0) · −2

(
1 +

|q2|
λ2

)−3

· 1

λ2
⇒ dG

dq2

∣∣∣∣∣
q2=0

=
−2G(0)

λ2

⇒ ⟨r2⟩ = −6 · −2G(0)

λ2
=

12

λ2
.

Hence the rms charge radius is

√
⟨r2⟩ =

√
12

λ
=

√
12

0.84GeV
× 0.197GeV.fm = 0.81 fm

where h̄c = 0.197GeV.fm has been used to convert from natural units to SI units.
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c) From a plot of GE(q
2) versus |q2|, the slope at q2 = 0 can be estimated to be

dG(q2)

d|q2|

∣∣∣∣∣
q2=0

≈ −1.9GeV−2 .

⇒
√
⟨r2⟩ ≈

√
−6×−1.9 = 3.38GeV−1 = 3.38GeV−1 × (0.197GeV.fm) = 0.67 fm

In fact, the “dipole” form G(q2) = G(0)/(1 + |q2|/λ2)2 provides a good description of the pion form
factor data. The dashed curve in the figure (drawn by eye rather than fitted) shows the function

GE(q
2) =

1

1 + |q2|/(1.05GeV2)
,

so that λ2 ≈ 1.05GeV2. The dotted line shows the tangent to this curve at q2 = 0, with slope

dG

dq2

∣∣∣∣∣
q2=0

=
−2G(0)

λ2
=

−2

1.05GeV2 = −1.90GeV−2 .
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DEEP-INELASTIC SCATTERING

13. The figure below shows a deep-inelastic scattering event e+p → e+X recorded by the H1 experiment
at the HERA collider. The positron beam, of energy E1 = 27.5GeV, enters from the left and the
proton beam, of energy E2 = 820GeV, enters from the right. The energy of the outgoing positron
is measured to be E3 = 31GeV. The picture is to scale, so angles may be read off the diagram if
required.

a) Show that the Bjorken scaling variable x is given by

x =
E3

E2

[
1− cos θ

2− (E3/E1)(1 + cos θ)

]
where θ is the angle through which the positron has scattered.

b) Estimate the values of Q2, x and y for this event.

c) Estimate the invariant mass MX of the final state hadronic system.

d) Draw quark level diagrams to illustrate the possible origins of this event. Using the plot overleaf of
the parton distribution functions xuV(x), xdV(x), xu(x) and xd(x), estimate the relative probabilities
of the various possible quark-level processes for the event. Note that the Q2 in the plot overleaf need
not be exactly the same as the Q2 in this event – Bjorken scaling requires only that it be similar. So
do not worry about any relatively small differences between the two Q2 scales.

[Neglect contributions from the heavier quarks s, c, b, t.]

e) Estimate the relative contributions of the F1 and F2 terms to the deep-inelastic cross section for the
x and Q2 values corresponding to this event.
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SOLUTION

a) For e+p → e+X at HERA, choose four-momenta to be:

p1 = (E1, 0, 0, E1) , p2 = (E2, 0, 0,−E2) , p3 = (E3, E3 sin θ, 0, E3 cos θ) .

Then
q2 = −2p1.p3 = −2E1E3(1− cos θ)

p2.q = p2.p1 − p2.p3 = 2E1E2 − E2E3(1 + cos θ)

The Bjorken scaling variable x is defined as

x ≡ −q2

2p2.q

Hence

x =
E3

E2

[
1− cos θ

2− (E3/E1)(1 + cos θ)

]
.

b) For the particular event shown, we can estimate the e+ scattering angle to be θ ≈ 50◦. We are given

E1 = 27.5GeV, E2 = 820GeV, E3 = 31GeV. Hence

x =
31

820

[
1− cos 50◦

2− (31/27.5)(1 + cos 50◦)

]
= 0.091 .

Q2 = 2E1E3(1− cos θ) = 2× 27.5× 31× (1− cos 50◦) = 609GeV2

y =
p2.q

p2.p1
= 1− p2.p3

p2.p1
= 1− E3(1 + cos θ)

2E1

= 1− 31× (1 + cos 50◦)

2× 27.5
= 0.074

c) The final state hadronic system has four-momentum p4 = p2 + q. Hence its invariant mass MX is
given by

M2
X = (p2 + q)2 =M2 + 2p2.q −Q2 =M2 +

Q2

x
−Q2 .
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Hence

MX =

√
(0.938)2 +

609

0.091
− 609 = 78.0GeV .

d) At quark level, the possible origins of the event are e+u → e+u, e+d → e+d, e+u → e+u,
e+d → e+d.

The parton model prediction for the e+p cross section is

d2σep

dxdQ2
=

2πα2

Q4

[
1 + (1− y)2

] [4
9
u(x) +

1

9
d(x) +

4

9
u(x) +

1

9
d(x)

]
.

Hence the relative probability for these processes is

u : d : u : d =
4

9
u(x) :

1

9
d(x) :

4

9
u(x) :

1

9
d(x) .

From the plot, for x ≈ 0.09, we can estimate
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xuV(x) ≈ 0.52, xdV(x) ≈ 0.26, xu(x) ≈ 0.10, xd(x) ≈ 0.14 .

Remembering that

u(x) = uV(x) + uS(x) = uV(x) + u(x)

d(x) = dV(x) + dS(x) = dV(x) + d(x) ,

we obtain the estimates

u(x) ≈ (0.52 + 0.10)/0.09 = 6.89

d(x) ≈ (0.26 + 0.14)/0.09 = 4.44

u(x) ≈ 0.10/0.09 = 1.11

d(x) ≈ 0.14/0.09 = 1.56 .
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Including the factors of 4/9 or 1/9, the relative probabilities are therefore

u : d : u : d ≈ 3.06 : 0.494 : 0.494 : 0.173 = 0.73 : 0.12 : 0.12 : 0.04 .

e) The deep-inelastic e+p cross section is

d2σep

dxdQ2
=

4πα2

Q4

[
(1− y)

F ep
2

x
+

1

2
y2

2xF ep
1

x

]
Therefore, assuming the Callan-Gross relation F ep

2 = 2xF ep
1 , the F2 and F1 terms contribute to the

cross section in the ratio

F2 : F1 = (1− y) : 1
2
y2 = 1− 0.075 : 1

2
(0.075)2 ≈ 1 : 0.0028 .

In other words, the cross section is dominated by the F2 term, with the F1 term contributing only
about 0.3% of events.
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14. a) Show that the lab frame differential cross section d2σ/dE3dΩ for deep-inelastic scattering is related
to the Lorentz invariant differential cross section d2σ/dνdQ2 via

d2σ

dE3dΩ
=
E1E3

π

d2σ

dE3dQ2
=
E1E3

π

d2σ

dνdQ2

where E1 and E3 are the energies of the incoming and outgoing lepton, ν = E1 − E3, and Q2 =
−q2 = −(p1 − p3)

2. [ When you do this, make sure you understand that differential cross sections
transform as Jacobians, not as partial derivatives! ]

Show further that
d2σ

dνdQ2
=

2Mx2

Q2

d2σ

dxdQ2

where M is the mass of the target nucleon and x = Q2/2Mν.

b) Show that
2Mx2

Q2
· y

2

2
=

1

M

E3

E1

sin2 θ

2

and that

1− y − M2x2y2

Q2
=
E3

E1

cos2
θ

2
.

c) Show that the Lorentz invariant cross section for deep-inelastic electromagnetic scattering,

d2σ

dxdQ2
=

4πα2

Q4

[(
1− y − M2x2y2

Q2

)
F2

x
+
y2

2

2xF1

x

]
becomes

d2σ

dE3dΩ
=

α2

4E2
1 sin

4 θ/2

[
F2

ν
cos2

θ

2
+

2F1

M
sin2 θ

2

]
in the lab frame.

d) An experiment consists of an electron beam of maximum energy 20GeV and a variable angle
spectrometer which can detect scattered electrons with energies greater than 2GeV. Find the range of
values of θ over which deep-inelastic scattering events can be studied for x = 0.2 and Q2 = 2GeV2.

[You may find it helpful to determine E1 − E3 (fixed), and E1E3 in terms of θ, and then sketch the
various constraints on E1 and E3 on a 2D plot of E3 against E1.]

e) Outline a possible experimental strategy for measuring F1(x,Q
2) and F2(x,Q

2) for the above
values of x and Q2.

SOLUTION

a) Changing variables from dΩ = 2πd cos θ to

Q2 = −q2 = 2E1E3(1− cos θ)

gives
d2σ

dE3dΩ
=

1

2π

d2σ

dE3d cos θ
=

1

2π

∣∣∣∣ dQ2

d cos θ

∣∣∣∣ d2σ

dE3dQ2
=

1

2π
2E1E3

d2σ

dE3dQ2
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and hence
d2σ

dE3dΩ
=
E1E3

π

d2σ

dE3dQ2
=
E1E3

π

d2σ

dνdQ2
(57)

To change variables from ν to x, use

x =
Q2

2Mν
⇒ ν =

Q2

2Mx

d2σ

dxdQ2
=

∣∣∣∣dνdx
∣∣∣∣ d2σ

dνdQ2

which gives directly
d2σ

dνdQ2
=

2Mx2

Q2

d2σ

dxdQ2
(58)

b) Since
Q2 = 4E1E3 sin

2 θ/2

and
y =

ν

E1

we have
E3

E1

sin2 θ/2 =
Q2

4E2
1

=
Q2y2

4ν2
.

Using ν = Q2/2Mx, we then obtain

2Mx2

Q2
· 1
2
y2 =

1

M

E3

E1

sin2 θ

2
(59)

Hence

1− y − M2x2y2

Q2
=
E3

E1

cos2
θ

2
. (60)

c) The Lorentz invariant cross section for deep-inelastic electromagnetic scattering is

d2σ

dxdQ2
=

4πα2

Q4

[(
1− y − M2x2y2

Q2

)
F2

x
+
y2

2

2xF1

x

]
Combining Equations (57) and (58), we have

d2σ

dE3dΩ
=
E1E3

π

d2σ

dνdQ2
=
E1E3

π

2Mx2

Q2

d2σ

dxdQ2

The F2 term contains the combination of factors

2Mx2

Q2

(
1− y − M2x2y2

Q2

)
1

x
=

2Mx

Q2

E3

E1

cos2
θ

2
=

1

ν

E3

E1

cos2
θ

2
,
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where we have used Equation (60). Using Equation (59) for the F1 term, we then obtain

d2σ

dE3dΩ
=
E1E3

π

4πα2

Q4

[(
1

ν

E3

E1

cos2
θ

2

)
F2 +

(
1

M

E3

E1

sin2 θ

2

)
2F1

]
Since Q2 = 4E1E3 sin

2 θ/2, we finally obtain

d2σ

dE3dΩ
=

α2

4E2
1 sin

4 θ/2

[
F2

ν
cos2

θ

2
+

2F1

M
sin2 θ

2

]

d) Given x = 0.2 and Q2 = 2GeV2, the electron energies E1 and E3 are fixed via

E1 − E3 =
Q2

2Mx
=

2GeV2

2× (0.938GeV)× 0.2
= 5.33GeV (61)

and

E1E3 =
Q2

4 sin2 θ/2
. (62)

The experimental constraints E1 < 20GeV and E3 > 2GeV then lead to constraints on the angle θ.
To obtain these, it may help to think in terms of a graphical solution of Equations (61) and (62) on a
plot of E3 versus E1. Equation (61) corresponds to a straight line running at 45◦ while Equation (62)
gives an infinite set of hyperbolae, each hyperbola corresponding to a different possible value of θ.

The minimum possible value of θ corresponds to taking the maximum possible beam energy E1 =
20GeV:

sin2 θ/2 =
Q2

4E1E3

=
2

4× 20× (20− 5.33)
= 1.70× 10−3

which gives
θmin = 4.73◦ .

The maximum possible value of θ is determined by the minimum detectable scattered electron energy
of E3 = 2GeV:

sin2 θ/2 =
Q2

4E1E3

=
2

4× (2 + 5.33)× 2
= 0.034

which gives
θmax = 21.3◦ .

Strategy: choose several values of θ between about 5◦ and 20◦, measure reduced cross section at each
value of θ and plot versus tan2 θ/2. Should give a straight line (note ν is fixed) with slope 2F1/M and
intercept F2/ν:

d2σ

dE3dΩ

/
α2 cos2 θ/2

4E2
1 sin

4 θ/2
=

[
F2

ν
+

2F1

M
tan2 θ

2

]
Each θ setting requires a different beam energy given by solving the quadratic equation

E1(E1 − 5.33) =
Q2

4 sin2 θ/2
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This gives

2E1 = 5.33 +

√
(5.33)2 +

Q2

sin2 θ/2

Gives E1 = 19.1GeV for θ = 5◦ and E1 = 7.5GeV for θ = 20◦.

Note that y = (E1 − E3)/E1 varies between 0.28 and 0.71 so get healthy contribution from F1.
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HADRONS AND QCD

15. [This is lifted from the 2016 Tripos Paper]

Suppose there exists a ‘Bogus’ universe in which the laws of physics are the same as in ours, except
in one respect: quantum chromodynamics in the ‘Bogus’ universe is based on an SU(2) colour sym-
metry having only two colours (‘red’ and ‘green’) rather than the three colour SU(3) symmetry of
our own.

(a) Determine which ‘Bogus mesons’ and ‘Bogus baryons’ (or their nearest equivalents) could exist by
constructing any important colour, flavour and spin wave-functions. Categorise the expected ‘Bogus’
hadrons by type (meson/baryon), spin, and the multiplets they inhabit. Compare ‘Bogus’ hadron
structure to that in our own universe, highlighting the main similarities and differences. [Above you
need only consider light quarks types: u, d and s.]

(b) The change from SU(3) colour to SU(2) colour could affect more than the basic hadron structure
considered above. It could have consequences in other areas of particle physics and even further
afield. Discuss any such expected differences between the ‘Bogus’ universe and our own.

[ Aside: if you want practice of multiplying SU(3) multiplets together, consider looking at part (h)
of Question 2 in the January 2025 past Tripos paper for this course. A worked answer to it is also
provided on the course website. ]

SOLUTION

(a) Bogus mesons

A key fact is that the SU(2) colour theory will require a

1√
2
(rr̄ + gḡ)

equivalent of the SU(3)
1√
3

(
rr̄ + gḡ + bb̄

)
colour-anticolour singlet thereby permitting mesons to exist for most of the same reasons they can
in the real universe. A poor answer would omit this altogether. A medium answer would mention it
without proof merely appealing to its plausibility and connection to colour confinement hypothesis. A
good answer might demonstrate that this really is a singlet by consideration of the action of properly
defined ladder operators on it, etc. It might even go on to question whether the colour confinement hy-
pothesis would still be important in the bogus universe. Answers will hopefully consider the potential
spin wavefunctions of the ‘real’ mesons, noting those in the bogus universe could be identical.

A good answer would hopefully re-capitulate the flavour part of the notes (that coveres the meson
nonets) noting that, as in ‘real’-space, the bogus universe allows any spin combinations with any
flavour combinations since the lack of any identical fermions in the mesons leads no need to have
antisymmetry of the overall wavefunction.

The spetra of excited mesonic states would presumably differ in the real universe from that in the
bogus, as the different colout potential would space excitations differently.
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Bogus baryons Here the key fact is that the three colour singlet of SU(3)

1√
6
(rbg − rbg + gbr − brb+ brg − bgr)

is replaced in the bogus universe by the

1√
2
(rg − gr)

two-colour singlet of SU(2), meaning that the colour confinement hypothesis (if still needed!) would
permit two-quark baryons and forbid three-quark baryons. Again, a poor answer would neglect to
mention this at all. A medium answer would just state it. A good answer would argue the case
clearly.

The disappearance of one colour would not change the approximate (u,d)-isopin SU(2) flavour or
(u, d, s)-isospin SU(3) flavour symmetries available to nature – but the need for only two quark
states would require us now to consider only the 3 ⊗ 3 = 6 ⊕ 3̄ not the 3 ⊗ 3 ⊗ 3 = 10 + 8 + 8 + 1
version of before. A good answer would work out that the 6 is symmetric in the two quark flavours,
while the 3̄ is antisymmetric.

What flavour/spin/colour combinations would be allowed? Assuming the lowest angular momentum
states would have L = 0 making them even parity, and given that the colour singlet is already an-
tisymmetric, we’d need flavour × spin to be symmetric. We would need to combine the 6 with a
symmetric S = 1 spin-triplet, or the antisymmetric 3̄ with an antisymmetric S = 0 spin-singlet.

The bogus (u, d, s)-baryons would therefore be expected to come in an S = 1 hextet and an S = 0
triplet of di-quark states.

Note that the charges of these bogus baryons would be non-integer: the lightest three (uu, ud, dd)
having charges 4

3
, 1
3

and −2
3

respectively.

(b) Here is a non-exhaustive list of potential answers:

• Mesons play very little role in the day-to-day life of organisms on present-day earth, as they
can usually decay (via q qbar annihilation) to other things, and so life on earth is based on the
more stable bosons. Changes to the mesonic structure the measons might be expected to be
less important in the current universe, though presumably they would make considerable differ-
ences to some parts of the big-bang/cosmological models around the transition from radiation
to matter domination.

• The change in baryon structure, however (removal of the proton!!) would have very profound
implications for chemistry. With the lightest baryons now being fractionally charged, atoms as
we know them would cease to exist. Indeed the whole periodic table is based on assembling
elements from two nucleon types (proton and neutron) and would have to change to a system
based on three nucleons ... so elements would be in trouble too.

• The bogus universe would only have 23 − 1 = 3 gluons, not the 33 − 1 = 9 gluons in the real
universe.
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• The rate of running of αs will change due to fewer gluons/colours.

• The linear term in effective colour potential between two quarks would probably be different
(less?) as a result of fewer quarks, possibly making jets less jetty.

• The possiblilty of qq̄qq̄ states would be present in both Bogus and Real universes. But whereas
the real universe forbids qqqq and allows qqqqq̄ states, the Bogus would allow qqqq and forbid
qqqqq̄ due to the change in which contains a colour singleton.

• Colour factors would change leading to, say, some hadron-hadron cross sections to get enhanced
or reduced.

• A good answer that has not already considered this point in an earlier part (a) or (b) might
andvance some ideas on why/whether the colour confinement hypothesis would hold for SU(2)-
based colour.

WEAK INTERACTIONS

16. Following on from Question 10, show that, for a free particle spinor ψ:

ψLγ
µ 1
2
(1− γ5)ψR = ψRγ

µ 1
2
(1− γ5)ψL = ψRγ

µ 1
2
(1− γ5)ψR = 0

ψLγ
µ 1
2
(1− γ5)ψL = ψγµ 1

2
(1− γ5)ψ

where ψL ≡ 1
2
(1 − γ5)ψ and ψR ≡ 1

2
(1 + γ5)ψ. Explain the relevance of these results to the weak

interactions. What are the equivalent results for currents of the form ψγµ 1
2
(1 + γ5)ψ ?

SOLUTION

From Question 7, we have (γ5)2 = 1 and hence

(1− γ5)(1 + γ5) = 0 (1− γ5)2 = 2(1− γ5) (1 + γ5)2 = 2(1 + γ5)

Also from question 6, γ5γµ = −γµγ5, and so

(1 + γ5)γµ = γµ(1− γ5) (1− γ5)γµ = γµ(1 + γ5)

Also from question 7:
ψL = ψ 1

2
(1 + γ5) ψR = ψ 1

2
(1− γ5)

Hence
ψLγ

µ 1
2
(1− γ5)ψR = ψ 1

2
(1 + γ5)γµ 1

2
(1− γ5)1

2
(1 + γ5)ψ = 0

ψRγ
µ 1
2
(1− γ5)ψL = ψ 1

2
(1− γ5)γµ 1

2
(1− γ5)1

2
(1− γ5)ψ = ψγµ 1

2
(1 + γ5)1

2
(1− γ5)ψ = 0

ψRγ
µ 1
2
(1− γ5)ψR = ψ 1

2
(1− γ5)γµ 1

2
(1− γ5)1

2
(1 + γ5)ψ = 0

ψLγ
µ 1
2
(1− γ5)ψL = ψ 1

2
(1 + γ5)γµ 1

2
(1− γ5)1

2
(1− γ5)ψ

= ψγµ 1
2
(1− γ5)1

2
(1− γ5)ψ = ψγµ 1

2
(1− γ5)ψ
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The V − A interaction of a charged W± boson with a quark or lepton gives rise to currents of the
form ψγµ 1

2
(1− γ5)ψ in expressions for the matrix element Mf i. The results above show that only the

left-handed chiral component ψL ≡ 1
2
(1 − γ5)ψ of all the particles or antiparticles involved produce

non-zero matrix elements in charged current weak interactions.

For currents of the form ψγµ 1
2
(1 + γ5)ψ, the corresponding results are:

ψRγ
µ 1
2
(1 + γ5)ψL = ψLγ

µ 1
2
(1 + γ5)ψR = ψLγ

µ 1
2
(1 + γ5)ψL = 0

ψRγ
µ 1
2
(1 + γ5)ψR = ψγµ 1

2
(1 + γ5)ψ

Thus only the right-handed chiral component ψR ≡ 1
2
(1 + γ5)ψ now gives non-zero currents.

Interactions of the Z0 boson with quarks or leptons give rise to currents of both of the above forms:
ψγµ 1

2
(1− γ5)ψ and ψγµ 1

2
(1 + γ5)ψ, with relative strengths determined by the left- and right-handed

coupling constants cL and cR. The former involve purely the left-handed chiral components, the latter
purely the right-handed chiral components of the particles or antiparticles involved.

17. a) In Question 6, the decay rate for π−→e−νe was found to be 1.28×10−4 times that for π−→µ−νµ,
whereas, on the basis of phase space alone, one would expect a higher decay rate to electrons. Explain
why the weak interaction gives such a small decay rate to electrons.

b) The Lorentz invariant matrix element for π− → µ−νµ decay is

Mf i =
g2W
4m2

W

gµνfπp
µ
1u(p3)γ

ν 1
2
(1− γ5)v(p4)

where p1, p3 and p4 are the 4-momenta of the π−, µ− and νµ, respectively, and fπ is a constant which
must be determined experimentally. Verify that this matrix element follows from the Feynman rules,
with the quark current uγµ(1− γ5)v taken to be of the form −fπpµ1 .

[ The free particle spinors u, v cannot be used for quarks and antiquarks in a hadronic bound state; a
quark current of the form given can be shown to be the most general possibility. ]

c) Show that (as in Question 6) the Lorentz-invariant matrix element squared is

|Mf i|2 = 2G2
Ff

2
πm

2
µ(m

2
π −m2

µ) .

[ Use the spinors u1, u2, v1, v2 for this calculation rather than the spinors u↑, u↓, v↑, v↓. Work in the π−

rest frame, and choose the 4-momenta of the µ− and νµ to be p3 = (E, 0, 0, p) and p4 = (p, 0, 0,−p),
with E =

√
p2 +m2

µ. ]

d) Show that the square of the non-invariant matrix element Tf i is proportional to 1− β:

|Tf i|2 =
G2

F

2
f 2
πmπ (1− β)

where β is the velocity of the µ−.

SOLUTION
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a) The antineutrino from the π− → e−νe or π− → µ−νµ decay always has positive helicity. Therefore,
to conserve angular momentum (the π− has spin zero), the e− or µ− must also have positive helicity:
The W boson couples only to the left-handed chiral component ψL = 1

2
(1 − γ5)ψ. In the relativistic

limit, this implies that the W boson couples only to negative helicity particles or positive helicity
antiparticles. Since me ≪ mπ, the e− is highly relativistic, β ≈ 1. In this limit, a positive helicity e−

cannot couple to the W boson, and the decay π− → e−νe is therefore completely suppressed.

The µ− is much heavier than the electron (mµ/mπ ≈ 0.76) and so is produced with a value of β
appreciably less than 1 (β ≈ 0.73: see below). Since the µ− is not ultra-relativistic, its left-handed
chiral component contains an appreciable mixture of both the left-handed and right-handed helicity
eigenstates. Therefore, there is an appreciable probability that the µ− can be emitted with positive
helicity, as required in the π− → µ−νµ decay.

b) From the Feynman rules:

−iMf i = −i gW√
2
· 1
2
ifπp

µ
1 ·

−igµν
q2 −m2

W

· u(p3) · −i
gW√
2
γν 1

2
(1− γ5) · v(p4) (63)

where the factor uγµ(1 − γ5)v that would have appeared for free quarks and antiquarks has been
replaced by ifπp

µ
1 . For pion decay, we have q2 = m2

π ≪ m2
W, giving

Mf i =
g2W
4m2

W

gµνfπp
µ
1u(p3)γ

ν 1
2
(1− γ5)v(p4) .
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c) The µ− 4-momentum is p3 = (E, 0, 0, p) with E2 = p2 +m2
µ. The possible µ− spinors are:

u1(p3) =
√
E +mµ


1
0

p/(E +mµ)
0

 , u2(p3) =
√
E +mµ


0
1
0

−p/(E +mµ)


with corresponding adjoint spinors

ū1(p3) =
√
E +mµ (1, 0,−p/(E +mµ), 0) , ū2(p3) =

√
E +mµ (0, 1, 0, p/(E +mµ))

The νµ 4-momentum is p4 = (p, 0, 0,−p), and the νµ spinors are therefore

v1(p4) =
√
p


0
1
0
1

 , v2(p4) =
√
p


−1
0
1
0


In the π− rest frame we have p1 = (mπ, 0, 0, 0). Hence only the µ = ν = 0 term in the sum in the
expression for Mf i is non-zero:

Mf i =
g2W
4m2

W

fπp
0
1u(p3)γ

0 1
2
(1− γ5)v(p4)

=
g2W
4m2

W

fπmπu(p3)γ
0 1
2
(1− γ5)v(p4)

But

1
2
(1− γ5)v1(p4) =

1
2


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

√
p


0
1
0
1

 = 0

1
2
(1− γ5)v2(p4) =

1
2


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

√
p


−1
0
1
0

 = 1
2

√
p


−2
0
2
0

 = v2(p4)

Thus only the spinor v2(p4) gives a non-zero contribution. This is as expected; for an antiparticle
travelling in the −z direction, v2 is the positive helicity eigenstate, and antineutrinos always have
positive helicity.

Premultiplying by γ0 gives

γ0 1
2
(1− γ5)v2(p4) = γ0v2(p4) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

√
p


−1
0
1
0

 =
√
p


−1
0
−1
0


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Premultiplying in turn by u1(p3) and u2(p3) gives

u1(p3)γ
0 1
2
(1− γ5)v2(p4) =

√
E +mµ

√
p

(
−1 +

p

E +mµ

)
(64)

u2(p3)γ
0 1
2
(1− γ5)v2(p4) = 0 .

Thus only the spinor u1(p3) gives a non-zero contribution. This was anticipated in part (a) above; the
µ− is expected to have positive helicity, and for a particle travelling in the +z direction the spinor u1
is the positive helicity eigenstate. In summary, the only non-zero combination of spinors is as shown
in the figure overleaf, and, from equations (63) and (64), the matrix element for this case is

Mf i =
g2W
4m2

W

fπmπ

√
E +mµ

√
p

(
−1 +

p

E +mµ

)
.

To find p (the centre of mass momentum), use energy conservation mπ = E + p :

m2
π = (E + p)2 = E2 + p2 + 2Ep = 2p2 +m2

µ + 2p
√
p2 +m2

µ

⇒ 4p2(p2 +m2
µ) =

(
m2

π −m2
µ − 2p2

)2
⇒ 4p2m2

µ =
(
m2

π −m2
µ

)2 − 4p2
(
m2

π −m2
µ

)
⇒ p =

m2
π −m2

µ

2mπ
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(or use the result derived in question 3). Hence

E +mµ = mπ − p+mµ = mπ −
m2

π −m2
µ

2mπ

+mµ =
(mπ +mµ)

2

2mπ

⇒ −1 +
p

E +mµ

= −1 +
m2

π −m2
µ

2mπ

· 2mπ

(mπ +mµ)2
= −1 +

mπ −mµ

mπ +mµ

=
−2mµ

mπ +mµ

.

Hence

Mf i =
g2W
4m2

W

fπmπ

√
E +mµ

√
p

(
−1 +

p

E +mµ

)

=
g2W
4m2

W

fπmπ ·
mπ +mµ√

2mπ

·

√
m2

π −m2
µ

2mπ

· −2mµ

mπ +mµ

= −
(

gW
2mW

)2

fπmµ

√
m2

π −m2
µ

Using the relation
GF√
2
=

g2W
8m2

W

,

we finally obtain 〈
|Mf i|2

〉
= 2G2

Ff
2
πm

2
µ(m

2
π −m2

µ)

d) The non-invariant matrix element squared is obtained by extracting a factor of 2E for every initial
state and final state particle:

|Mf i|2 = 2Eπ · 2Eµ · 2Eν · |Tf i|2 = 2mπ · 2E · 2p · |Tf i|2

But

E = mπ − p = mπ −
m2

π −m2
µ

2mπ

=
m2

π +m2
µ

2mπ

Hence

|Tf i|2 =
1

8mπ

· 1
E

· 1
p
· |Mf i|2 =

1

8mπ

· 1
E

· 1
p
· 2G2

Ff
2
πm

2
µ(m

2
π −m2

µ)

=
1

8mπ

· 2mπ

m2
π +m2

µ

· 2mπ

m2
π −m2

µ

· 2G2
Ff

2
πm

2
µ(m

2
π −m2

µ)

=
mπ

m2
π +m2

µ

·G2
Ff

2
πm

2
µ

But

1− β = 1− p

E
= 1−

m2
π −m2

µ

m2
π +m2

µ

=
2m2

µ

m2
π +m2

µ

giving finally

|Tf i|2 =
G2

F

2
f 2
πmπ (1− β)
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DEEP INELASTIC SCATTERING

18. Find the maximum possible value of Q2 in deep-inelastic neutrino scattering for a neutrino beam
energy of 400GeV, and compare with m2

W.

SOLUTION

In terms of the lab frame neutrino beam energy E1, we have Q2 = 2ME1xy. Since 0 < x < 1 and
0 < y < 1, the maximum value of Q2 is

(Q2)max = 2ME1 = 2× (0.938GeV)× (400GeV) = 750.4GeV2

This compares with m2
W = (80.4GeV)2 = 6460GeV2, justifying the approximation q2 ≪ m2

W for
current neutrino experiments.

19. The figure below shows the measured total cross sections σ(νµ + N → µ− + hadrons)/Eν and
σ(νµ + N → µ− + hadrons)/Eν for charged-current neutrino and antineutrino scattering, averaged
over proton and neutron targets.
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a) Draw Feynman diagrams for the quark-level processes which contribute to neutrino-nucleon and
antineutrino-nucleon scattering. (Neglect the s, c, b and t quark flavours).

b) Show that the parton model predicts total cross sections of the form

σνN ≡ 1
2
(σνp + σνn) =

G2
Fs

2π

[
fq +

1
3
fq
]

σνN ≡ 1
2

(
σνp + σνn

)
=
G2

Fs

2π

[
1
3
fq + fq

]
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where s is the neutrino-nucleon centre of mass energy squared, and fq = fu + fd and fq = fu + fd
are the average momentum fractions carried by u and d quarks and antiquarks.

c) Estimate the average fractions of the nucleon momentum carried by quarks, antiquarks and gluons.

[Take GF = 1.166× 10−5GeV−2.]

SOLUTION

a) For neutrino-nucleon scattering, the possible quark-level processes are νµ + d → µ− + u and
νµ + u → µ− + d:

In the second case, the initial u in the nucleon must belong to the quark-antiquark sea, having been
produced via g → uu for example. In the first case, the initial d could be either a valence quark or a
sea quark.

For antineutrino-nucleon scattering, the possible quark level processes are νµ + u → µ+ + d and
νµ + d → µ+ + u:

b) For νp scattering, the differential cross section in the quark-parton model was derived in the lec-
tures:

d2σνp

dxdy
=
G2

Fxs

π

[
d(x) + (1− y)2ū(x)

]
The total cross section is therefore

σνp =

∫ 1

0

∫ 1

0

d2σνp

dxdy
dxdy =

G2
Fs

π

∫ 1

0

[
xd(x) + 1

3
xū(x)

]
dx =

G2
Fs

π

[
fd +

1
3
fu
]

where

fd ≡
∫ 1

0

xd(x)dx and fū ≡
∫ 1

0

xū(x)dx
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are the fractions of the proton’s momentum carried by d quark and ū antiquark constituents, respec-
tively.

For νp scattering, we have νµ + u → µ+ + d and νµ + d → µ+ + u:

d2σνp

dxdy
=
G2

Fxs

π

[
(1− y)2u(x) + d(x)

]
.

For scattering from a neutron target, we have

d2σνn

dxdy
=
G2

Fxs

π

[
dn(x) + (1− y)2un(x)

]
=
G2

Fxs

π

[
u(x) + (1− y)2d(x)

]
d2σνn

dxdy
=
G2

Fxs

π

[
(1− y)2un(x) + d

n
(x)

]
=
G2

Fxs

π

[
(1− y)2d(x) + u(x)

]
using dn(x) = up(x) = u(x) etc. Altogether then, the total cross sections are as follows:

σνp =
G2

Fs

π

[
fd +

1
3
fū
]

σνp =
G2

Fs

π

[
1
3
fu + fd̄

]
σνn =

G2
Fs

π

[
fu +

1
3
fd̄
]

σνn =
G2

Fs

π

[
1
3
fd + fū

]
Averaged over proton and neutron targets:

σνN = 1
2
(σνp + σνn) =

G2
Fs

2π

[
fd + fu +

1
3
fd̄ +

1
3
fū
]

σνN = 1
2

(
σνp + σνn

)
=
G2

Fs

2π

[
1
3
fd +

1
3
fu + fd̄ + fū

]
c) In the lab frame, we have s = (pν + pN)

2 with pν = (Eν , 0, 0, Eν) and pN = (M, 0, 0, 0):

s =M2 + 2pν .pN =M2 + 2MEν ≈ 2MEν ,
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for Eν ≫M . Hence

σνN

Eν

=
G2

FM

π

[
fq +

1
3
fq̄
]

σνN

Eν

=
G2

FM

π

[
1
3
fq + fq̄

]
where fq = fu + fd and fq̄ = fū + fd̄ are the momentum fractions for quarks and antiquarks,
respectively.

Thus, at high energy, σνN/Eν and σνN/Eν are expected to be constant, as seen in the figure.

37. Plots of cross sections and related quantities 11
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Comparing with the measured values gives (1 cm2 = 1026 fm2)

fq +
1
3
fq̄ =

π

G2
FM

σνN

Eν

≈ π × (0.68× 10−38 cm2GeV−1)

(1.166× 10−5GeV−2)2 × (0.938GeV)

1

(0.197GeV fm)2
≈ 0.43

1
3
fq + fq̄ =

π

G2
FM

σνN

Eν

≈ π × (0.33× 10−38 cm2GeV−1)

(1.166× 10−5GeV−2)2 × (0.938GeV)

1

(0.197GeV fm)2
≈ 0.21

Hence

fq =
3

8
(3× 0.43− 0.21) = 0.41

fq̄ =
3

8
(3× 0.21− 0.43) = 0.08
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with the remaining momentum, fg ≈ 0.50, being carried by gluons.

20. The figure below shows measurements of the cross section dσ/dQ2 from the H1 experiment at HERA
for the neutral current (NC) processes e−p → e−X and e+p → e+X, and the charged current (CC)
processes e−p → νeX and e+p → νeX, with unpolarised incoming e+ or e− and proton beams:
a) Draw Feynman diagrams for the quark-level processes which contribute to CC e−p → νeX and
e+p → νeX scattering. (Neglect the s, c, b and t quark flavours).

b) The HERA data extends to values of Q2 > m2
W. Starting from the parton model cross sections

d2σ/dxdy for (anti)neutrino-nucleon scattering derived in the lectures for Q2 ≪ m2
W, explain why

the CC cross sections can be written down directly as

d2σ

dxdQ2
(e+p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[
u(x) + (1− y)2d(x)

]
d2σ

dxdQ2
(e−p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[
u(x) + (1− y)2d(x)

]
c) Explain why the e−p CC cross section is always higher than the e+p CC cross section.

d) Explain why the CC cross sections become approximately constant as Q2 decreases, while the NC
cross sections grow indefinitely large. Account approximately for the observed slope of the NC cross
sections at low values of Q2.

e) Explain why the NC cross sections become similar in magnitude to the CC cross sections at high
values of Q2 ∼ m2

Z.

f) (optional) Explain why the two NC cross sections are equal at low Q2, but differ at high Q2.
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SOLUTION

Measurements at HERA of the NC processes e−p → e−X and e+p → e+X, and the CC processes
e−p → νeX and e+p → νeX, for unpolarised e+, e− and proton beams:

a) For the CC process e−p → νeX, the quark-level processes are e−u → νed and e−d → νeu:

e− νe

u d

W±

e− νe

d u

W±

For e+p → νeX scattering, the quark-level processes are e+d → νeu and e+u → νed:
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e+ νe

d u

W±

e+ νe

u d

W±

b) For νp scattering, the differential cross section in the quark-parton model for Q2 ≫ m2
W was

derived in the lectures:
d2σνp

dxdy
=
G2

Fxs

π

[
d(x) + (1− y)2u(x)

]
.

Since Q2 = sxy (for s≫M2), we have

d2σ

dxdQ2
=

dy

dQ2

d2σ

dxdy
=

1

sx

d2σ

dxdy
,

and hence
d2σνp

dxdQ2
=
G2

F

π

[
d(x) + (1− y)2u(x)

]
.

The W± propagator contributes a factor −igµν/(q2 −m2
W) = igµν/(Q

2 +m2
W) to the matrix element

Mf i. For Q2 ≪ m2
W, this becomes igµν/m2

W. Hence, relaxing the approximation Q2 ≪ m2
W gives an

extra factor m2
W/(Q

2 +m2
W) in the matrix element, or m4

W/(Q
2 +m2

W)2 in the cross section:

d2σνp

dxdQ2
=
G2

F

π

m4
W

(Q2 +m2
W)2

[
d(x) + (1− y)2u(x)

]
.

For νp scattering, it was only necessary to average over the two possible spin states of the proton,
since the incoming neutrino is always in a unique spin state. For unpolarised e±p scattering, it is
necessary to average over the two possible e± spin states and over the two possible proton spin states,
so that, relative to (anti)neutrino scattering, an extra factor of 1

2
is needed.

For e−p → νeX, summing over e−u → νed and e−d → νeu, with their appropriate y distributions,
and including the extra factor of one-half gives

d2σ

dxdQ2
(e−p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[
u(x) + (1− y)2d(x)

]
Similarly, for e+p → νeX scattering, summing over e+d → νeu and e+u → νed gives

d2σ

dxdQ2
(e+p → νeX) =

G2
Fm

4
W

2πx(Q2 +m2
W)2

x
[
u(x) + (1− y)2d(x)

]
c) The e−p CC cross section is higher than the e+p CC cross section because u(x) is larger than d(x)
(by about a factor of two). In addition, the d(x) contribution to e+p is suppressed by the extra factor
(1− y)2.
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d) At low Q2, the propagator factor m4
W/(Q

2 + m2
W)2 in the CC cross sections tends to a constant

(unity), whereas the photon propagator factor 1/Q4 in the NC cross sections grows without limit.

From the plot, the cross section falls from approximately 90 pbGeV−2 at Q2 = 100GeV2 to approxi-
mately 0.33 pbGeV−2 at Q2 = 1000GeV2. Parameterising the cross section as dσ/dQ2 ∝ 1/(Q2)n,
we can estimate

n ≈ −∆(log10(dσ/dQ
2)

∆(log10Q
2)

≈ log10 90− log10 0.4

3− 2
≈ 2.35

so that we have dσ/dQ2 ≈ 1/(Q2)2.35 ≈ 1/Q4.7, reasonably close to 1/Q4.

e) At low Q2, the two NC processes e−p → e−X and e+p → e+X are dominated at leading order by
single photon exchange and the leading-order cross sections are equal.

At high Q2, there is a significant contribution also from the weak interactions, via Z0 exchange. The
e+p and e−p cross sections differ because the contribution from F3 changes sign, similarly to the sign
change for the F3 contributions to neutrino and antineutrino scattering. Hence, for Q2 ∼ m2

Z, the e+p
and e−p NC cross sections differ, and become similar in magnitude to the CC cross sections.

NEUTRINO OSCILLATIONS

21. In the Daya Bay experiment (arXiv:1203.1669 and arXiv:1310.6732) electron antineu-
trinos from six nuclear reactors were observed in six detectors in three experimental halls, some
≈ 0.5 km and some ≈ 1.5 km distant from the reactors. The nuclear reactors emit electron antineu-
trinos of mean energy E ≈ 3MeV, and the detectors can resolve their energy to within a few percent.
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a) Show that neutrino oscillations associated with the (solar) mass-squared difference |∆m2
12| ≈

7× 10−5 eV2 can be neglected for the Daya Bay experiment, and that

P (νe → νe) ≈ 1− sin2 2θ13 sin
2∆23

where

∆23 ≡
∆m2

23L

4E
.

b) In the limit |∆m2
23| ≫ (E/L), explain why a given measurement, P , of the survival probability

P (νe → νe) determines the neutrino mixing to be sin2 2θ13 = 2(1− P ).

c) In the limit |∆m2
23| ≪ (E/L), show that a given measurement, P , of the survival probability

P (νe → νe) determines the neutrino mixing to be sin2 2θ13 ∝ 1/(∆m2
23)

2, with constant of propor-
tionality (1− P )(4E/L)2.

d) The third experimental hall is a (weighted) distance of 1.63 km from the reactor complex. A detec-
tor here sees a fractional deficit in the number of electron antineutrinos of 0.071±0.010, compared to
that expected from the neutrino fluxes of the reactors. Place a lower bound on the value of sin2 2θ13.

The deficit is observed to monotonically decrease for neutrinos of energy greater than 4MeV average.
What bound does this place on ∆m2

23?

e) The plot below shows the ratio of the number of observed to number of expected electron antineu-
trinos, as a function of the effective detector-reactor distance Leff over the observed neutrino energies
Eν . It comprises data from all the detectors in the three experimental halls. Estimate values for
sin2 2θ13 and ∆m2

23.

 [km/MeV]
ν

 / EeffL
0 0.2 0.4 0.6 0.8

)
e

ν
→

e
ν

P
(

0.9

0.95

1
EH1

EH2

EH3

f) Sketch your results of parts (d) and (e) on a plot of the values of sin2 2θ13 and ∆m2
23, as fitted to the

data by the Daya Bay collaboration.
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SOLUTION

a) For E = 3MeV, the wavelength associated with the solar mass-squared difference |∆m2
12| ≈

7× 10−5 eV2 is

λ12 =
4πE

∆m2
12

=
4π × 3MeV

7× 10−5 eV2 × (0.197GeV fm) = 105 km .

For the Daya Bay experiment, located L ≈ 1 km from the reactor core, oscillations due to ∆m2
12

therefore do not have time to develop appreciably and can safely be neglected.

It was shown in Handout 12 that, neglecting CP violation (i.e. assuming the PMNS matrix is real)
and using |∆m2

23| ≈ |∆m2
13|, a general expression for the survival probability P (νe → νe) is

P (νe → νe) ≈ 1− 4U2
e1U

2
e2 sin

2∆12 − 4
(
1− U2

e3

)
U2
e3 sin

2∆23 .

where

∆12 ≡
∆m2

12L

4E
, ∆23 ≡

∆m2
23L

4E
.

The result is the same for P (νe → νe), as the PMNS matrix is assumed to be real. Neglecting the
term involving ∆m2

12, and using Ue3 = sin θ13 = s13, we obtain

P (νe → νe) ≈ 1− 4
(
1− U2

e3

)
U2
e3 sin

2∆23

= 1− 4
(
1− s213

)
s213 sin

2∆23

= 1− sin2 2θ13 sin
2∆23 . (65)

b) As |∆m2
23| → ∞, the oscillation wavelength

λ23 =
4πE

∆m2
23

≪ L
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becomes much smaller than the dimensions of the detector and the experiment is no longer sensi-
tive to individual oscillations but only to an average over many oscillations. The factor sin2∆23 in
Equation (65) should therefore be replaced by its average value of one-half:

P (νe → νe) = 1− 1
2
sin2 2θ13 .

A measured value P of the oscillation probability P (νe → νe) therefore determines the mixing to be
sin2 2θ13 = 2(1− P ).

c) If ∆m2
23 ≪ (E/L), then ∆23 ≡ (∆m2

23L)/4E ≪ 1 and sin2∆23 ≈ (∆23)
2. Hence

P (νe → νe) ≈ 1− sin2 2θ13(∆23)
2 = 1− sin2 2θ13

(
∆m2

23L

4E

)2

.

This can be rearranged to give

sin2 2θ13 = (1− P )

(
4E

L

)2
1

(∆m2
23)

2
(66)

i.e. sin2 2θ13 ∝ 1/(∆m2
23)

2 with constant of proportionality (1− P )(4E/L)2.

d) The smallest compatible value of sin2 2θ13 would occur if the third experimental hall is positioned
at a minimum of the survival probability, viz., sin2 ∆m2

23L

4E
= 1.

Then sin2 2θ13 = 1 − P = 0.071 ± 0.010, or sin2 2θ13 > 0.071 − 2 × 0.010 at approx. 97.5%
confidence.

If neutrinos above 4 MeV show increasingly less chance of oscillating with increasing energy, then
sin2 ∆m2

23L

4E
< 1 for all E > 4MeV, and hence, for E = 4MeV:∣∣∣∣1.267∆m2

23( eV
2)L(m)

E(MeV)

∣∣∣∣ < 1

2
π

|∆m2
23| < 3.0× 10−3 eV2

e) Here is the plot with the “best fit” line provided by the Daya Bay collaboration.
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Best fit

The minimum is around (480m/MeV, 0.908) = (1
2
π 1

1.267|∆m2
23( eV

2)| , 1−sin2 2θ13), whence sin2 2θ13 =

0.09, |∆m2
23| = 2.6× 10−3 eV2.
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22. a) It was shown in the lectures (see Equation (14) of Handout 12) that a general expression for the
probability that an initial νe oscillates into a νµ is

P (νe → νµ) = 2
∑
i<j

Re
(
UeiU

∗
µiU

∗
ejUµj

[
e−i(Ei−Ej)t − 1

])
.

Show that

P (νe → νµ) = −4
∑
i<j

Re(UeiU
∗
µiU

∗
ejUµj) sin

2∆ij + 2
∑
i<j

Im(UeiU
∗
µiU

∗
ejUµj) sin 2∆ij

where

∆ij ≡
(m2

i −m2
j)L

4E
≡

∆m2
ijL

4E
.

b) Use the unitarity of the PMNS matrix to show that

Im(Ue1U
∗
µ1U

∗
e3Uµ3) = −Im(Ue2U

∗
µ2U

∗
e3Uµ3) = −Im(Ue1U

∗
µ1U

∗
e2Uµ2) ≡ −J, say .

c) Hence show that

P (νe → νµ) = −4
∑
i<j

Re(UeiU
∗
µiU

∗
ejUµj) sin

2∆ij + 8J sin∆12 sin∆13 sin∆23

[You may wish to use the trigonometric identity

sinA+ sinB − sin(A+B) = 4 sin
A

2
sin

B

2
sin

A+B

2
. ]

d) The standard parameterisation of the PMNS matrix isUe1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


where cij ≡ cos θij and sij ≡ sin θij . Show that, in this parameterisation,

J =
1

8
cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δ

and find the maximum possible value of |J | given the present experimental knowledge of the mixing
angles θ12, θ23 and θ13.

e) The conversion probabilities for antineutrinos are obtained by replacing U by U∗. Show that

P (νe → νµ)− P (νe → νµ) = 16J sin∆12 sin∆13 sin∆23 .

f) It is proposed to build a “neutrino factory” to search for evidence of CP violation in neutrino
oscillations; P (νe → νµ) ̸= P (νe → νµ). A neutrino factory would produce an intense beam of
neutrinos with typical energy 10GeV. Roughly how far away should a neutrino detector be positioned
to optimise the chances of observing CP violation, and how large an effect might be expected ?

SOLUTION
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a) It was shown in the lectures (see Equation (6) of Handout 12) that

P (νe → νµ) = 2Re(Ue1U
∗
µ1U

∗
e2Uµ2

[
e−i(E1−E2)t − 1

]
)

+ 2Re(Ue1U
∗
µ1U

∗
e3Uµ3

[
e−i(E1−E3)t − 1

]
)

+ 2Re(Ue2U
∗
µ2U

∗
e3Uµ3

[
e−i(E2−E3)t − 1

]
)

or equivalently
P (νe → νµ) = 2

∑
i<j

Re
(
UeiU

∗
µiU

∗
ejUµj

[
e−i(Ei−Ej)t − 1

])
,

where e−iEit is being used as a shorthand for eipix−iEit. For any pair of complex numbers z1 = x1+iy1
and z2 = x2 + iy2, we have

Re(z1z2) = Re [(x1 + iy1)(x2 + iy2)] = x1x2 − y1y2 = Re(z1)Re(z2)− Im(z1)Im(z2)

and hence each term in the sum is

Re
(
UeiU

∗
µiU

∗
ejUµj

[
e−i(Ei−Ej)t − 1

])
=Re(UeiU

∗
µiU

∗
ejUµj)Re

[
e−i(Ei−Ej)t − 1

]
− Im(UeiU

∗
µiU

∗
ejUµj)Im

[
e−i(Ei−Ej)t − 1

]
=Re(UeiU

∗
µiU

∗
ejUµj) [cos(Ei − Ej)t− 1] + Im(UeiU

∗
µiU

∗
ejUµj) sin(Ei − Ej)t

=− 2Re(UeiU
∗
µiU

∗
ejUµj) sin

2(Ei − Ej)t+ Im(UeiU
∗
µiU

∗
ejUµj) sin(Ei − Ej)t

=− 2Re(UeiU
∗
µiU

∗
ejUµj) sin

2 2∆ij + Im(UeiU
∗
µiU

∗
ejUµj) sin 2∆ij ,

where

∆ij ≡
(m2

i −m2
j)L

4E
≡

∆m2
ijL

4E
and we have used the approximation

pix− Eit ≈ (pi − Ei)x ≈ −m
2
iL

2E
.

Hence

P (νe → νµ) = −4
∑
i<j

Re(UeiU
∗
µiU

∗
ejUµj) sin

2∆ij + 2
∑
i<j

Im(UeiU
∗
µiU

∗
ejUµj) sin 2∆ij . (67)

b) Unitarity gives

U∗
e1Uµ1 + U∗

e2Uµ2 + U∗
e3Uµ3 = 0

Ue1U
∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0

so that

Im(Ue1U
∗
µ1U

∗
e3Uµ3) = Im

[
Ue1U

∗
µ1(−U∗

e1Uµ1 − U∗
e2Uµ2)

]
= −Im(Ue1U

∗
µ1U

∗
e2Uµ2)

Im(Ue2U
∗
µ2U

∗
e3Uµ3) = Im

[
(−Ue1U

∗
µ1 − Ue3U

∗
µ3)U

∗
e3Uµ3

]
= −Im(Ue1U

∗
µ1U

∗
e3Uµ3)

In summary:

Im(Ue1U
∗
µ1U

∗
e3Uµ3) = −Im(Ue2U

∗
µ2U

∗
e3Uµ3) = −Im(Ue1U

∗
µ1U

∗
e2Uµ2) ≡ −J .
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c) The last term in Equation (67) involves

PI ≡ 2
∑
i<j

Im(UeiU
∗
µiU

∗
ejUµj) sin 2∆ij

= 2Im(Ue1U
∗
µ1U

∗
e2Uµ2) sin 2∆12 + 2Im(Ue1U

∗
µ1U

∗
e3Uµ3) sin 2∆13 + 2Im(Ue2U

∗
µ2U

∗
e3Uµ3) sin 2∆23

= 2J(sin 2∆12 − sin 2∆13 + sin 2∆23)

But the ∆ij are related via
∆12 +∆23 = ∆13

so
PI = 2J [sin 2∆12 − sin 2(∆12 +∆23) + sin 2∆23]

Using the trigonometric identity

sinA+ sinB − sin(A+B) = 4 sin
A

2
sin

B

2
sin

A+B

2

this becomes
PI = 8J sin∆12 sin∆13 sin∆23

In summary

P (νe → νµ) = −4
∑
i<j

Re(UeiU
∗
µiU

∗
ejUµj) sin

2∆ij + 8J sin∆12 sin∆13 sin∆23 . (68)

d) We have
J ≡ Im

(
Ue1U

∗
µ1U

∗
e2Uµ2

)
Since Ue1 = c12c13 and Ue2 = s12c13 are real, and since

Im(z1z2) = Re(z1)Im(z2) + Im(z1)Re(z2)

we have
J = Ue1Ue2 [Re(Uµ1)Im(Uµ2)− Im(Uµ1)Re(Uµ2)] .

But Uµ1 = −s12c23 − c12s23s13e
iδ and Uµ2 = c12c23 − s12s23s13e

iδ so that

J = c12c
2
13s12 [(s12c23 + c12s23s13 cos δ)s12s23s13 sin δ + c12s23s13 sin δ(c12c23 − s12s23s13 cos δ)]

= c12c
2
13s12

[
s212c23s23s13 sin δ + c212c23s23s13 sin δ

]
= c213c12s12c23s23s13 sin δ .

Using sin 2θ12 = 2 sin θ12 cos θ12 = 2s12c12 etc. this can also be written

J = c213s13s12c12s23c23 sin δ =
1

8
cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin δ .

Experimentally, we have

c12 ≈ 0.85; s12 ≈ 0.53; c23 ≈ s23 ≈
1√
2
; sin2 θ13 < 0.065 .
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Taking θ13 as large as possible (s13 = 0.25, c13 = 0.97) and sin δ = 1 gives

Jmax = c213s13s12c12s23c23 = (0.97)2(0.25)(0.53)(0.85)
1

2
= 0.053

e) The conversion probabilities for antineutrinos are obtained by replacing U by U∗ in Equation (68):

P (νe → νµ) = −4
∑
i<j

Re(U∗
eiUµiUejU

∗
µj) sin

2∆ij + 8J̄ sin∆12 sin∆13 sin∆23

where
J̄ ≡ Im

(
U∗
e1Uµ1Ue2U

∗
µ2

)
.

But

Re(U∗
e1Uµ1Ue2U

∗
µ2) = Re(Ue1U

∗
µ1U

∗
e2Uµ2)

Im(U∗
e1Uµ1Ue2U

∗
µ2) = −Im(Ue1U

∗
µ1U

∗
e2Uµ2)

so J̄ = −J and hence

P (νe → νµ)− P (νe → νµ) = 16J sin∆12 sin∆13 sin∆23

Therefore, unless U is purely real, we have CP violation:

P (νe → νµ) ̸= P (νe → νµ)

As an aside, it is easy to show in similar fashion that, unless U is purely real we also have

P (νe → νµ) ̸= P (νµ → νe)

which is T violation. However, even if U is complex, we always have

P (νe → νµ) = P (νµ → νe)

and therefore CPT is always conserved.

f) Since |∆m2
13| ≈ |∆m2

23|, we have |∆13| ≈ |∆23| and hence

∆P ≡ P (νe → νµ)− P (νe → νµ) ≈ 16J sin∆12 sin
2∆13 .

For a neutrino energy E = 10GeV, the wavelengths associated with the ∆12 and ∆13 terms are

λ12 =
4πE

∆m2
12

=
4π × 10GeV

7× 10−5 eV2 × (0.197GeV fm) = 350, 000 km

λ13 =
4πE

∆m2
13

=
4π × 10GeV

2× 10−3 eV2 × (0.197GeV fm) = 10, 000 km .

To get a potentially measurable CP violating effect needs ∆P as large as possible. The sin2∆13 term
is maximised at L = 5, 000 km, L = 15, 000 km etc. , while the long-wavelength sin∆12 term grows
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approximately linearly with distance but doesn’t reach a maximum until L ≈ 175, 000 km. For an
Earth-bound experiment, L ≈ 5, 000 km is about the optimum length.

With sin2∆13 ≈ 1, the largest CP violating effect which can be expected is

∆P ≈ 16Jmax sin∆12 = 16Jmax sin

(
∆m2

12L

4E

)
= 16× 0.053× sin

(
7× 10−5 eV2 × 5000 km

4× 10GeV

1

0.197GeV. fm

)
= 16× 0.053× sin(0.044)

= 0.038 .

Notice that a measurement of the sign of ∆P would also give the sign of ∆m2
12 = m2

1 − m2
2, and

would therefore distinguish between the two cases m1 > m2 and m1 < m2.
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CP VIOLATION AND THE CKM MATRIX

23. a) Draw Feynman diagrams for the decays K0 → π+π− and K0 → π+π−, and for the decays K0 →
π0π0 and K0 → π0π0.

b) Draw Feynman diagrams for the decays K0 → π−e+νe and K0 → π+e−νe, and explain why the
decays K0 → π−e+νe and K0 → π+e−νe cannot occur.

c) How does the decay rate for each of the above decays depend on the Cabibbo angle θC ?

SOLUTION

a) The leading-order Feynman diagrams for the decays K0 → π+π− and K0 → π+π− involve the
subprocesses s → uud and s → uud, with a virtual W+ or W− boson, respectively:

K0

s
d

π−

u

d

W+

π+

u

d

K0

s
d

π+

u
d

W−

π−

u

d

The same subprocesses are involved in the decays K0 → π0π0 and K0 → π0π0, but with a different
decay topology:

K0

s
d

π0

d

d

π0

u

u

K0

s
d

π0

d

d

π0

u
u

b) The leading-order Feynman diagrams for the decays K0 → π−e+νe and K0 → π+e−νe involve the
subprocesses s → ue+νe and s → ue−νe:
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K0

s
d

π−

u

d

W+

νe

e+

K0

s
d

π+

u
d

W−

νe

e−

The decays K0 → π−e+νe and K0 → π+e−νe cannot occur because they would need s → ue+νe and
s → ue−νe, which are forbidden by charge conservation.

Hence, decays to final states containing an e+ directly measure the K0 component of the beam while
decays to e− directly measure the K0 component.

c) The decays K0 → π+π− and K0 → π0π0 both involve the quark level processes s → u+virtual W+

and W+ → ud. The first of these vertices gives a factor sin θC in the matrix element Mf i, while the
second gives a factor cos θC. Overall therefore, the decay rate is proportional to sin2 θC cos2 θC.

For K0 → π+π− and K0 → π0π0, the quark level processes are s → u + virtual W− and W− → ud,
which again gives a decay rate proportional to sin2 θC cos2 θC.

For the decays K0 → π−e+νe and K0 → π+e−νe, the vertices s → u + virtual W+ and s →
u + virtual W− both give a factor sin θC in the matrix element. The decay rates are therefore both
proportional to sin2 θC.

24. In the CPLEAR experiment at CERN, neutral kaons are produced in low energy proton-antiproton
collisions via the channels pp → K+π−K0 and pp → K−π+K0. The strangeness of the initial K0 or
K0 is tagged by the charge of the accompanying K+ or K−, and the K0 or K0 is subsequently detected
via decays into the semileptonic final states π−e+νe and π+e−νe.

a) Draw Feynman diagrams for the reactions pp → K+π−K0 and pp → K−π+K0, and explain why
the reactions pp → K+π−K0 and pp → K−π+K0 cannot occur.

b) Show that, for a system which is initially in a pure K0 state, the decay rates R+ and R− to the
semileptonic final states π−e+νe and π+e−νe depend on the proper decay time t as

R+ ≡ Γ(K0
t=0 → π−e+νe) = Nπeν

1
4

[
e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt

]
R− ≡ Γ(K0

t=0 → π+e−νe) ≈ Nπeν
1
4
[1− 4Reϵ]

[
e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt

]
where ΓS = 1/τS , ΓL = 1/τL, ∆m = mL−mS, ϵ is the CP violation parameter, andNπeν is an overall
normalisation constant. Show that the corresponding expressions for a system which is initially in a
pure K0 state are

R̄+ ≡ Γ(K0
t=0 → π−e+νe) ≈ Nπeν

1
4
[1 + 4Reϵ]

[
e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt

]
R̄− ≡ Γ(K0

t=0 → π+e−νe) = Nπeν
1
4

[
e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt

]
.
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c) The figure overleaf shows a measurement from the CPLEAR experiment of the asymmetry

A∆m ≡ (R+ +R−)− (R+ +R−)

(R+ +R−) + (R+ +R−)

as a function of the proper decay time τ = t (plotted in units of the KS lifetime τS = 0.9 × 10−10 s).
Show that A∆m is given by

A∆m =
2 cos (∆mt) e−(ΓS+ΓL)t/2

e−ΓSt + e−ΓLt

and obtain an estimate of the mass difference ∆m.

we obtain �m = (0:5274 � 0:0029

stat:

) � 10

10

~=s. The correlation coe�cient

between �m and Re(x) is 0:068, and the value and the error of �m do not

change by �xing the value of Re(x) to zero. The asymmetry A

�m

is plotted in

Fig. 3, using the value of �m found by the �t, together with the data points

corrected for f

b

(� ).

Fig. 3. The asymmetry A

�m

versus the decay time (in unit of �

S

). The solid line

represents the result of the �t.

Table 1

Systematic errors

Source of Known �(�m)

systematic error precision [10

10

~=s]

background level �10% �0:0004

background asymmetry �1:0% �0:0001

decay time resolution �10% �0:0001

� correction �2:5% �0:0001

�

S

precision [4] �0:0012 � 10

�10

s �0:0001

total �0:0005

The systematic errors of the measurement are listed in Table 1. The main

source of systematic uncertainty arises from the Monte Carlo estimation of

7

d) Show that the time-reversal asymmetry

AT ≡ Γ(K0
t=0 → K0)− Γ(K0

t=0 → K0)

Γ(K0
t=0 → K0) + Γ(K0

t=0 → K0)

is independent of the decay time t and that

AT ≈ 4Re(ϵ) = 4|ϵ| cosϕ .

SOLUTION

a) Feynman diagrams for pp → K+π−K0 and pp → K−π+K0:
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p
d
u
u

p
u

d
u

K0d
s

π−u

d

K+s
u

p
u

d
u

p
u
u

d

K−u
s

π+d
u

K0s

d

These are strong interaction processes involving uu → g → ss at the quark level. The reactions
pp → K+π−K0 and pp → K−π+K0 cannot occur through the strong interactions because the final
states contain ss or ss rather than ss, which would not conserve strangeness.

b) The K0 can be expressed in terms of the states KL and KS as

∣∣K0
〉
=

√
1 + |ϵ|2

2

1

1 + ϵ
(|KL⟩+ |KS⟩)

The states KL and KS have well defined masses and lifetimes and evolve with time as

|KL(t)⟩ = |KL⟩ θL(t) = |KL⟩ e−imLt−ΓLt/2

|KS(t)⟩ = |KS⟩ θS(t) = |KS⟩ e−imSt−ΓSt/2 .

Hence the initial K0 state evolves with time as

∣∣K0(t)
〉
=

√
1 + |ϵ|2

2

1

1 + ϵ
(|KL⟩ θL + |KS⟩ θS)

Now express this time evolution in terms of the eigenstates K0 and K0:

∣∣K0(t)
〉
=

√
1 + |ϵ|2

2

1

1 + ϵ
×

× 1√
2

1√
1 + |ϵ|2

([
(1 + ϵ)

∣∣K0
〉
+ (1− ϵ)

∣∣K0
〉]
θL +

[
(1 + ϵ)

∣∣K0
〉
− (1− ϵ)

∣∣K0
〉]
θS
)

=
1

2
(θL + θS)

∣∣K0
〉
+

1

2

1− ϵ

1 + ϵ
(θL − θS)

∣∣K0
〉

Hence

Γ(K0
t=0 → K0) ∝ 1

4
|θL + θS|2

Γ(K0
t=0 → K0) ∝ 1

4

∣∣∣∣1− ϵ

1 + ϵ

∣∣∣∣2 |θL − θS|2

But ∣∣∣∣1− ϵ

1 + ϵ

∣∣∣∣2 = (1− ϵ∗)(1− ϵ)

(1 + ϵ∗)(1 + ϵ)
≈ 1− 2Reϵ

1 + 2Reϵ
≈ 1− 4Reϵ
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Since e+ can only come from K0 and e− can only come from K0, we have

R+ ≡ Γ(K0
t=0 → π−e+νe) = Nπeν

1
4

[
e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt

]
(69)

R− ≡ Γ(K0
t=0 → π+e−νe) = Nπeν

1
4
[1− 4Reϵ]

[
e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt

]
(70)

Similarly, an initially pure K0 becomes

∣∣K0
〉
=

√
1 + |ϵ|2

2

1

1− ϵ
(|KL⟩ θL − |KS⟩ θS)

=
1

2

1 + ϵ

1− ϵ
(θL − θS)

∣∣K0
〉
+

1

2
(θL + θS)

∣∣K0
〉

and we find

Γ(K0
t=0 → K0) = 1

4
|θL + θS|2

Γ(K0
t=0 → K0) = 1

4

∣∣∣∣1 + ϵ

1− ϵ

∣∣∣∣2 |θL − θS|2

and

R̄+ ≡ Γ(K0
t=0 → π−e+νe) = Nπeν

1
4
[1 + 4Reϵ]

[
e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt

]
(71)

R̄− ≡ Γ(K0
t=0 → π+e−νe) = Nπeν

1
4

[
e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt

]
(72)

c) The asymmetry A∆m is defined as

A∆m ≡ (R+ + R̄−)− (R− + R̄+)

(R+ + R̄−) + (R− + R̄+)
.

From Equations (69)-(72), we have

R+ + R̄− = Nπeν
1
2

[
e−ΓSt + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos∆mt

]
R− + R̄+ = Nπeν

1
2

[
e−ΓSt + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos∆mt

]
and hence

A∆m =
2e−(ΓS+ΓL)t/2 cos∆mt

e−ΓSt + e−ΓLt

The value of ∆m can be estimated from the plot by considering the time for which the asymmetry A
first becomes zero: τ/τS ≈ 3.3. At this point, we have ∆m.τ = π/2, and hence

∆m =
π

2τ
≈ π × (6.58× 10−25 GeV.s)

2× 3.3× (0.9× 10−10 s)
= 3.5× 10−15 GeV

(using h̄ = 6.58× 10−25 GeV.s and τS = 0.9× 10−10 s).

d) From Equations (70) and (71), we see that, in the presence of CP violation, the rate for the transition
K0 → K0 is no longer equal to the rate for K0 → K0. Thus we have T violation: the laws of physics
are not invariant under time reversal, t→ −t, at the microscopic level.
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we obtain �m = (0:5274 � 0:0029

stat:

) � 10

10

~=s. The correlation coe�cient

between �m and Re(x) is 0:068, and the value and the error of �m do not

change by �xing the value of Re(x) to zero. The asymmetry A

�m

is plotted in

Fig. 3, using the value of �m found by the �t, together with the data points

corrected for f

b

(� ).

Fig. 3. The asymmetry A

�m

versus the decay time (in unit of �

S

). The solid line

represents the result of the �t.

Table 1

Systematic errors

Source of Known �(�m)

systematic error precision [10

10

~=s]

background level �10% �0:0004

background asymmetry �1:0% �0:0001

decay time resolution �10% �0:0001

� correction �2:5% �0:0001

�

S

precision [4] �0:0012 � 10

�10

s �0:0001

total �0:0005

The systematic errors of the measurement are listed in Table 1. The main

source of systematic uncertainty arises from the Monte Carlo estimation of

7

This is quantified by defining the time-reversal asymmetry AT (Kabir test)

AT ≡ Γ(K0 → K0)− Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)

In terms of measurable semi-leptonic decay rates, this is

AT =
Γ(K0

t=0 → π−e+νe)− Γ(K0
t=0 → π+e−νe)

Γ(K0
t=0 → π−e+νe) + Γ(K0

t=0 → π+e−νe)

From Equations (70) and (71), the time-dependent terms cancel in the ratio leaving an asymmetry AT

which is constant, independent of time:

AT ≈ (1 + 4Reϵ)− (1− 4Reϵ)

(1 + 4Reϵ) + (1− 4Reϵ)

So approximately:
AT ≈ 4Re(ϵ) = 4|ϵ| cosϕ
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THE Z BOSON

25. Consider the decay of the Z0 to a fermion-antifermion pair, Z0 → ff, where the fermion couples to
the Z0 with vector and axial vector coupling constants cV and cA:

a) Use the Feynman rules to show that the matrix element for the decay Z0 → ff can be written in the
form

Mf i = cL · gZϵµ(p1)u(p3)γµ 1
2
(1− γ5)v(p4) + cR · gZϵµ(p1)u(p3)γµ 1

2
(1 + γ5)v(p4)

≡ cL ·ML + cR ·MR

where p1 is the Z0 4-momentum, p3 and p4 are the 4-momenta of the fermion and antifermion, and
cL = 1

2
(cV + cA), cR = 1

2
(cV − cA).

b) Assuming the fermion mass can be neglected, draw diagrams illustrating the spin configurations
which result in non-zero values of ML and MR.

c) Use the results of the calculation of the W− → e−νe decay rate in the lectures to show that, for
unpolarised Z0’s,

⟨|Mf i|2⟩ = 2
3
g2Zm

2
Z(c

2
L + c2R)

and hence that the decay rate is

Γ(Z0 → ff) =
g2ZmZ

48π
(c2V + c2A) .

SOLUTION

a) The leading-order Feynman diagram for the decay Z0 → ff is

Z0

f

f

p4

p3

p1

µ

The Feynman rules determine the invariant matrix element Mf i for the decay to be

−iMf i = ϵµ(p1) · u(p3) · −i
gZ
2
γµ(cV − cAγ

5) · v(p4)

⇒ Mf i =
1
2
gZϵµ(p1)u(p3)γ

µ(cV − cAγ
5)v(p4)

where p3 and p4 are the 4-momenta of the fermion and antifermion, and ϵµ(p1) is the polarisation
vector of the Z0, with 4-momentum p1.

The left-handed and right-handed couplings cL and cR are given by

cV = cL + cR cL = 1
2
(cV + cA)

cA = cL − cR cR = 1
2
(cV − cA)
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Then:
1
2
(cV − cAγ

5) = cL · 1
2
(1− γ5) + cR · 1

2
(1 + γ5)

and the expression for the matrix element becomes

Mf i = cL · gZϵµ(p1)u(p3)γµ 1
2
(1− γ5)v(p4) + cR · gZϵµ(p1)u(p3)γµ 1

2
(1 + γ5)v(p4)

≡ cL ·ML + cR ·MR

b) The spin configurations corresponding to each term are:

The ML term, containing the factor 1− γ5, corresponds to a V −A interaction, and only left-handed
chiral components contribute. Neglecting the fermion and antifermion masses, this is equivalent to
saying that the fermion must have negative helicity and the antifermion positive helicity.

The MR term contains the factor 1+ γ5, corresponding to a V +A interaction, and only right-handed
chiral components contribute (see question 13). The fermion has positive helicity and the antifermion
negative helicity.

c) The term
ML = gZϵµ(p1)u(p3)γ

µ 1
2
(1− γ5)v(p4)

is identical to the matrix element

Mf i(W
− → e−νe) =

gW√
2
ϵµ(p1)u(p3)γ

µ 1
2
(1− γ5)v(p4)

for W− → e−νe decay evaluated in handout 13, except that gW/
√
2 is replaced by gZ. For unpolarised

W decays, it was shown that
⟨|Mf i|2⟩ = 1

3
g2Wm

2
W .
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Therefore, the contribution of ML to the matrix element squared for Z0 decays is

⟨|Mf i|2⟩ = 1
3
(
√
2gZ)

2m2
Z = 2

3
g2Zm

2
Z

By symmetry of the spin configurations corresponding to ML and MR, the values of ⟨|Mf i|2⟩ from
ML and MR must be equal. Therefore the overall result is

⟨|Mf i|2⟩ = 2
3
g2Zm

2
Z(c

2
L + c2R)

The decay rate is

Γ =
p∗

8πm2
Z

⟨|Mf i|2⟩

where p∗ = mZ/2 is the centre of mass momentum of either final state particle. Hence we obtain
finally

Γ(Z0 → ff) =
g2ZmZ

24π
(c2L + c2R) =

g2ZmZ

48π
(c2V + c2A)

where we have used

c2L + c2R = 1
4
(cV + cA)

2 + 1
4
(cV − cA)

2 = 1
2
(c2V + c2A)
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26. a) Use the result of question 25 to compute the total width of the Z0, and compare to experiment.
[Take sin2 θW = 0.23, and remember that quarks have three colour states].

b) What will be the value of

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

at the peak of the Z0 resonance ?

c) Calculate the cross section for e+e− → Z0 at the resonance peak, and show that the cross-section
for e+e− → µ+µ− is increased by a factor of ≈ 200 relative to the QED cross section.

d) The width Γ(Z0 → bb) has been measured at LEP to be 0.378 GeV. Show that the weak isospin
of the b quark is compatible with a value of −0.5. Explain why this result effectively guaranteed the
existence of the top quark, even before it was directly discovered.

[GF = 1.166× 10−5GeV−2.]

SOLUTION

a) First add up all the factors of c2V+c
2
A for all possible Z0 final states. In the Standard Model we have

cV = I3W − 2Q sin2 θW , cA = I3W

where I3W is the third component of weak isospin andQ is the particle charge in units of |e|. Assuming
sin2 θW = 0.23, and remembering a colour factor of 3 for the quark-antiquark final states, this gives:

particles cV cA c2V + c2A

e−, µ−, τ− −1
2
+ 2 sin2 θW = −0.04 −1

2
3× 0.2516

νe, νµ, ντ +1
2

+1
2

3× 0.5
u, c 1

2
− 4

3
sin2 θW = 0.193 +1

2
3× 2× 0.2874

d, s, b −1
2
+ 2

3
sin2 θW = −0.347 −1

2
3× 3× 0.3702

which gives a total of
∑

(c2V + c2A) = 7.311. Hence

ΓZ =
g2ZmZ

48π

∑
(c2V + c2A) =

e2

sin2 θW (1− sin2 θW )
· mZ

48π

∑
(c2V + c2A)

=
α

sin2 θW (1− sin2 θW )
· mZ

12

∑
(c2V + c2A)

=
(1/137)

0.23× (1− 0.23)
× 91.2GeV

12
× 7.311 = 2.29GeV

[The experimental value, ΓZ = 2.49GeV, is larger than this because of higher order corrections.]

b) At the peak of the Z0 resonance, from the Breit-Wigner formula,

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=
Γ(e+e− → hadrons)
Γ(e+e− → µ+µ−)

=
(c2V + c2A)hadrons

(c2V + c2A)µ+µ−
=

3× 2× 0.2874 + 3× 3× 0.3702

0.2516
= 20.1
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c) The Breit-Wigner formula gives the total Z0 cross section on the peak of the resonance as:

σ(e+e− → Z0 → anything) =
12π

m2
Z

Γ(Z0 → e+e−)

ΓZ

=
12π

m2
Z

BR(Z0 → e+e−)

The Z0 → e+e− branching ratio is

BR(Z0 → e+e−) =
0.2516

7.311
= 3.44%

so

σ(e+e− → Z0 → anything) =
12π

(91.2GeV)2
× 0.0344 = 1.56× 10−4GeV−2

= 1.56× 10−4GeV−2 × (0.197GeV.fm)2 = 0.061 fm2 = 61 nb

The QED cross section is

σQED = σ(e+e− → γ∗ → µ+µ−) =
4πα2

3s

On the Z0 resonance peak, with s = m2
Z, we have

σ(e+e− → Z0 → µ+µ−)

σ(e+e− → γ∗ → µ+µ−)
=

(12π/m2
Z)BR(Z0 → e+e−)BR(Z0 → µ+µ−)

4πα2/3m2
Z

=
9

α2
·
[
BR(Z0 → e+e−)

]2
= 9× (137)2 × (0.0344)2 = 200.0

d) From Question 25, and including a factor 3 for colour, the Z0 → bb width is

Γ(Z0 → bb) = 3
g2ZmZ

48π

[
(cbV)

2 + (cbA)
2
]
=
g2ZmZ

16π

[
(cbV)

2 + (cbA)
2
]

where the coupling gZ is given by

g2Z =
e2

sin2 θW (1− sin2 θW )
=

4πα

sin2 θW (1− sin2 θW )

Hence

(cbV)
2 + (cbA)

2 =
16π

g2ZmZ

· Γ(Z0 → bb)

=
16πΓ(Z0 → bb)

mZ

· sin
2 θW (1− sin2 θW )

4πα

=
4× 0.378GeV

91.2GeV
× 0.23× (1− 0.23)× 137 = 0.402

But cV = I3W − 2Q sin2 θW and cA = I3W , where Qb = −1
3

for the b quark. Hence

(cbV)
2 + (cbA)

2 = (I3W + 2
3
× 0.23)2 + (I3W )2 = 0.402 .
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Solving the quadratic equation for I3W gives I3W = 0.36 or I3W = −0.52, which clearly suggests
I3W = −1

2
for the b quark.

Since I3W = −1
2

for the b quark, it must be a member of a weak isospin doublet, and there must be a
partner state with I3W = +1

2
. Thus the existence of the top quark could be inferred long before it was

directly discovered.

27. a) It was shown in the lectures that the centre of mass frame differential cross section dσLR/d cos θ
for the process e+e− → ff on the peak of the Z0 resonance, for the case that the incoming electron is
left-handed and the outgoing fermion is right-handed, is given by

dσLR
d cos θ

∝ (ceL)
2(cfR)

2(1− cos θ)2 .

Show that the corresponding forward and backward cross sections σF
LR and σB

LR are given by

σF
LR ∝ (ceL)

2(cfR)
2, σB

LR ∝ 7(ceL)
2(cfR)

2 ,

and write down similar expressions for the cross sections σF
RL, σB

RL, σF
LL, σB

LL, σF
RR, σB

RR.

b) The asymmetry AFB
LR is defined as

AFB
LR ≡ (σF

L − σB
L )− (σF

R − σB
R)

(σF
L + σB

L ) + (σF
R + σB

R)

where σL ≡ σLL + σLR and σR ≡ σRL + σRR are the total cross sections for left-handed and right-
handed incoming electrons, respectively. Show that

AFB
LR =

3

4

(cfL)
2 − (cfR)

2

(cfL)
2 + (cfR)

2
≡ 3

4
Af ,

and compare with the similar predictions for the asymmetries ALR and AFB.

c) Using a polarised electron beam, the SLD experiment has recently measured AFB
LR for the process

e+e− → cc, and obtained the result Ac = 0.6712 ± 0.0274. Determine the corresponding value of
sin2 θW and (optionally) its error.

SOLUTION

a) The differential cross section dσLR/d cos θ for the process e+e− → ff for the case that the incoming
electron is left-handed and the outgoing fermion is right-handed is given by

dσLR
d cos θ

∝ (ceL)
2(cfR)

2(1− cos θ)2 .

The forward and backward cross sections are defined by

σF ≡
∫ 1

0

dσ

d cos θ
d cos θ, σB ≡

∫ 0

−1

dσ

d cos θ
d cos θ .

Using the integrals∫ 1

0

(1− cos θ)2 d cos θ =
1

3

∫ 0

−1

(1− cos θ)2 d cos θ =
7

3
,
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Therefore the forward and backward cross sections σF
LR and σB

LR are in a ratio 7:1

σF
LR ∝ (ceL)

2(cfR)
2, σB

LR ∝ 7(ceL)
2(cfR)

2 .

Similarly, we have

dσRL

d cos θ
∝ (ceR)

2(cfL)
2(1− cos θ)2

dσLL
d cos θ

∝ (ceL)
2(cfL)

2(1 + cos θ)2

dσRR

d cos θ
∝ (ceR)

2(cfR)
2(1 + cos θ)2

and hence

σF
RL ∝ (ceR)

2(cfL)
2, σB

RL ∝ 7(ceR)
2(cfL)

2

σF
LL ∝ 7(ceL)

2(cfL)
2, σB

LL ∝ (ceL)
2(cfL)

2

σF
RR ∝ 7(ceR)

2(cfR)
2, σB

RR ∝ (ceR)
2(cfR)

2

b) The asymmetry AFB
LR is defined as

AFB
LR ≡ (σF

L − σB
L )− (σF

R − σB
R)

(σF
L + σB

L ) + (σF
R + σB

R)

where σL ≡ σLL + σLR and σR ≡ σRL + σRR are the total cross sections for left-handed and right-
handed incoming electrons, respectively. Therefore

σF
L = σF

LL + σF
LR ∝ 7(ceL)

2(cfL)
2 + (ceL)

2(cfR)
2 = (ceL)

2
[
7(cfL)

2 + (cfR)
2
]

σB
L = σB

LL + σB
LR ∝ (ceL)

2(cfL)
2 + 7(ceL)

2(cfR)
2 = (ceL)

2
[
(cfL)

2 + 7(cfR)
2
]

σF
R = σF

RL + σF
RR ∝ (ceR)

2(cfL)
2 + 7(ceR)

2(cfR)
2 = (ceR)

2
[
(cfL)

2 + 7(cfR)
2
]

σB
R = σB

RL + σB
RR ∝ 7(ceR)

2(cfL)
2 + (ceR)

2(cfR)
2 = (ceR)

2
[
7(cfL)

2 + (cfR)
2
]

Hence

AFB
LR =

(ceL)
2 [6(cµL)

2 − 6(cµR)
2] + (ceR)

2 [6(cµL)
2 − 6(cµR)

2]

(ceL)
2 [8(cµL)

2 + 8(cµR)
2] + (ceR)

2 [8(cµL)
2 + 8(cµR)

2]

Hence

AFB
LR =

3

4

(cfL)
2 − (cfR)

2

(cfL)
2 + (cfR)

2
≡ 3

4
Af .

For comparison, the expressions for the asymmetries ALR and AFB derived in lectures are given by

ALR = Ae, AFB =
3

4
AeAf .

c) We have

Ac =
(ccL)

2 − (ccR)
2

(ccL)
2 + (ccR)

2
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where
ccL = 1

2
− 2

3
sin2 θW, ccR = −2

3
sin2 θW .

Writing x ≡ sin2 θW, we have

Ac =
(1
2
− 2

3
x)2 − (−2

3
x)2

(1
2
− 2

3
x)2 + (−2

3
x)2

=
(1
4
− 2

3
x)

(1
4
− 2

3
x+ 8

9
x2)

.

This can be rearranged to give the quadratic equation

32Acx
2 + 24(1− Ac)x+ 9(Ac − 1) = 0 .

For the central measured value of Ac = 0.6712, this quadratic equation can be solved to give x =
sin2 θW = 0.2305.

To estimate the error on sin2 θW, consider the upper end of the SLD measurement Ac = 0.6712 +
0.0274 = 0.6986. Solving the quadratic equation for this value of Ac gives x = sin2 θW = 0.2223,
which is δ(sin2 θW) = −0.0082 below the central value of 0.2305 .

Similarly, solving the quadratic equation for the lower end of the SLD measurement Ac = 0.6712 −
0.0274 = 0.6438 gives x = sin2 θW = 0.2382, which is δ(sin2 θW) = +0.0077 above the central
value of 0.2305 .

Overall therefore, we can estimate

sin2 θW = 0.230± 0.008 .
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THE TOP QUARK

28. a) The top quark decays into final states containing 1) two quarks and an antiquark, or 2) a quark, a
lepton and an antilepton. List the possible final states of each type and draw the generic leading order
Feynman diagram for these decays. Explain why the total top quark decay rate is dominated by the
rate for the decay t → W+b into a real W+ boson and b quark.

b) Use the Feynman rules to show that the matrix element for the decay t → W+b is given by

Mf i =
gW√
2
ϵ∗µ(p4)u(p3)γ

µ 1
2
(1− γ5)u(p1)

where p1 is the 4-momentum of the top quark and p3 and p4 are the 4-momenta of the b quark and
W+, respectively.

c) Consider the decay t → W+b in the top quark rest frame, with the b quark travelling in the
+z direction. Neglect the b quark mass. Draw diagrams illustrating the two spin configurations
which are allowed in this case. Show that, when the top quark spin points in the +z direction, the
matrix element Mf i is given by

M↑ = −gW
√

2mtp∗

where p∗ = (m2
t − m2

W)/2mt is the magnitude of the three-momenta of the W+ and the b quark.
Show that when the top quark spin points in the −z direction, the matrix element becomes

M↓ = −gW
mt

mW

√
mtp∗ .

d) Explain why the decay of an unpolarised sample of top quarks must be isotropic, and show that the
total decay rate in this case is

Γ =
GFm

3
t

8π
√
2

(
1− m2

W

m2
t

)2(
1 +

2m2
W

m2
t

)
.

e) Calculate the top quark lifetime. Use the uncertainty principle to estimate a typical hadronisation
timescale and comment on the result.

SOLUTION

a) The possible top quark decays into two quarks and an antiquark are

t → dud, dus, dub, dcd, dcs, dcb

t → sud, sus, sub, scd, scs, scb

t → bud, bus, bub, bcd, bcs, bcb .

The possible decays into a quark, a lepton and an antilepton are

t → de+νe, dµ
+νµ, dτ

+ντ

t → se+νe, sµ
+νµ, sτ

+ντ

t → be+νe, bµ
+νµ, bτ

+ντ

The leading order Feynman diagram for all these decays contains t → d + W+, t → s + W+ or
t → b +W+, followed by W+ → qq or W+ → ℓ+νℓ:
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t

b, s, d

W+

u, c

d, s, b

νe νµ ντ

e+ µ+ τ+

Because Vtb ≈ 1 is much bigger than Vtd or Vts, the decays containing t → b + W+ completely
dominate. In addition, the W+ propagator factor is proportional to 1/(q2−m2

W), which is a maximum
when q2 ≈ m2

W, i.e. when the W+ boson is real rather than virtual.

Hence the total top quark decay rate is dominated by the rate for the decay t → W+b into a real W+

boson and b quark.

b) The Feynman diagram for t → W+b decay is

t

b

W+

p1

p3

p4

The Feynman rules give a factor ϵ∗µ(p4) for the outgoing real W+ boson:

−iMf i = u(p3) ·
−igW√

2
γµ 1

2
(1− γ5) · u(p1) · ϵ∗µ(p4)

where p1 is the 4-momentum of the top quark and p3 and p4 are the 4-momenta of the b quark and
W+, respectively. Hence

Mf i =
gW√
2
ϵ∗µ(p4)u(p3)γ

µ 1
2
(1− γ5)u(p1) .

c) Consider the decay t → W+b in the top quark rest frame, with the b quark travelling in the
+z direction, and neglect the b quark mass.

Since we have a V −A interaction, in the massless limit the b quark must be left-handed, and must
therefore have its spin pointing in the −z direction. If the top quark spin points along +z, then, to
conserve angular momentum, the W+ spin must also point along +z. Alternatively, if the top quark
spin points along −z, then the W+ spin must be longitudinal, i.e. Sz = 0. In summary, the two
allowed spin configurations are:

Since the b quark is left-handed, we have u(p3) = u↓(p3). Since 1
2
(1−γ5)u↓(p3) = u↓(p3), the matrix

element then becomes
Mf i =

gW√
2
ϵ∗µ(p4)u↓(p3)γ

µu(p1) .
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The four-momenta of the top quark, b quark and W+ boson can be taken to be

p1 = (mt, 0, 0, 0) , p3 = (p∗, 0, 0, p∗) , p4 = (E, 0, 0,−p∗)

where E =
√

(p∗)2 +m2
W is the energy of the W+ boson and the centre of mass momentum p∗ is the

magnitude of the W+ and b quark 3-momenta.

The two possible spin states for the initial t quark, and the final state b quark spinor are then

u↑(p1) =
√
2mt


1
0
0
0

 , u↓(p1) =
√
2mt


0
1
0
0

 , u↓(p3) =
√
p∗


0
1
0
−1

 .

For the case u(p1) = u↑(p1), standard matrix multiplication gives the current as

u↓(p3)γ
µu↑(p1) =

√
2mtp∗ (0,−1,−i, 0) ,

while for the case u(p1) = u↓(p1) the current becomes

u↓(p3)γ
µu↓(p1) =

√
2mtp∗ (1, 0, 0, 1) .

The three possible spin states for the W+ are

ϵµ+(p4) =
−1√
2
(0, 1, i, 0) , ϵµ−(p4) =

1√
2
(0, 1,−i, 0) , ϵµL(p4) =

1

mW

(−p∗, 0, 0, E) .
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For the case u(p1) = u↑(p1), the scalar products ϵ∗.j are

ϵ∗+.j =
−1√
2
(0, 1,−i, 0) ·

√
2mtp∗ (0,−1,−i, 0) = −2

√
mtp∗

ϵ∗−.j =
1√
2
(0, 1, i, 0) ·

√
2mtp∗ (0,−1,−i, 0) = 0

ϵ∗L.j =
1

mW

(−p∗, 0, 0, E) ·
√

2mtp∗ (0,−1,−i, 0) = 0

Thus, as anticipated above, when the top quark spin points in the +z direction, the matrix element is
non-zero only when the W+ spin also points in the +z direction.

The matrix element Mf i for this case is given by

M↑ = −gW
√
2mtp∗ .

The centre of mass momentum p∗ can be found using the general result derived in Question 3, or by
eliminating the energy E between the two equations E =

√
(p∗)2 +m2

W and mt = E + p∗ (energy
conservation). Either method gives

p∗ =
m2

t −m2
W

2mt

.

For the case u(p1) = u↓(p1) when the top quark spin points in the −z direction, the scalar products
are

ϵ∗+.j =
−1√
2
(0, 1,−i, 0) ·

√
2mtp∗ (1, 0, 0, 1) = 0

ϵ∗−.j =
1√
2
(0, 1, i, 0) ·

√
2mtp∗ (1, 0, 0, 1) = 0

ϵ∗L.j =
1

mW

(−p∗, 0, 0, E) ·
√
2mtp∗ (1, 0, 0, 1) = −

√
2mtp∗

mW

(E + p∗)

Thus, as anticipated above, the matrix element is non-zero only when the W+ spin is longitudinal.

Energy conservation in the decay gives

mt = E + p∗ .

Hence the matrix element for this case can be written

M↓ = −gW
mt

mW

√
mtp∗ .

d) The decay of an unpolarised sample of top quarks must be isotropic because there is no preferred
spatial direction in the initial state.

The spin-averaged matrix element squared is〈
|Mf i|2

〉
= 1

2

(
|M↑|2 + |M↓|2

)
=

1

2
g2Wmtp

∗
[
2 +

m2
t

m2
W

]
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The total top quark decay rate is

Γ =
p∗

8πm2
t

〈
|Mf i|2

〉
=
g2W(p∗)2

16πmt

[
2 +

m2
t

m2
W

]
=

g2W
16πmt

(
m2

t −m2
W

2mt

)2 [
2 +

m2
t

m2
W

]
=

g2Wm
3
t

64πm2
W

(
1− m2

W

m2
t

)2(
1 +

2m2
W

m2
t

)
.

In terms of GF, using
GF√
2
=

g2W
8m2

W

,

the total decay rate is

Γ =
GFm

3
t

8π
√
2

(
1− m2

W

m2
t

)2(
1 +

2m2
W

m2
t

)
.

e) With GF = 1.166× 10−5GeV−2, mt = 178GeV and mW = 80.4GeV, the top quark decay rate is

Γ =
(1.166× 10−5)× (178)3

8π
√
2

(
1− (80.4)2

(178)2

)2(
1 +

2(80.4)2

(178)2

)
= 1.65GeV .

The top quark lifetime is then

τ =
6.582× 10−25GeV. s

1.65GeV
= 4.0× 10−25 s .

Taking a typical energy involved in hadronisation to be the pion mass, the timescale can be crudely
estimated to be

τhad ∼ 6.6× 10−25GeV. s

0.135GeV
∼ 10−23 s .

Thus the top quark lifetime is much less than the time it takes for quarks to hadronise. The top quark
therefore decays before it can form a hadron - hadrons containing t quarks are not expected to exist.
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THE HIGGS BOSON

29. a) Use the Feynman rules to show that the matrix element for the decay H → W+W− is

Mf i = −gWmWgµνϵ
µ(p2)

∗ϵν(p3)
∗

where p2 and p3 are the 4-momenta of the W− and W+, respectively.

b) Show that Mf i = −gWmW when both W bosons are left-handed or both are right-handed, that
Mf i = (gW/mW)(1

2
m2

H −m2
W) when both W bosons are longitudinally polarised, and that Mf i = 0

for the six remaining combinations of W boson spin states.

c) Show that the H → W+W− decay rate is

Γ(H → W+W−) =
GFm

3
H

8π
√
2

√
1− 4λ2

(
1− 4λ2 + 12λ4

)
where λ = mW/mH.

d) For H → Z0Z0 decays, an extra factor of 1
2

is required to account for the fact that the final state
contains two identical particles. Show that

Γ(H → Z0Z0) = 1
2
Γ(H → W+W−)|(mW→mZ) .

e) For H → ff decays into a fermion-antifermion pair, the decay rate is

Γ(H → ff) = Nc
GF√
2

m2
fmH

4π

(
1− 4m2

f

m2
H

)3/2

where Nc is the number of colour degrees of freedom of the fermion f of mass mf [See Tripos paper,
Jan 2002, for a derivation of this result]. Compute the H → W+W−, H → Z0Z0 and H → tt
branching ratios and the total Higgs width Γ for a Higgs mass of 500GeV. [Note that the decay rates
into ff final states other than H → tt are negligibly small since mf ≪ mt.]

SOLUTION

a) The leading-order Feynman diagram for the decay H → W+W− is

H

W+

W−

p3

p2

p1

The Feynman rules give a factor igWmWgµν for the HWW vertex, a factor ϵµ(p2)∗ for the outgoing
W− boson, and a factor ϵν(p3)∗ for the outgoing W+ boson. The product of these factors determines
−iMf i:

−iMf i = igWmWgµν · ϵµ(p2)∗ · ϵν(p3)∗
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and hence the matrix element is

Mf i = −gWmWgµνϵ
µ(p2)

∗ϵν(p3)
∗ .

b) Take the W− and W+ 4-momenta to be p2 = (E, 0, 0, p) and p3 = (E, 0, 0,−p), with E2 =
p2 +m2

W and E = mH/2:

The three possible polarisation 4-vectors for the W− are:

ϵµ+(p2) = − 1√
2
(0, 1, i, 0) h = +1

ϵµ−(p2) =
1√
2
(0, 1,−i, 0) h = −1

ϵµL(p2) =
1

mW

(p, 0, 0, E) h = 0
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while the three possible polarisation 4-vectors for the W+ are:

ϵν+(p3) = − 1√
2
(0, 1, i, 0) h = −1

ϵν−(p3) =
1√
2
(0, 1,−i, 0) h = +1

ϵνL(p3) =
1

mW

(−p, 0, 0, E) h = 0

Therefore, of the nine possible 4-vector scalar products of the form ϵ(p2).ϵ(p3), only three are non-
zero:

ϵµ+(p2).ϵ
ν
−(p3) = − 1√

2
(0, 1, i, 0).

1√
2
(0, 1,−i, 0) = +1

ϵµ−(p2).ϵ
ν
+(p3) =

1√
2
(0, 1,−i, 0).− 1√

2
(0, 1, i, 0) = +1

ϵµL(p2).ϵ
ν
L(p3) =

1

mW

(p, 0, 0, E).
1

mW

(−p, 0, 0, E) = 1

m2
W

(−p2 − E2)

Thus the matrix element is non-zero only if both W bosons have the same helicity. This is to be
expected: the Higgs boson has spin zero, and these are therefore the only possibilities consistent with
conservation of angular momentum.

Since E2 = p2 +m2
W and E = mH/2, we have

p =
√
E2 −m2

W =
√

1
4
m2

H −m2
W

and hence
p2 + E2 = 1

4
m2

H −m2
W + 1

4
m2

H = 1
2
m2

H −m2
W .

Therefore the non-zero matrix elements are:

H → W+W+ : Mf i = −gWmW

H → W−W− : Mf i = −gWmW

H → WLWL : Mf i = −gWmW · − 1

m2
W

(p2 + E2) =
gW
mW

(1
2
m2

H −m2
W)

where W+, W−, WL denotes a W with helicity h = +1,−1, 0 respectively.

c) For an isotropic two-body decay, the decay rate is

Γ =
p∗

8πm2
H

|Mf i|2

where

p∗ = p =
√

1
4
m2

H −m2
W =

mH

2

√
1− 4m2

W

m2
H

.
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Hence, for the case where both W’s are transversely polarised, we have

Γ(H → W+W+) = Γ(H → W−W−) =
p∗

8πm2
H

· g2Wm2
W

=
g2W
8π

m2
W

2mH

√
1− 4m2

W

m2
H

while if the W’s are longitudinally polarised we have

Γ(H → WLWL) =
p∗

8πm2
H

· g
2
W

m2
W

(p2 + E2)2

=
1

8πm2
H

mH

2

√
1− 4m2

W

m2
H

g2W
m2

W

(1
2
m2

H −m2
W)2

=
g2W
64π

m3
H

m2
W

√
1− 4m2

W

m2
H

(
1− 2m2

W

m2
H

)2

The total decay rate is obtained by summing over all possible final state spins:

Γ(H → W+W−) = Γ(H → W+W+) + Γ(H → W−W−) + Γ(H → WLWL) (73)

= 2× g2W
8π

m2
W

2mH

√
1− 4m2

W

m2
H

+
g2W
64π

m3
H

m2
W

√
1− 4m2

W

m2
H

(
1− 2m2

W

m2
H

)2

(74)

=
g2W
64π

m3
H

m2
W

√
1− 4m2

W

m2
H

(
8m4

W

m4
H

+ 1− 4m2
W

m2
H

+
4m4

W

m4
H

)
(75)

=
g2W
64π

m3
H

m2
W

√
1− 4m2

W

m2
H

(
1− 4m2

W

m2
H

+
12m4

W

m4
H

)
(76)

Using
GF√
2
=

g2W
8m2

W

(77)

we finally obtain

Γ(H → W+W−) =
GFm

3
H

8π
√
2

√
1− 4m2

W

m2
H

(
1− 4m2

W

m2
H

+
12m4

W

m4
H

)
(78)

d) For the decay H → Z0Z0, the Feynman rules give a vertex factor igZmZgµν in place of igWmWgµν .
Thus the H → Z0Z0 decay rate is given by Equation (76) with mW replaced by mZ, gW replaced
by gZ, and with an extra factor of 1

2
included to take into account the fact that the H → Z0Z0 decay

contains two identical particles in the final state:

Γ(H → Z0Z0) =
1

2
· g

2
Z

64π

m3
H

m2
Z

√
1− 4m2

Z

m2
H

(
1− 4m2

Z

m2
H

+
12m4

Z

m4
H

)
.
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The relations mW = mZ cos θW and gW = gZ cos θW give g2W/m
2
W = g2Z/m

2
Z. Hence

Γ(H → Z0Z0) =
1

2
· g

2
W

64π

m3
H

m2
W

√
1− 4m2

Z

m2
H

(
1− 4m2

Z

m2
H

+
12m4

Z

m4
H

)
.

Using Equation (77) to convert from gW to GF, we then obtain

Γ(H → Z0Z0) =
1

2
· GFm

3
H

8π
√
2

√
1− 4m2

Z

m2
H

(
1− 4m2

Z

m2
H

+
12m4

Z

m4
H

)
.

A comparison with Equation (78) then shows immediately that

Γ(H → Z0Z0) = 1
2
Γ(H → W+W−)|(mW→mZ) .

e) The decay rate into a fermion-antifermion pair is given by

Γ(H → ff) = Nc
GF√
2

m2
fmH

4π

(
1−

4m2
f

m2
H

)3/2

.

For the decay H → tt, with Nc = 3, mH = 500GeV, mt = 175GeV and GF = 1.166× 10−5 GeV−2

we have

Γ(H → tt) = 3× 1.166× 10−5

√
2

× 1752 × 500

4π

(
1− 4× 1752

5002

)3/2

GeV

= 11.0GeV .

For the decays H → W+W− and H → Z0Z0, with mW = 80.4GeV and mZ = 91.2GeV, we have
m2

W/m
2
H = (80.4/500)2 = 0.0259 and m2

Z/m
2
H = (91.2/500)2 = 0.0333, giving

Γ(H → W+W−) =
1.166× 10−5 × 5003

8π
√
2

√
1− 4× 0.0259

(
1− 4× 0.0259 + 12× 0.02592

)
= 35.1GeV

Γ(H → Z0Z0) =
1.166× 10−5 × 5003

16π
√
2

√
1− 4× 0.0333

(
1− 4× 0.0333 + 12× 0.03332

)
= 16.8GeV

The total width of a Higgs boson of mass 500GeV is therefore

Γ = 11.0 + 35.1 + 16.8 = 62.9GeV

and the branching ratios are

BR(H → W+W−) = 35.1/62.9 = 55.8%

BR(H → Z0Z0) = 16.8/62.9 = 26.7%

BR(H → tt) = 11.0/62.9 = 17.5% .
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NUMERICAL ANSWERS

1. a) L = 1.98m, M = 79 kg. BMI = 20.1

2. d)
√
s = 300GeV; E = 48000GeV

3.

4.

5. Γ(ρ→ ππ)/Γ(K∗ → Kπ) = 3.46; expt = 2.98

6. a) τπ = 3.0× 1016 GeV−1 = 1.97× 10−8 s; expt = 2.6× 10−8 s

b) from phase space alone: Γ(π+ → e+νe)/Γ(π
+ → µ+νµ) = 2.34

7.

8.

9.

10.

11.

12. a) λ = 0.84GeV; b) 0.81 fm; c) ≈ 0.68 fm

13. b) x ≈ 0.09, Q2 ≈ 610GeV2, y ≈ 0.075; c) MX ≈ 78GeV

d) relative probabilities that scattering is from u, d, u, d are

u : d : u : d ≈ 0.73 : 0.12 : 0.12 : 0.04 .

e) the F1 term contributes only ≈ 0.3% of events.

14. d) 4.7◦ < θ < 21.3◦

15.

16.

17.

18. (Q2)max ≈ 750GeV2

19. fq ≈ 0.41, fq ≈ 0.08, fg ≈ 0.51

20.

21. d) sin2 θ13 > 0.051 at 97.5% C.L., |∆m2
23| < 3.0 × 10−3 eV2; e) sin2 θ13 = 0.09, |∆m2

23| =
2.6× 10−3 eV2
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22. d) |J |max = 0.053; f) about 5000 km, |∆P |max ≈ 0.04

23.

24.

25.

26. a) ΓZ = 2.3GeV; b) R = 20.1; c) 61 nb

27. c) sin2 θW ≈ 0.230± 0.008

28. e) τ ≈ 4.0× 10−25 s, τhad ∼ ×10−23 s

29. e) BR(H → W+W−) = 55.8%, BR(H → Z0Z0) = 26.7%, BR(H → tt) = 17.5%;
Γ = 62.9GeV
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