NST Part III Experimental and Theoretical Physics Michaelmas 2025
Dr Christopher Lester

Particle Physics Major Option

EXAMPLES SHEET QUESTIONS (ALL)

NATURAL UNITS AND HEAVISIDE-LORENTZ UNITS

(a) In the units he normally uses, your particle-physics lecturer was 101¢/ GeV tall and had a mass of
4.40 x 10®® GeV when aged 2.11 x 1033/ GeV. Calculate his Body Mass Index (BMI) and determine
whether he was obese at this point in his life.

(b) Show that charge can indeed be measured in units of (50710)%. [You may wish to consider dimen-

sional analysis of the Coulomb force law F' = ;122 ]

SOLUTION

(a) The laborious way of working out the height L and mass of M of the lecturer would be to insert
all the right powers of 71 and ¢ and use /i ~ 1.055 x 1073* Js and ¢ = 3.00 x 10% m/s. This requires
many numbers and lots of use of the calculator. Using this bad way to calculate L. we might write
something like:

L =10 hc/ GeV (1)
_ (106) x (1.055 x 10734Js) x (3.00 x 10® m/s) )
109 x (1.60 x 10-19.7)
(10'%) x (1.055 x 1073%) x (3.00 x 10®)
- 109 x (1.60 x 10-29) " ©)
_ 1055 x3.00 . eaaisino @
1.60
=197 x 10°m 5)
=1.97m. (6)
Much better would be to use 1 = hc = 197 MeV - fm. This nicer approach would give us:

L =10"%/GeV (7
=10'%/GeV x 1 (8)
= 10"/ GeV x (197 MeV - fm) )
= 197 x 1016796715 4y (10)
=197 x 102 m (11)
=1.97m (12)

(13)



The mass of the lecturer in S.I. units is easier to calculate as E ~ mc? reminds us that masses are
only a factor of ¢? away from energies, and everyone knows c. Therefore

M = 4.40 x 10%® (GeV/c?) (14)
= (4.40 x 10%) x (10 x (1.60 x 107 J))/(3.00 x 10® m/s)? (15)
= (4.40 % 1.60/9.00) * 102719716 kg (16)
=78 kg. (I7)

Hence the BMI (which is mass in kg divided by square of height in metres) is
BMI = 78/(1.97)* = 20.1. (18)

According to Wikipedia (https://en.wikipedia.org/wiki/Body mass_index)the WHO de-
fines obsedity as a BMI over 25 if the person is more than 20 years old, so he is not obese given the
age supplied (44 years).

(b)
[q142] = [4pico Fr?] (19)
= [0 L?] (20)
= [eo(FL)L] 1)
= [eoEL] (22)
= [eo(ET)(L/T)] (23)
= [eohd]. (24)
SPECIAL RELATIVITY

a) Draw the two leading-order Feynman diagrams for ete~ — ete™ involving single photon ex-
change, and write ¢, the 4-momentum of the exchanged virtual photon, in terms of the 4-momenta
of the initial and/or final state particles. By evaluating ¢? in the centre of mass frame, or otherwise,
determine whether ¢ is timelike (¢*> > 0) or spacelike (¢> < 0) in each case.

b) The Mandelstam variables s, t,u in the scattering process a + b — 1 + 2 are defined in terms of
the particle 4-vectors as

s=pa+m)?  t=@.—m)?  u=(p.—p)*.

Show that s + ¢ + u = mg,> + mp2 + mq2 + my>.
¢) Show that /s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons are brought into head-on collision with
820 GeV protons. Calculate the centre of mass energy, /s, of e~ p collisions at HERA, and determine
the beam energy that would be needed to produce e~ p collisions with this value of /s using electrons
incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest, the reaction v + X — ¢ 4+ Y can only
proceed if the incoming neutrino has an energy above a threshold given by

(ml + my)2 — m?X

E, >
2mX
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[ Aside: when revising at the end of the course you may wish to consider reviewing Question 1 of the
January 2017 past Tripos paper for this course as looks more deelply into the connections between
Mandelstam variables and the characteristics of different scattering processes. |

SOLUTION

a) The two leading order Feynman diagrams for ete™ — ee™ scattering are:

et D1 D3 et

et e
D2 P4

y4 DPs3

- b2 Pa _

For diagram 1, the 4-momentum of the virtual photon is ¢ = p; + p». In the centre of mass frame, we
have ¢ = p; + p2 = (2F,0,0,0), and hence

¢ =4E>>0 = ¢*istimelike.

For diagram 2, ¢ = p; — ps. In the centre of mass frame, we have 1 = Ej5 (elastic scattering) and
hence ¢ = (0, p, — p;). Therefore

¢ =—(p—p3)? <0 = ¢ is spacelike

b) Since p? = m? etc.:

stt4+u=(paetp)+ @e—p)°+ Do —p2)°
= 3p2 + pi + P2 + D3+ 20D — 2Pa-D1 — 2Da-D2
= 3m_ + mj +m37 +mj + 2p,.(py — p1 — p2)
= 3m2 + mi +mj +m3 + 2pa. — Pa
=m2+mj +m; +mj
where energy-momentum conservation, p, + p, = p1 + P2, has been used in the last line but one.
¢) In the centre of mass frame, the 4-momenta of particles a and b can be taken to be p, = (E,, 0,0, p),

m = (F,0,0,—p). Hence p, + py = (E, + E3,0,0,0) and s = (p, + p»)*> = (E, + E,)*. Hence
Vs = E, + FEy, the total collision energy in the centre of mass frame.

d) HERA: electron and proton masses can be neglected, so 4-momenta are:
Do = (Eaa Oa 07 Ea) Py = (Eb7 07 07 _Eb) = Pa + Py = (Ea + Eb7 07 07 Ea - Eb)

Hence
s = (pa +pb)2 = (Ea + Eb)2 - (Ea - Eb)2 = 4EaEb 5
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which gives

Vs = 2/ E,E, = 2V/27.5 GeV x 820 GeV = 300 GeV .

For electrons incident on a stationary proton target:
Pa = (Ea,0,0, Ea) Py = (mp,0,0,0) = Da + Db = (Ea +mp70a07 Ea) .

Hence
s = (pa +pb)2 = (Ea + mp)2 - Ef = 2Eamp + m; ,

which gives
s—m2  (300GeV)? — (0.938 GeV)?
E, = P — = 47974 GeV .
om, 2 % (0.938 GeV) ¢

e) For the scattering process v + X — ¢ + Y to be kinematically allowed, we must have
Vs > my 4+ my . (25)

This is easily seen by considering the centre of mass frame: at threshold, the particles ¢ and Y are
both produced at rest. Equation (25) involves only Lorentz-invariant quantities, and so can be applied
to any reference frame. In particular, in the lab frame, with X at rest, we have

s:m§(+2p,,-pxzm§<+2E,,mX.

Hence we need
mx +2E,mx > (m; +my)?

which gives a threshold neutrino energy in the lab frame of

(my +my)? —m%

E, >
2mX

a) For a particle of four-momentum p* = (£, p,, py, p.), show that the scalar product
p* = E* —pl —p; —p?
is Lorentz invariant by explicitly transforming the four components of p*.

b) Use the Lorentz transformations to show that the volume element d3p/E in momentum space is

Lorentz invariant, i.e. that
dp,dp,dp.  dp,dp,dp.,

E  F
SOLUTION
a) Lorentz transformation (with ¢ = 1):
E'=~(E — Bpa) Py = Py
Py =v(p. — BE) P, =Dp-



where v = 1/4/1 — f? and 5 = v/c = v. Hence
() = (E")? = (0,)* = (p})? — (1.)?
=7(E = Bpa)® — v*(p= — BE)? — pl — p?
=7*(1 = B*)E* —~¥*(1 = B*)p5 — pi — p?
= E? —pl —p) —

b) Since dp;, = dp, and dp/, = dp. we have

dp’ dp’
d3/:d/d/d/: xd dp.d — J:d?)
p pP.Ap,dp, dp, PzAPy AP~ dp, p

where p), = v(p. — SE) and E'is to be understood as £ = | /p2 + p2 + p2 + m?. The derivative is

dp;:_ d B B dFE
aa‘mﬁ%‘M””C‘ﬂm)

The components p, and p, remain unchanged in the transformation, and so can be treated as constants.
Hence

Pa _ P
Vi tptpitm? E

de  d
2 2 2 2 _
. dpx\/px+py+pz+m

This gives

dp,, (1 ﬁpx>_ E—pBp, FE
ap. ! E)- 7B T E°

and therefore
&y :i.gd%:@
E’ E F E

In a 2-body decay, a — 1 + 2, show that the three-momentum of the final state particles in the centre
of mass frame has magnitude

"= gV (o P — (o — )]

SOLUTION

Decay a — 1 + 2: energy conservation gives

ma=E1+E2:\/m%+p*2+\/m%+p*2

Squaring:

m2 = E} + B3 +2E,Ey = m? +m3 + 2p*% + 2\/(m% + p*2)(m3 + p*2)

= 2\/(m%+p*2)(m§+p*2):mi—mf—mg—Qp*Z.
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Squaring again:
= A(mi+p ) (my +p*?) = (mg —mi —m3 — 2p"%)7.

Multiplying out and rearranging gives

4mzp*? = (mj; —mj —m3)? — (2mymy)
= (m2 —m] —m3 — 2mimy)(m2 — m? —m3 + 2mymy)
= [md — (my +my)?] [m — (m1 — my)?]
Hence
* 1 2 2 2
b = 5o/~ 2] (i — o)
TWO BODY DECAY

According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processes p — 7w and K* — K have invariant matrix elements of the
form

Mfi = pr

where C,/C+ = 2/4/3 and p, is the final state centre of mass momentum. Show that the predicted
ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 4 to obtain p,. Take the 7, p, K and K* meson masses to be 139, 770,
494 and 892 MeV respectively. The measured widths are I'(p — 7nm) = 153 £ 2MeV and I'(K* —
Kr) =51.3+ 0.8 MeV/]

SOLUTION

a) The matrix element My; = Cp, depends only on the centre of mass momentum p, = p* of the
final state particles, not on their directions, i.e. the decays are isotropic. For any isotropic two-body
decay a — 1 + 2, the decay rate is

p* p* § 02p*3
| M| = - (Cp")* =

I' = =
8mm?2

o 2
8mmz

-~ 8mm2
From question 3, the centre of mass momentum is given by

p* = [(mg +mq + ma)(mg — my + ma)(mg +mq — ms)(mg —mq —ms)]

_ 1/2
2m, ‘

For p — mm, we have m, = m, = 770 MeV, m; = my = m, ~ 140 MeV:

* 1 1 2 2
b= o (my + 2mz).m,y.my.(m, — 2mz) = 3 V' dmz = 359 MeV
D

For K* — K, we have m, = mg- = 892MeV, m; = mg =~ 494MeV, my = m, ~ 140 MeV
giving p* = 288 MeV.

L Plp—am) G mi. (1) 2\ [892\* (359 3_346
MK —Kmr) CZ. m2 \pk.) \V3 770 288) 7
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Data:
F(p — 7r7r) =153 = 2MeV, F(K* — K7r) =51.3 £ 0.8 MeV

giving a measured ratio of 2.98.

The 7+ meson decays almost entirely via the two body decay process 7+ — 111, with an invariant
matrix element given by

’Mf"2 — 2G2 f2m2 (mQ o m?)

1 FJatiiu g o

where Gp = 1.166 x 1075 GeV 2 is the Fermi constant, and fr is related to the size of the pion
wavefunction (the pion being a composite object).

a) Obtain a formula for the 7+ — p*v, decay rate. Assuming f, ~ m,, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[m, = 139.6 MeV, m, = 105.7 MeV.]

b) By replacing m,, by m,, show that the rate of 7+ — e* v, decay is 1.28 x 10~* times smaller than the
corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e. neglecting
the factor |Mfi|2), the decay rate to electrons would be expected to be greater than the rate to muons.

SOLUTION

a) From question 3, the momentum of the ;1 or v, froma 7™ — p*v, decay, in the 7" rest frame, is

 _ (mw+mu)(mw _mu) o m72r _mi

2m, 2my
and hence the decay rate is
I'= I | Mg |* = —i — 2GR 2m? (m2 —m?)
grmz " 167mm3 F/m .
_ Gimj

2 2\2
= B, )

(1.166 x 107°)2  0.1052

8T " 0.140
=3.34 x 107" GeV

(0.140% — 0.105%)?

The pion lifetime is therefore
1 1
T = =

T 334x10-17

which can be converted to SI units using & = 6.58 x 1072° GeV.s :

=3.0 x 10" GeV~!

T = (3.0 x 10'%).(6.58 x 107%) = 1.97 x 10™®s

b) Ratio of decay rates:

D(nt —etr,)  m?2 (m2—m2\>  [0511\% [139.6° —0.511%\° T
U+ — pty,)  m2 \m2—-m2)  \105.6 139.62 — 105.62)




On the basis of phase space alone, i.e. neglecting the contribution to the decay rate from |M;|*

have

, WE

p*
= xp*.
8mm?2 b

Hence the ratio of decay rates is just the ratio of the centre of mass momenta appropriate to each
decay:

Mot etw) P o) miomd
D(rt = pty,)  pr(rt = pty,)  m2—m2



THE DIRAC EQUATION

Write down a simplified form of the Dirac equation for a spinor #/(¢) describing a particle of mass m
at rest. For the standard Pauli-Dirac representation of the v matrices, obtain a differential equation
for each component 1); of the spinor 1), and hence write down a general solution for the evolution of
1. Comment on your result and on its relation to the standard plane wave solutions involving u;(p),

uz(p), v1(p), v2(p).
SOLUTION

For a particle of mass m at rest (p = 0), since p = —iV, we have 9¢/dx = 0v /0y = 0¥ /0z = 0.
Hence ¢ = 1/(t) only, and the Dirac equation simplifies to

0O
0— =
7y T ma|.
In the Pauli-Dirac representation, this is
10 0 0Y) [ iy
o1 0 o0 U | (o
“loo =1 o || T us ]|
00 0 -1 @ Wy

which gives
i% = miu, @'lbz = ms, —w:s = ms, —W4 =miy .
These equations have the solutions
wl — 1416—1'77’Lt7 ¢2 — AQG_th7 77/}3 — A3€+imt’ ¢4 — A4e+imt 7

where the A; are complex constants. The general solution for v is therefore

Ale—imt
A2€—imt
77Z) = A3€+imt

A4e+imt

This can be expressed as a linear combination of the four independent solutions

e—imt7 N €+imt, N €+imt 7 (26)

o O = O
O = OO
_ o O O

where N = +/2m to normalise to 2/ = 2m particles per unit volume.

Thus both positive energy, e "™, and negative energy, e, solutions unambiguously emerge.

The spinors in Equation (26) can be obtained by setting £/ = m, p, = p, = p. = 0 in the standard
plane wave solutions ;!PT =51 e P-T=Et) )=t P-T=E) 4y, e=UP-T=Et) a5 expected.
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8. a) For the standard Pauli-Dirac representation of the -y matrices, and for an arbitrary pair of spinors ¢
and ¢ with components v; and ¢;, show that the current 1)y ¢ is given by

V700 = Didr + s + U303 + Yign
Y6 = Uidu + Y305 + Uide + Yo
VY°d = —i(Vida — V33 + V302 — Vi¢n)
U730 = Vs — Via + Y501 — Vi
b) For a particle or antiparticle with four-momentum p* = (E, p,, py, p.), show that
iy ur = Upyugp = vy oy = oyt = 2p*
and that
uyug = Upyup = vy v = vayt o = 0.

¢) Hence show that the current j* = 1)(p)y*¢(p) corresponding to a general free particle spinor
Y(p) = u(p)e’P-T—EY or antiparticle spinor ¢ (p) = v(p)e *P-T~F% is given by j* = 2p*. Write
down the particle density and flux represented by j*.

SOLUTION

a) For an arbitrary pair of spinors ¢ and ¢ say, with spinor components /; and ¢;, standard matrix
multiplication gives, for y = 0,

10 0 0\ (¢

To= (Wi 0~ —e) (g o Dy o || 2| = vien+ v+ v+ vien.
00 0 —1) \¢

Similarly, for 4 = 1, 2, 3, we obtain
0 0 0 1\ /¢

e e e oo o e

by ¢:<¢1 vy —3 _¢4> 0 -1 0 0 " = Y1 Py + Va3 + Y302 + Yyd
1 0 0 0/ \ou
0 0 0 —i\ (&

Pro= (i 03— =) | o 4 o o ||| =it - vies +uies - vis)
i 00 0/ \o
001 0\ /¢

Pro=@i v —vi <o) [0 oo o ||| = vies - vien+ vio - vies.
0O 1.0 O 04

In summary:

07’0 = pidr + 5 + V33 + Vi
VYo = Wi da + V33 + U3¢ + Vi
VY2 p = —i(hfds — Vydbs + V502 — Vi)
V) = i s — hsda + 51 — Yide
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b) For the free particle spinor w4, the first element of the current 4-vector is

p? (P% + 1) 1

wyt = (B4 m) {1 T Erme T Ermye

— (E+m) {Hp—z}

(E +m)?
(B4 m)*+p? _2E2—{—2Em_2E
N E+m ~ E+m ’

where, in the last line, we have made use of the relation E? = p? + m?2.
Repeating this exercise for the remaining terms in the 4-vector current gives, altogether,

w1y uy = 2F; wy'u = 2py; Wy Uy = 2py; Wy ur = 2p,
which can be expressed more compactly as

Y u = (2F, 2py, 2py, 2p.) = 2p" .
Repeating the above exercise for uy, v; and v, in place of u; gives
wy uy = Uy up = 01y vy = Uy oy = 2pF

while the cross-terms are easily seen to vanish:

o _ _ _
w1y ug = Uy ur = 01y e = vy = 0.

¢) For a particle, with ¢ = u(p)e™*, we have

7 = oy = u(p)y e =m(p)e

and hence o
g =Pt =y

For an antiparticle, we have similarly j# = vvy*v.
A particle spinor u(p) can always be expressed as a linear combination of the basis spinors u, u:
— 2 2 _
U = U] + QalUa, \oz1| + ’062| =1.

Hence
vy u = oo [Py uy + oo Py uy = 2pt

Thus
The current 4-vector is j* = (p, J) so

p=2E,  3=2p,
p being the particle density and j being the flux.
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9. a) For a particle with 4-momentum p* = (E, psin 6 cos ¢, psin 0 sin ¢, p cos #), show that the spinors
(14 ~5)u;y and (1 + +°)uy are not in general proportional to u4 but become so in the relativistic limit
E>m.

b) Define the terms helicity and chirality. How are chirality and helicity related to the spinors and
result described in part (a) ?

¢) What would be the equivalent result to that described in (a) for the corresponding antiparticle
spinors (1 + ~°)v; and (1 + 7°)vy ?

SOLUTION

a) For p* = (E, psin 6 cos ¢, psin 0 sin ¢, p cos §), we have

cos /2 —sin /2
€' sin 62 €' cos 02
ut(p) = vVE +m o2 | u(p) = vE+m e sin 62
o€ sin /2 — €' cos /2
But
1010 1
0101 0
5 _ \/
(T+m=1 o | o|VEF™ p-/(E +m)
0101 (e + ipy)/(E +m)
1+ p./(E+m)
(pz +ipy)/(E +m)
=VE v
T L p/(E +m)
(pz + ipy)/(E +m)

which, in general, is clearly not proprtional to 4.

In the limit £/ > m, the spinors u; and us become

1 1

——— 0 0
w=vVE+m p./(E +m) - VE cos

(pz +ip,)/(E +m) e’ sin @
0 0
=VE 1 VE r
12 tm (pe —ipy)/(E + m) - e sin 0
—p./(E+m) —cos
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Hence

1 1+ cos@

0
id o
(1+9%)uy — el O | =vE| S
1

cos 6 1+ cos@
€' sin 0 €' sin

O = O =
—_ O =) O
O = O =

cos /2
' sin 62
cos 0/2
€' sin 62

— 2V'E cos /2 = 2c0s0/2-ur (27)

and similarly:

0 e~ sinf
1 1—cosé
VE e ®sing | VE e~ ginf
—cosf 1 —cost
e~ cos /2
sin 6/2
e~ cos 6/2
sin 6/2

(1 + ")/5)UQ —

S = O =
— o R O
O = O =
—_ O = O

— 2V E sin /2

=2 “sing/2-up (28)

b) The helicity operator h = X.p gives the projection of the particle spin along the direction of
motion. A particle or antiparticle with the spin vector aligned along (opposite to) the direction of
motion has h = 41 (h = —1) and is said to be right-handed (left-handed).

Any (particle or antiparticle) spinor ¢/ can be expressed as the sum of its left-handed and right-handed
chiral components

Y =YL, + Yg; YL=31-7") Yr=i1+")0.

In the extreme relativistic limit (& > m), the left-handed and right-handed chiral components are
also eigenstates of the helicity operator:

For a particle: 1y, has helicity —1 1R has helicity +1
For an antiparticle: 1y, has helicity +1 R has helicity —1

The results in part a) show that, in the relativistic limit, and only in the relativistic limit, the right-
handed chiral components (1 + ~®)u; and (14 ~°)uy are both proportional to w4, i.e. are both positive
helicity eigenstates. Since any particle spinor u can be expressed as a linear combination of u; and
us, this result holds quite generally i.e. in the relativistic limit, the right-handed chiral component
(1 + ~v°)u becomes a right-handed helicity eigenstate for any particle spinor w.

c¢) For antiparticles, the right-handed chiral component %( 1 + 7)1 becomes a left-handed helicity
eigenstate in the relativistic limit. Hence (1 + +®)v; and (1 + ~°)v, will both become proportional to
v, in the relativsitic limit.
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10. a) Without resorting to an explicit representation of the Dirac gamma matrices, show that the matrix
7® = i7°y1y2~3 has the following properties:

(V)P =1,  AT=4% Pyt = b,

b) Show that the adjoint spinors vy, and ¢r corresponding to the left-handed and right-handed com-
ponents ¢, = 1(1 —7°)y and Yr = (1 + )¢ are:

b =v5(1+19°)

Yr=v3(1-7).

¢) Show that ¢ v*¢r = ¢ry*1P1, = 0, and that the current ¢y*¢) can be decomposed as

VY = Sy Yr + PrY“ YR -

SOLUTION

a) Repeatedly use the fact that the v matrices anticommute and satisfy (7°)> = 1, (v!)? = (v*)* =

(v")? = -1

(7")" = (V"' 7*")* = ="'y "
_ 7071727()7371727?> since ’7370 = —VOVS
— 01023y 102,8 since  7°7" = —7%°
_ ,yo,yo,yl,yz,yzz,yl,yZﬁﬁ since 7170 = —”YO’Yl
_ 717273717273 since (70)2 =
NI since 7’y = —4'4°
_ 717172737273 since ’yz”yl = —71’72
22 since  (v')* = —1
_ 73727273 since 7273 = —7372
— 4343 since  (v°)* = —1
1

Using 7% =10, 41T = —91, 921 = —2, %1 = —%:

5t — Pttt 0f — 32 1,0
2.1.0.3 1.0.2_.3

==y = Sy YTy = 0y

0123)T7

Y= (@ y vy

01n2n3 — ~p
Consider +°~? for example:

Y7 =iV = —i*Y ' = 0 = iy = =
and Simﬂar]y; 7570 = —7075’ 7571 = —7175, ")/5’)/3 = —’y3’y5 glVlIlg altogether ")/5’}/M = —’}/“’}/5-

b) An adjoint spinor is defined as 1) = 1T, so that

=91 =[50 -7)9]
= 9151 =) since 7" =17
=151 +7°) since 7°7” = —777"
=¥3(1+7°)
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and similarly:

Ur=03(1-7").
c¢) Separate the spinor v into its left- and right-handed components via

Y=121-W+ 11+ =1vL+vr

For the adjoint spinor:

P =90 = (Y + Yr)1° = ¥IA° + Pha® = YL + YR

Hence
o' = [ oL + Or | ¥ WL + VR]
= pry"PL + oLy YR + drYUL + PrYMUR
But
Oy R = ¢3(1+7°) " - (1 +7")0
=¢3(1+7°) - 31 =" )"y
-0

since (1 +7°)(1 —~°) =1 — (7°)2 = 0. Similarly: ¢gy"+1, = 0 giving
¢V = oy + dr YR

as required. Alternatively, show directly that

oLy = ¢5(1+7°) 4" - 5(1 =270
= p3(1+79°)  3(L+7")"
= o3(1+" )"y

and similarly o _
PrY bR = o5(1 — ")),

again giving

SLY UL + drY YR = O3 (1 + )V + G5 (1 — V)V = gyt

Thus, for interactions between spin % particles (or antiparticles) and photons in QED, the left-handed
chiral component of a spinor couples only to another left-handed chiral component (¢r,y*¢1,) and the
right-handed chiral component couples only to another right-handed chiral component (pry*1R).
There is no coupling between the left-handed and right-handed chiral components: (pry" 4y,

07 %’y#d)L = 0)

At high energies, the left-handed and right-handed chiral components become helicity eigenstates
with definite helicity and we have helicity conservation in QED: the particle helicity is preserved at

a QED vertex.
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11.

ELECTRON-MUON ELASTIC SCATTERING

a) Show that the general matrix element for e~ — e~ .~ scattering via single photon exchange is

62

My = — B [@(ps)v*u(p1)] [w(pa)y” u(ps)]

(p1 — p3
where p; and ps are the initial and final e~ four-momenta and p, and p, are the initial and final p~
four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoing e~ four-momenta
pi = (E1,0,0,p) and p§ = (E1,psinf,0,pcosf), the electron current for the various possible
electron spin combinations is

uy (p3)YHuy(p1) = 2(Eic, ps, —ips, pc)
ur(p3) Y uy(pr) = 2(ms, 0,0,0)
wr(ps)y"ur(p1) = 2(Exc, ps, ips, pe)
uy (p3)Y ur(pr) = —2(ms, 0,0,0)

where m is the electron mass and s = sin 6/2, ¢ = cos 6/2.

¢) Write down the incoming and outgoing muon 4-momenta p, and p4, and the helicity eigenstate
spinors u+(pz2), wy(p2), ur(ps) and u;(ps). [Take the muon mass to be M and the muon energy to be
E5 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

wy(pa)y"uy(p2) = 2(Exc, —ps, —ips, —pc)

Ut (pa)yHuy(p2) = 2(Ms,0,0,0)

Ut (pa) ¥ up(p2) = 2(Fac, —ps, ips, —pc)

wy(pa)y"us(p2) = —2(Ms, 0,0,0)

can be written down (up to overall factors of +1) without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared |MLL|2 for the case where the in-
coming e~ and incoming .~ are both left-handed is given by
4ets?
(p1 —ps)*
where s = (p; + p2)?. Why is the numerator of | M ,|> independent of 6 ?

|MyL” =

f) Find a similar expression for the matrix element | Mgy, |? for a right-handed incoming e~ and a left-
handed incoming ;~, and explain why | Mgy, |* vanishes when 6 = 7. Write down the corresponding
results for | Mgg|? and | Mg |>.

g) Show that, in the relativistic limit, the differential cross section for unpolarised ey~ — e~

scattering in the centre of mass frame is

do  2a% 14 ;(1+cosb)?
daQ s (1 — cos )2
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h) Show that the spin-averaged matrix element squared (in this ultra-relativistic limit) can be ex-
pressed in Lorentz-invariant form as

(Mif?) = (pg_—p) [(pr.02) (po.pt) + (p1.p2) (p2eps)]

and that a Lorentz invariant form for the differential cross section is

()

do  27a?

dg>2  ¢*

where ¢ = (p; — p3)°.

The remainder of this question involves the derivation of a general expression for {| Mg;|?*) for the case
of finite electron and muon masses, and is optional:

i) Show that the spin-averaged matrix element squared for unpolarised e~ 4~ — e~ 4~ scattering can
be written in the form

64

1
(M) Z|Mf1 = 10—t

LW,
spms 1=P 3)

where the electron and muon tensors L** and W#" are given by

1 =37 [alps)y* ulpn)] [@ps )y u(p)]”

spins

Wi = D [alpa)yuu(pe)] [@(pa) vu(p)]’

spins

j) Using the electron currents from part b) above, show that the components of the electron tensor L
are

L rov vz o3 Eic> + m?s*> Epsc 0  Eipc?
LlO Lll L12 L13 _g Elpsc p282 0 p2SC
L20 L21 L22 L23 - 0 0 p282 0 )
LSO L31 L32 L33 E1PC2 pQSC 0 pZCQ
and hence verify that L*” has the Lorentz invariant form
L* = 4 [pps + phpY + g" (m* — prps)]
k) Write down the corresponding expression for W/ #* and hence show that
2 8¢ 2 2 2772
(| Mg;|7) = =)t [(p1-p2) (P3-p4) + (P1.P4) (P2.p3) — (p1.p3) M? — (p2.pa)m® + 2m* M?]
SOLUTION

a) The QED process e~ u~ — e~ p~ involves a single Feynman diagram at leading order:

17



W D2 P4 s

Applying the Feynman rules gives

—iMy; = [u(ps) - —iey" - u(py)] - (pl_i—gg;)z [a(ps) - —iey u(ps)]
and hence
My; = ‘@f—pg)?g“” [@(ps) v ulpr)] [@(pa)y" ulp2)] (29)

b) For a particle of mass m with four-momentum p* = (E,psinf cos ¢, psinsin ¢, pcos @), the
helicity eigenstate spinors are

cos 6/2 —sin /2
e €' sin 62 . e €' cos /2
up = VE+m p/(E+m)cost/2 |’ w=vE+m p/(E + m)sin 6/2 (30)
p/(E + m)e'® sin /2 —p/(E + m)e' cos 02

For the incoming electron, with p; = (E71, 0,0, p), the two possible spinors are:

1 0
0 1

ur(pr) = vV EL +m /(B +m) | uy(p1) =V EL+m 0 (31)
0 —p/(E1 +m)

For the outgoing electron, with p3 = (FE4, psin 6, 0, p cos #), the spinors are:

uT(p3):\/El+m p/(El—i—m)c ) u¢<p3):\/E1+m p/(E1+m)s (32)
p/(E1+m)-s —p/(E1+m)-c

where ¢ = cos /2 and s = sin 6/2. Noting that the spinors are real, matrix multiplication gives

VY00 = 11 + oo + 33 + Yads
VY ' = 16y + Uags + 3 + Yy
VY2 = —i(Y1s — a3 + Y3y — Pa)
VY2 = 1y — V204 + 31 — Yag

18



Start with @ (ps) and u (p):

2 E 2 2 2F? +2mE
P B GEIE

a,(ps)7 uy(pr) = (Br +m) {C + (B + m)QC (E1 +m) o (E1 +m)

where we have used m? + p? = E? in the last-but-one step. Similarly, for 7!, 2, 4* we have

uy(ps)y uy(pr) = (E1 +m) {El +m8+ 7, —|—m$ ps
= 2 —(E —ip . ip _ 9
o) = (B ) | s = ] = 2ips
w,(ps)7’uy(p1) = (By + m) R R - 2pc
El +m E1 +m
In summary
uy(ps)y*uy(p1) = (2E1c, 2ps, —2ips, 2pc) (33)
Similarly for the other possible spin configurations, giving overall:
uy(ps)y'uy(p1) = 2(Evc, ps, —ips, pe) (34)
ur(ps)y"uy(p1) = 2(ms, 0,0,0) (35)
Uy(ps)y"ur(pr) = 2(Exc, ps, ips, pe) (36)
_l(pS)fYHuT(pl) = —2(ms, 07 07 0) (37)

¢) For the incoming p~, with four-momentum p, = (E», 0,0, —p) and Ey = \/p? + M?, the helicity
eigenstate spinors can be obtained from Equation (30) by setting # = 7 and ¢ = 0:

0 -1
1 0

ur(p2) = v/ B2 + M 0 ; uy(p2) =V Ex+ M p/(Ey + M) (38)
p/(Ey+ M) 0

For the outgoing p~, with 4-momentum p; = (Fs, —psinf,0, —pcosf), the helicity eigenstate
spinors can be obtained from Equation (30) by setting § — m — 6 and ¢ = T:

ur(pa) = VEs + M p/(EercM)_s D wp) =VE+M p/(EersM)_c
p/(Es+ M) - —c p/(Es+ M) —s

(39)
using cos(m — 0)/2 = sinf/2 = s and sin(7m — 0)/2 = cos /2 = c.

A comparison of Equations (31) and (38) shows that, if we make the replacement p — —p, then
u(p2) is of the same form as u (p; ). Similarly, u(p) is then of the same form as wu;(p;), apart from
an overall normalisation factor of —1.

Similarly, a comparison of Equations (32) and (39) shows that, under p — —p, u4(p4) becomes the
same as u|(p3), and u(p,4) becomes the same as uq(ps), apart from overall normalisation factors of
—1.
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The muon currents can therefore be written down directly using the electron current results, by chang-
ing mto M, Fy to Fy, pto —p, T to | and | to 1:

Uy (pa)yuy(p2) = 2(Esc, —ps, —ips, —pc) (40)
Up(pa)¥"uy(p2) = 2(Ms,0,0,0) (41)
Ur(pa)v"up(p2) = 2(Eac, —ps, ips, —pc) (42)
Uy (pa)y* ur(p2) = —2(Ms,0,0,0) (43)

d) Some of the currents vanish in the relativistic limit due to helicity conservation. The allowed spin
configurations are those for which the helicity of the e~ and the helicity of the ;= are both preserved
in the scattering:

e) In the relativistic limit, we can set m = M = 0 and E; = E5 = E. The electron currents become

uy (ps)YHuy(pr) = 2E(c, s, —is, c) (44)
Ur(p3)y"uy(p1) = (0,0,0,0) (45)
wy(ps)y"ur(pr) = 2E(c, s,is, ¢) (46)
uy (ps)y*uqr(p1) = (0,0,0,0) 47)
while the muon curents are:
Uy (pa)y" uy(p2) = 2E(c, —s, —is, —c) (48)
Uy (pa)¥"uy(p2) = (0,0,0,0) (49)
ur(pa)y*ur(p2) = 2E(c, —s,is, —c) (50)
@y (pa)y"ur(p2) = (0,0,0,0) (51)

When the incoming e~ and x4~ are both left-handed (i.e. negative helicity) we have u(p;) = u;(p1)
and u(p2) = u (p2), and the only non-zero contributions to the electron and muon currents come
from Equations (44) and (48). Hence the scalar product of the electron and muon currents is
2E(c, s, —is, c) - 2E(c, —s, —is, —c) = 4E* - (¢* + §* + ¢* + s%) = 8E?
and, from Equation (29), the matrix element squared is
et 4ets?
My = ——— - (8E%)* =
(p1 — p3)* (p1 —ps)?

where now s = (p; + p2)? = 4E2.

The numerator of | My |? is independent of 6 because the incoming left-handed e~ and the incoming
left-handed 1+~ have oppositely directed spins, and the total spin of the initial state is .S, = 0. Hence
there is no preferred spatial direction.

f) For Mgy, with the incoming e~ right-handed and the ;~ left-handed, we have u(p;) = us(p1) and
u(pa2) = uy(p2). The only non-zero combination is now given by the scalar product of Equations (46)
and (48):
Mgy, o 2E(c, s,is,¢) - 2E(c, —s, —is, —c) = 4E* - (¢* + 5% — s* + ¢?)
= 8E? cos® /2
=8E”- 1(1+ cosb).
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Hence the non-zero matrix elements can be summarised as

64

(p1 — p3)t

64

(pl - p3)4

|MRR|2 = |MLL|2 = 482

|Mir|* = [Mgo|? = 45% - (1 + cos)?

1
4
where we must have My, = Mgy and Mg = Mgy, by symmetry of the spin configurations.

g) For unpolarised e u~ — e~ p~ scattering, sum over the final spins and average over the initial
spins to obtain

(IMg*) = %+ % (IMpo]? + [ Mer|* + [ Mir|® + | Mro]?)
2¢?
- (17—]7)482 [14 5(1+ cos6)?] (52)
1 — M3

With p; = (F,0,0, F) and p; = (F, E'sin6,0, E cos 6), we have
(p1 - p3)2 = p% +p§ — 2p1.p3 = —2p1.p3 = —2E2(1 — Cos 9)

For any 2 — 2 body elastic scattering process in the centre of mass frame, the differential cross

section is given by
do 1

_ 2
a0 647?25<|Mfi| )
Hence:

do et 1+ (14 cosh)?
dQ  8n2s (1 — cosB)?

(53)

h) With 4-momenta

p1 = (F,0,0,F) ps = (FE,Esin6,0, E cosf)
pe = (E,0,0,—F) ps = (E,—Esin6,0,—FE cosf)

the scalar products are

p1p2 = ps.ps = 2E° = 357
p1.pa = p2.p3 = E*(1 + cosf) = 1s(1 + cosb)

Hence the spin-averaged matrix element squared of Equation (52) becomes

)0 + () i) |

<|Mfi’2> = i

It was shown in Handout 3 that the Lorentz-invariant cross section do/dt = do/dg? is given by

do 1

— = — | My
3 = Btms(e
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where p! is the centre of mass momentum of either of the initial state particles. At high energies when
masses are negligible (as here), we have p; = E and hence 4(p})? = 4E? = s. Hence

do 1 1 8et
_ M12 — L . . . . .

In terms of s and ¢?, the scalar products are

s = (p1+p2)® = 2p1.p2 = 2p3.14
¢* = (p1 — p3)® = —2p1.ps

P2.P3 = P1-Pa

Hence | 1 g
g e
= o ot [69)39) + (s + 36 (s + 36°)]

d_c]2 - 16mws? ¢t
Using e? = 4mq, this can be written as
2\ 2
1+ (1 + q—) ]
s
¢* = (p1 — p3)® = —2p1.ps = —35(1 — cosb)

to transform the cross section directly:

do B 2ra’?
dg? ¢

Alternatively, start from Equation (53) and use

do  |dcost| do 2 do
dg? | d¢® |dcos® s dcosh
2 2
1 —cosf = i
s
2
14 cosf =2 (1—Q—>
s
i) The Lorentz invariant matrix element for a given spin configuration is
2
e
Mij = ————5 [W(ps)y" wi(p1)] [w(pa)vou; (p
= _p3>2[ k(P3)7" wi(p1)] [ (pa) v (p2)]

where 7,7, k,l =7 or | (or = 1,2) specifies the spin state of each of the incoming and outgoing
particles in the collision. For unpolarised e~ = — e~ p~ scattering, sum over the final spins and
average over the initial e~ and p~ spins to obtain

2

1
50 2 Myl

i:jzkzlzl

DO | —

(IMeif*) =

4 2

ot 2 [Py )] [ (pa)y ()] [0 pa) vty ()] [ (pa) v (o))

(&

I,

64

—_— "W,
(pl - p3)4 .

IS,
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where the electron and muon tensors L** and W#" are given by

D = 3 (o) o)) e (s )y i)

Wiw = Y [@(pa) s (p2)] [@(pa) v (p2)]°

=1
j) Writing out the sum over spins explicitly, the electron tensor L*" is given by

v *

+ [@y(p3) " ur(p1)] [@r(p3)y" ur (p1)]

Substituting the electron currents given in Equations (34)-(37), and using matrix notation, the sum is

LOO LOl L02 L03 El c ms
LlO Lll L12 L13 ps ] 0
720 g2 2 723 =4 ips (Elc ps  1ps pc)—|-4 0 (ms 0 0 0)
L30 L31 L32 L33 pe 0
FEic ms
+4 ps (Ec s —ips c)+4 0 (ms 0 0 0)
ips 1C D ps p 0
pc 0
FEic? +m?s* Eipsc 0  Eipc?
Eipsc p?s? 0 p?sc
8 0 0 p282 0 (54)
Epc? p?sc 0 p2c?
Now consider
L = 4 [phpl + kot + g™ (m* — prps)]
In matrix notation, this is
P p%
1
v p p :
=4 5[ (8 p3 p3 p3)+4]3 () pi pi PY)
Pi D3
} P}
1 0 0 0
0 -1 0 0
o o o1 o | opm)
O 0 0 -1

With p; = (F4,0,0,p) and p3 = (F1, psin 6,0, pcos ), we have

m? — p1.ps = m? — (E? — p*cosf) = p*(cosf — 1) = —2p?*s? ,
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where we have used E? = p? + m? and 1 — cosf = 2sin? §/2 = 2s. Hence

E1 El
y 0 . psin 6
L =4 0 (E1 psinf 0 pcos 9) +4 0 (E1 0 0 p)

P pcosb
1 0 0 0
0O -1 0 0 9 9

+4 0 0 -1 0 2p°s
0o 0 0 -1
2E% —2p*s*  Ejypsinf 0 Eip(1 + cos0)

_y Eipsiné 2p?s? 0 p? sin

B 0 0 2p%s? 0

Eip(1+cosf) p?sinb 0  2p?cosf + 2p3s?

Using the relations sin § = 2sin 6/2 cos /2 = 2sc, 1 + cosf = 2 cos? §/2 = 2¢* and E? = p? + m?,
this is readily seen to be equal to Equation (54).

k) The muon tensor W#* can be written down immediately as

W;uz =4 [pQup4u + PauPov + Guv (M2 - p2p4)} :

Hence
(IMxi|*) = 4—644 (4D + Pt + g (m* — prps)]
(1 — p3) (55
X [popPav + Pappav + Guw (M? — po.ps) ]
giving finally
2 8¢t 2 2 20 72
M) = o si [ (aps) + (prpa) (pa.ps) = (1) MP = (paepa)m® o+ 2m* M)

24



12.

a) The elastic form factors for the proton are well described by the form

o G(0)
Glo) = (1 + |¢2]/0.71)2

with ¢? in GeV?2. Show that an exponential charge distribution in the proton

T

p(r) = poe™>

leads to this form for G(¢?) (insofar as |¢*| = |g?|), and calculate .

b) Show that, for any spherically symmetric charge distribution, the mean square radius is given by
6 [dG(q¢?
0 =~ g ||
G(O) d|q | q2:0
and estimate the r.m.s. charge radius of the proton.

c¢) The pion form factor may be determined in we™ scattering. Use the following data to estimate the
r.m.s. charge radius of the pion.

|¢°| (GeV?) G%(¢%)
0.015 0.944 + 0.007
0.042 0.849 + 0.009
0.074 0.777 + 0.016
0.101 0.680 + 0.017
0.137 0.646 + 0.027
0.173 0.534 + 0.030
0.203 0.529 + 0.040
0.223 0.487 + 0.049

SOLUTION

a) For elastic scattering, there is no energy transfer to the target particle and the 4-momentum transfer
q is of the form ¢* = (0, q). Hence |¢?| = |q|*, and the form factor is given by the Fourier transform
of the charge distribution:

G(¢?) = G(q?) = / e9T () (56)

For a spherically symmetric charge distribution, and choosing the constant vector q to lie along the

+2 axis:
2m +1 oo
G(q2):/ / / '3 o (1)r2drd cos Odg
o J-1 Jo
+1
2

:27r/ p(r)r / 'm0 cos @ - dr

1

00 eiqrcose +1
= 27r/ p(r)r? - [ , } -dr
0 wyr 14

4 o0
= 1/ p(r)rsin(qr)dr
q Jo

[e=]
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‘e

For the exponential charge distribution p(r) = poe "

_ 4mpo

G(¢%) / re~ sin(qr)dr
0

q
4 1 [* . .
_ 71'/)0_- r [e—)\r+zqr o e—)\r—zqr} dr
q 2t Jg
Integration by parts gives
/OO —Qar 1
re”“dr = —
0 o
for any constant o, so that
21 po 1 1 8T Apo
G(¢®) == [ N2 '2}: 2 272
ig [(A—ig)* (A+iq) (A2 +¢?)

Thus the form factor is of the required (“dipole”) form:

G(0)

Glg") = (1 + |¢2]/0.71)2

with G(0) = 8mpy/\? and

A= V0.71GeV? = 0.84 GeV

Note that, from equation (56), G(0) is just the total charge of the target particle:

For an exponential charge distribution, it is easy to check that

2

G(0) = / poe " - Amridr = 47rp0/ r2e™ M dr = 4mpg - N
0 0

consistent with the expression above. It is conventional and convenient to express the charge density
p in units of +e so that, for a proton target, G(0) = 1. This corresponds to choosing the normalisation
constant pg to be pg = \3/8.

b) A Taylor expansion gives

G() = /eiq'rp(r)d?’r = / (1+ig.r — i(g.r)* +---) p(r)d’r
But G(0) = 1 and

/ (q.7)p(r)d’r =0 since the integrand is an odd function of r

so that
Gl) =1~ [ HarPp(r)dr+--.
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But the Taylor expansion can also be written as

dG
G =GO+ 5y
dg?
¢*=0
so that
dG
P = [ Harrpmd

@\,
q =

For a spherically symmetric charge distribution, and choosing q to lie along the +z-axis, this becomes

da 2 +1 00
qz_2 _ / / / % - ¢*r? cos? 6 - p(r) r?drd cos 8d¢
dg o o J-1 Jo

dg?

d 2r  p+1  poo
G - _ / / 1rt cos® Op(r) drd cos Od¢
o o J-1 Jo
5 o0

= —EW/ rp(r)dr
0

But the mean square radius of the charge distribution is, by definition,

oy 1 2 5. 1 o o 1 <4
<r>—m/rp(r)dr—m/o rp(r)47rrdr—m47r/0 rip(r)dr

and hence

<2>__ 6 dG(q2)
YT TGO) die

7*>=0

For the particular case of an exponential charge distribution, we have

G(0)
G(¢*) =
= Ty
and differentiation gives
dG(¢?) 2\ 1 4@ —2G(0)
= o214 2L - l = =7\
dg? G(0) + 22 22 = dg? - A2
q =
—2G(0 12
= <T2> - —6- )\2< ) — "

Hence the rms charge radius is

x 0.197 GeV.fm = 0.81 fm

Vi =Y v

A 0.84GeV

where fic = 0.197 GeV.fm has been used to convert from natural units to SI units.
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¢) From a plot of G(q?) versus |¢?|, the slope at ¢ = 0 can be estimated to be

dG(¢?)
d|q?|

~—-19GeV~?.

¢?>=0
= V{(r?) & /=6 x —1.9 = 3.38GeV ™' = 3.38GeV ™! x (0.197 GeV.fm) = 0.67 fm
In fact, the “dipole” form G(¢?) = G(0)/(1 + |¢?|/A\?)? provides a good description of the pion form

factor data. The dashed curve in the figure (drawn by eye rather than fitted) shows the function

1
1+ |¢?]/(1.05GeV?)

Ge(q®)

so that A2 ~ 1.05 GeV?. The dotted line shows the tangent to this curve at ¢> = 0, with slope

e _-2G(0) =2
dg? A2 1.05GeV?

7°=0

=—-1.90GeV~2,
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13.

DEEP-INELASTIC SCATTERING

The figure below shows a deep-inelastic scattering event e p — e* X recorded by the H1 experiment
at the HERA collider. The positron beam, of energy F; = 27.5 GeV, enters from the left and the
proton beam, of energy Ey = 820 GeV, enters from the right. The energy of the outgoing positron
is measured to be F5 = 31 GeV. The picture is to scale, so angles may be read off the diagram if
required.

a) Show that the Bjorken scaling variable x is given by

Es 1 —cosf
r=—

EQ 2— (Eg/El)(l + COS@)

where 6 is the angle through which the positron has scattered.
b) Estimate the values of %, x and y for this event.
c¢) Estimate the invariant mass Mx of the final state hadronic system.

d) Draw quark level diagrams to illustrate the possible origins of this event. Using the plot overleat of
the parton distribution functions xuy (), zdy (z), #7(x) and xd(z), estimate the relative probabilities
of the various possible quark-level processes for the event. Note that the (Q? in the plot overleaf need
not be exactly the same as the Q? in this event — Bjorken scaling requires only that it be similar. So
do not worry about any relatively small differences between the two Q2 scales.

[Neglect contributions from the heavier quarks s, c, b, t.]

e) Estimate the relative contributions of the F; and F5 terms to the deep-inelastic cross section for the
x and ? values corresponding to this event.
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SOLUTION
a) For etp — e*X at HERA, choose four-momenta to be:
= (£1,0,0,Ey), po = (E5,0,0,—FEj5), ps = (B3, E3sin 6,0, F5cos ) .
Then
¢* = —2p1.p3 = —2E, E3(1 — cos f)
P2.q = p2.p1 — P2.p3 = 2B, Ey — EyE3(1 4 cos0)

The Bjorken scaling variable x is defined as

2p2.q

Tr =

Hence

Es 1 —cosf
r=—

EQ 2— <E3/E1)(1 + COS@)

b) For the particular event shown, we can estimate the e scattering angle to be 6 ~ 50°. We are given

E, =27.5GeV, By = 820GeV, E3 = 31 GeV. Hence

31 1 — cosbH0°

= = 0.091 .
820 |2 — (31/27.5)(1 + cos 50°)

T

Q* =2E,F3(1 — cos ) = 2 x 27.5 x 31 x (1 — cos 50°) = 609 GeV?

P2q | P2Ps E3(1+ cosf) 1 31 x (14 cos50°)
y —= = —_——_— = _——_ — —

=0.074
D2-P1 D2.P1 2k, 2 x27.5

¢) The final state hadronic system has four-momentum p, = p, + ¢. Hence its invariant mass My is
given by

2
M>2<=(pz+q)2=M2+2p2.q—Q2:M2+%_Q2.
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Hence

609
= . 2 _— = . .
Mx \/(0 938)2 + 0.001 609 = 78.0 GeV

d) At quark level, the possible origins of the event are etu — etu, etd — e'd, etu — e',

etd — etd.

The parton model prediction for the e™p cross section is

d2oeP 2o 4 1 4 1-
= L+ (1—9)?% |= —d -7 —d
dwagr ~ g v [9“@) T gdlo) + gule) + gd()
Hence the relative probability for these processes is
— 4 1 4 1-
u:d:u:d= §u(x) ; §d(m) : §H(m) : §d(x) :

From the plot, for z ~ 0.09, we can estimate

06l Q% =500 GeV® |
xf(x)

0.4

0.2

PP B B 1 PP n PP IR
0O 01 02 03 04 05 06 07 08 09 1
Bjorken x

zuy(x) ~ 0.52, zdy(z) =~ 0.26, 2u(x) = 0.10, zd(z) ~ 0.14 .

Remembering that

we obtain the estimates

u(z) =~ (0.52 4+ 0.10)/0.09 = 6.89
d(z) = (0.26 + 0.14)/0.09 = 4.44
u(z) ~0.10/0.09 = 1.11

d(z) ~0.14/0.09 = 1.56 .
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Including the factors of 4/9 or 1/9, the relative probabilities are therefore

u:d:u:d=~3.06:0.494:0.494:0.173=0.73:0.12:0.12:0.04|.

e) The deep-inelastic e™p cross section is

d?oeP Ao’ P 1 2zF7P
5 = " (1 — y)i + _y2—1
dxdQ Q T 2 x
Therefore, assuming the Callan-Gross relation F,” = 22 F®, the F, and F} terms contribute to the
cross section in the ratio

F:F=(1-y):3y>=1-0.075:3(0.075)* ~ 1 : 0.0028 .

1
2

In other words, the cross section is dominated by the F;, term, with the /3 term contributing only
about 0.3% of events.
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a) Show that the lab frame differential cross section d%c /d F3d(2 for deep-inelastic scattering is related
to the Lorentz invariant differential cross section d*c/dvd@Q? via
dQO' . E1E3 d20' . E1E3 d20'
dE;dQ 7 dE;dQ? 7w dvdQ?

where E), and Es are the energies of the incoming and outgoing lepton, v = E; — Es, and Q? =
—q*> = —(p1 — p3)®. [ When you do this, make sure you understand that differential cross sections
transform as Jacobians, not as partial derivatives! |

Show further that
d?o B OMx? d%o0

dvd@?  Q? dazdQ?
where M is the mass of the target nucleon and z = Q?/2Muv.

b) Show that

and that
M 2p2y? _ Ey 0
Q? E 2

1—y

c¢) Show that the Lorentz invariant cross section for deep-inelastic electromagnetic scattering,

d’c  4wa® {(1 - M%Qy?) B N y_22xF1}

dzdQ? Q4 Q? x 2 x
becomes
d?o o? F 29+2F1 . o0
= — cos” = + —sin” =
dE;dQ  4F?sin*0/2 | v 2 M 2

in the lab frame.

d) An experiment consists of an electron beam of maximum energy 20 GeV and a variable angle
spectrometer which can detect scattered electrons with energies greater than 2 GeV. Find the range of
values of @ over which deep-inelastic scattering events can be studied for z = 0.2 and Q% = 2 GeV?.

[You may find it helpful to determine F; — Fj3 (fixed), and F; E3 in terms of 6, and then sketch the
various constraints on £} and F5 on a 2D plot of E3 against F.]

e) Outline a possible experimental strategy for measuring Fi(z, Q?) and Fy(x,Q?) for the above
values of z and Q2.

SOLUTION

a) Changing variables from df) = 27d cos 6 to
Q* = —¢* = 2E,F3(1 — cos )

gives
d?o 1 d?c

d%o 1 d%o 1
= —2F Ey—
dE,dQ? ~ 27 VTP dE,dQ2

dBEsdQ  2rdEsdcosf  2r

dQ?
dcosf
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and hence

d20' . E1E3 dQO' . E1E3 dQO' (57)
dE;dQ 7 dE3dQ? w1 dvdQ?
To change variables from v to z, use
@ @7
v 2Mv = v 2Mx
d?o _|dv d?o
dzdQ?  |dz| dvdQ?
which gives directly
d?o B 2Mz? d%o (58)
dvd@?  @Q? dzdQ?
b) Since
Q* = 4E, F3sin® /2
and
_ v
we have 5 ) 0%
3 .. 92 Yy
— 02 = — = )
S = =

Using v = Q?/2M z, we then obtain

= ——sin“ = (59)

Hence

= " cos® = |. (60)

c¢) The Lorentz invariant cross section for deep-inelastic electromagnetic scattering is

d’c  4wa® {(1 L M2:L'2y2> B N y_QQxFl}

dedQ? Q4 Q? x 2 x
Combining Equations (57) and (58), we have

d20' _E1E3 d20' _E1E32M£L'2 d20'
dE;dQ 7 dvd@Q? 1 Q? dxdQ?

The F5 term contains the combination of factors

2M 2?2 1 M2 222
7 B Q2

1_2MCL’E3 20_1E3 26

O Elcos 2—VE1COS 5

38



where we have used Equation (60). Using Equation (59) for the /| term, we then obtain

d20' E1E3 47’(’0&2 1 E3 2 0 1 Eg . 92 0
dBdQ  « QF K__COS _) ot (__Sm _) ZFl}

Since Q? = 4F, E3sin® 6/2, we finally obtain

d20' . Oé2 F2 2 0 2F1 . 92 0
dE;dQ  4E%sin*0/2 | v 2 M 2

d) Given z = 0.2 and Q? = 2 GeV?, the electron energies F and I3 are fixed via

Q? 2GeV?
E —_ E — = — . 61
L = o T I x (0938 Gev) x 02 eV @D
and
Q2
BBy = —5 62
T 4sin? 6/2 (62)

The experimental constraints F; < 20 GeV and E5 > 2 GeV then lead to constraints on the angle 6.
To obtain these, it may help to think in terms of a graphical solution of Equations (61) and (62) on a
plot of E5 versus F;. Equation (61) corresponds to a straight line running at 45° while Equation (62)
gives an infinite set of hyperbolae, each hyperbola corresponding to a different possible value of 6.

The minimum possible value of 6 corresponds to taking the maximum possible beam energy F; =
20 GeV:
Q° 2

— =1.70 x 1073
4B Es 4 %20 x (20 — 5.33)

sin? /2 =

which gives
Omin = 4.73° .

The maximum possible value of 6 is determined by the minimum detectable scattered electron energy
of £3 =2GeV:
Q° 2

in2g/2 = —
S = I T Tx (21533 %2

=0.034

which gives
Omax = 21.3° .

Strategy: choose several values of 6 between about 5° and 20°, measure reduced cross section at each
value of § and plot versus tan? /2. Should give a straight line (note v is fixed) with slope 2F; /M and

intercept Fy/v:
d*o a? cos? 6/2 F, 2F,  ,0
SRy = |—+ —tan’ =
dE3dQY /) 4E%sin®0/2 v M 2

Each 0 setting requires a different beam energy given by solving the quadratic equation

Q2
4 sin? /2
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This gives

02
sin? /2

Gives F; = 19.1 GeV for 8 = 5° and E; = 7.5 GeV for 6 = 20°.

2F) = 5.33 + \/(5.33)2 +

Note that y = (E; — F3)/E) varies between 0.28 and 0.71 so get healthy contribution from F}.
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15.

HADRONS AND QCD
[This is lifted from the 2016 Tripos Paper]

Suppose there exists a ‘Bogus’ universe in which the laws of physics are the same as in ours, except
in one respect: quantum chromodynamics in the ‘Bogus’ universe is based on an SU(2) colour sym-
metry having only two colours (‘red’” and ‘green’) rather than the three colour SU(3) symmetry of
our own.

(a) Determine which ‘Bogus mesons’ and ‘Bogus baryons’ (or their nearest equivalents) could exist by
constructing any important colour, flavour and spin wave-functions. Categorise the expected ‘Bogus’
hadrons by type (meson/baryon), spin, and the multiplets they inhabit. Compare ‘Bogus’ hadron
structure to that in our own universe, highlighting the main similarities and differences. [Above you
need only consider light quarks types: u, d and s.]

(b) The change from SU (3) colour to SU(2) colour could affect more than the basic hadron structure
considered above. It could have consequences in other areas of particle physics and even further
afield. Discuss any such expected differences between the ‘Bogus’ universe and our own.

[ Aside: if you want practice of multiplying SU (3) multiplets together, consider looking at part (h)
of Question 2 in the January 2025 past Tripos paper for this course. A worked answer to it is also
provided on the course website. ]

SOLUTION
(a) Bogus mesons

A key fact is that the SU(2) colour theory will require a

% (r7 + g7)

equivalent of the SU(3)
1

7 (rF + gg + bb)

colour-anticolour singlet thereby permitting mesons to exist for most of the same reasons they can
in the real universe. A poor answer would omit this altogether. A medium answer would mention it
without proof merely appealing to its plausibility and connection to colour confinement hypothesis. A
good answer might demonstrate that this really is a singlet by consideration of the action of properly
defined ladder operators on it, etc. It might even go on to question whether the colour confinement hy-
pothesis would still be important in the bogus universe. Answers will hopefully consider the potential
spin wavefunctions of the ‘real’ mesons, noting those in the bogus universe could be identical.

A good answer would hopefully re-capitulate the flavour part of the notes (that coveres the meson
nonets) noting that, as in ‘real’-space, the bogus universe allows any spin combinations with any
flavour combinations since the lack of any identical fermions in the mesons leads no need to have
antisymmetry of the overall wavefunction.

The spetra of excited mesonic states would presumably differ in the real universe from that in the
bogus, as the different colout potential would space excitations differently.
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Bogus baryons Here the key fact is that the three colour singlet of SU(3)

1
— (rbg — rbg + gbr — brb + brg — bgr)

V6

is replaced in the bogus universe by the
1
— (rg — gr
\/5( 9—gr)

two-colour singlet of SU(2), meaning that the colour confinement hypothesis (if still needed!) would
permit two-quark baryons and forbid three-quark baryons. Again, a poor answer would neglect to
mention this at all. A medium answer would just state it. A good answer would argue the case
clearly.

The disappearance of one colour would not change the approximate (u,d)-isopin SU(2) flavour or
(u,d, s)-isospin SU(3) flavour symmetries available to nature — but the need for only two quark
states would require us now to consider only the 3® 3 =6 @ 3 notthe 3®3®3 =10+8 +8 + 1
version of before. A good answer would work out that the 6 is symmetric in the two quark flavours,
while the 3 is antisymmetric.

What flavour/spin/colour combinations would be allowed? Assuming the lowest angular momentum
states would have L. = 0 making them even parity, and given that the colour singlet is already an-
tisymmetric, we’d need flavour x spin to be symmetric. We would need to combine the 6 with a
symmetric S = 1 spin-triplet, or the antisymmetric 3 with an antisymmetric S = 0 spin-singlet.

The bogus (u, d, s)-baryons would therefore be expected to come in an S = 1 hextet and an S = 0
triplet of di-quark states.

Note that the charges of these bogus baryons would be non-integer: the lightest three (uu, ud, dd)
having charges 3, 3 and —2 respectively.

(b) Here is a non-exhaustive list of potential answers:

* Mesons play very little role in the day-to-day life of organisms on present-day earth, as they
can usually decay (via q gbar annihilation) to other things, and so life on earth is based on the
more stable bosons. Changes to the mesonic structure the measons might be expected to be
less important in the current universe, though presumably they would make considerable differ-
ences to some parts of the big-bang/cosmological models around the transition from radiation
to matter domination.

* The change in baryon structure, however (removal of the proton!!) would have very profound
implications for chemistry. With the lightest baryons now being fractionally charged, atoms as
we know them would cease to exist. Indeed the whole periodic table is based on assembling
elements from two nucleon types (proton and neutron) and would have to change to a system
based on three nucleons ... so elements would be in trouble too.

¢ The bogus universe would only have 23 — 1 = 3 gluons, not the 3*> — 1 = 9 gluons in the real
universe.
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16.

* The rate of running of ag; will change due to fewer gluons/colours.

* The linear term in effective colour potential between two quarks would probably be different
(less?) as a result of fewer quarks, possibly making jets less jetty.

* The possiblilty of gGqq states would be present in both Bogus and Real universes. But whereas
the real universe forbids ¢gqq and allows qqqqq states, the Bogus would allow gqqq and forbid
qqqqq due to the change in which contains a colour singleton.

* Colour factors would change leading to, say, some hadron-hadron cross sections to get enhanced
or reduced.

* A good answer that has not already considered this point in an earlier part (a) or (b) might
andvance some ideas on why/whether the colour confinement hypothesis would hold for SU (2)-
based colour.

WEAK INTERACTIONS
Following on from Question 10, show that, for a free particle spinor v:
V31 =) r = Yry"3(1 —7°)¢L = Yry"5(1 —7")r = 0
P35 (1= 7")dn = 95 (1 = 7°)¢

where ¢, = (1 —~°)¢ and ¢¥r = (1 + 7°)¢. Explain the relevance of these results to the weak
interactions. What are the equivalent results for currents of the form Ev“% (1+~%)?

SOLUTION

From Question 7, we have (7°)? = 1 and hence

1-=7")A+7) =0 (1-=9")=201-7") 1A+’ =2(1+7")

Also from question 6, y°y* = —~#~5 and so
L+ =9"1=9") (=" =7"(1+7")

Also from question 7:

Hence



17.

The V — A interaction of a charged W* boson with a quark or lepton gives rise to currents of the
form Efy“%(l — %)% in expressions for the matrix element M;;. The results above show that only the
left-handed chiral component ¢, = %(1 — ~°)¢ of all the particles or antiparticles involved produce
non-zero matrix elements in charged current weak interactions.

For currents of the form Ev“% (1 + ~°)1, the corresponding results are:
UrY* 5 (14" = P53 (1 +9")er = Y3 (1 +97)r = 0
YrY*S(1+ ") r = vy 5 (1 + 7))
Thus only the right-handed chiral component 1) = %(1 + ~°)?) now gives non-zero currents.

Interactions of the Z° boson with quarks or leptons give rise to currents of both of the above forms:
@7“%(1 —v5) and E’y“%(l + 7°)1, with relative strengths determined by the left- and right-handed
coupling constants ¢z, and cg. The former involve purely the left-handed chiral components, the latter
purely the right-handed chiral components of the particles or antiparticles involved.

a) In Question 6, the decay rate for 7~ — e~ 7, was found to be 1.28 x 10~* times that for 7~ — " 7,,,
whereas, on the basis of phase space alone, one would expect a higher decay rate to electrons. Explain
why the weak interaction gives such a small decay rate to electrons.

b) The Lorentz invariant matrix element for 7= — 1~ 7, decay is

2
g o
My = - o g [P T(p3)Y (1 — 7°)v(pa)
My

where pi, p3 and p, are the 4-momenta of the 7~, 11~ and 7, respectively, and f; is a constant which
must be determined experimentally. Verify that this matrix element follows from the Feynman rules,
with the quark current wy*(1 — +°)v taken to be of the form — f,p}.

[ The free particle spinors u, v cannot be used for quarks and antiquarks in a hadronic bound state; a
quark current of the form given can be shown to be the most general possibility. ]

¢) Show that (as in Question 6) the Lorentz-invariant matrix element squared is

|Mfi|2 = 2G%fﬁmi(mi - mi) .

[ Use the spinors uy, us, v1, v for this calculation rather than the spinors us, uy, v, vy . Work in the 7~
rest frame, and choose the 4-momenta of the 1.~ and 7, to be p; = (E, 0,0, p) and ps = (p, 0,0, —p),

with £ = /p? + m?. |

d) Show that the square of the non-invariant matrix element 7t; is proportional to 1 — :
GQ
[Thf? = ZE fome (1 - B)
where [ is the velocity of the u~.

SOLUTION
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a) The antineutrino fromthe 7~ — e~ v, orm~ — u~ v, decay always has positive helicity. Therefore,
to conserve angular momentum (the 7~ has spin zero), the e~ or ;~ must also have positive helicity:
The W boson couples only to the left-handed chiral component vy, = %(1 — ~°)9. In the relativistic

limit, this implies that the W boson couples only to negative helicity particles or positive helicity
antiparticles. Since m. < m,, the e~ is highly relativistic, S =~ 1. In this limit, a positive helicity e~
cannot couple to the W boson, and the decay 7~ — e~ 1, is therefore completely suppressed.

The .~ is much heavier than the electron (m,/m, ~ 0.76) and so is produced with a value of /3
appreciably less than 1 (8 = 0.73: see below). Since the p~ is not ultra-relativistic, its left-handed
chiral component contains an appreciable mixture of both the left-handed and right-handed helicity
eigenstates. Therefore, there is an appreciable probability that the 1~ can be emitted with positive
helicity, as required in the 7~ — ©~ 7, decay.

b) From the Feynman rules:

. gw

. . . _Zg v — v
—iMg = —i== - §ifapl - 5—5 - u(ps) - —i==7"3(1 = ") - v(pa) (63)

\/§ q” — My \/§

where the factor uy#(1 — ~°)v that would have appeared for free quarks and antiquarks has been
replaced by i f,p}. For pion decay, we have ¢*> = m2 < m¥%;, giving

2

g PN
M = - e G P (p3) 7 2 (1 — +7)v(pa) |-
My
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¢) The 1~ 4-momentum is p3 = (£, 0,0,p) with E* = p® + m?. The possible y1~ spinors are:

1 0
ui(ps) = E+m, p/(E(—]i—mu) , us(ps) = E +my (1)
0 —p/(E—i—m#)

with corresponding adjoint spinors

al(pS) Y E + my, (1707 _p/<E + m#)70)7 a?(p?l) =V E + my, (07 ]-707p/(E + mu))
The 7, 4-momentum is p, = (p, 0,0, —p), and the 7,, spinors are therefore
—1

vi(ps) = \/p v2(ps) = /P

_ O = O
O = O

In the 7~ rest frame we have p; = (m.,,0,0,0). Hence only the 4 = v = 0 term in the sum in the
expression for My is non-zero:

2
g _
My = = fpiu(ps)7°5 (1 = 7°)v(pa)

dmyiy
9\22\/ 0 5
— 1
= mﬁrmwu(mh 5(1 —7°)v(pa)
But
1 0O -1 0 0
0 1 -1 1
s=mlp) =3 | 5 g 1 o | VP[] =0
0O -1 0 1
1 0O -1 0 -1 -2
0 1 0 -1 0 0
%(1 - ’75)7}2(294) = % -1 0 1 0 \/1_) 1 = %\/Z_) 2 = UQ(p4)
0O -1 0 1 0 0

Thus only the spinor vy(p4) gives a non-zero contribution. This is as expected; for an antiparticle
travelling in the —z direction, v, is the positive helicity eigenstate, and antineutrinos always have
positive helicity.

Premultiplying by 7° gives

10 0 O —1 -1
01 0 0 0 0
70%(1 - 75)712(]94) = ’Yovz(m) =10 0 -1 o VD L= VP _1
00 0 -1 0 0
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Premultiplying in turn by @; (p3) and us(p3) gives

W (p3)1° L (1 = V) oa(pa) = /B + mp/p (—1 + = fm ) (64)
Ua(p3)y (1 — 7" )va(ps) =0 .

Thus only the spinor u; (ps3) gives a non-zero contribution. This was anticipated in part (a) above; the
1~ 1s expected to have positive helicity, and for a particle travelling in the 4z direction the spinor w4
is the positive helicity eigenstate. In summary, the only non-zero combination of spinors is as shown
in the figure overleaf, and, from equations (63) and (64), the matrix element for this case is

2
Iw ST o
Mi: iy E 1 -1 .
= o =
Vu < [ =u

To find p (the centre of mass momentum), use energy conservation m, = £+ p:
m2 = (E+p)2:E2+p2+2Ep:2p2—i—mi+2p,/p2+mi

2
= 4p*(p* + mi) = (mfr — mi — 2p2)

= 4p2mi = (m?T — mi)2 — 4p? (mfr — mi)
mz —m;,
TP o
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(or use the result derived in question 3). Hence

m2 —m (my +m,)?
B mmy = = p oty = g = 5 oy = o
m2 —m? 2 — -2
S LT L S LS S L T — T
E+m, 2m., (mr +my,)? M +m,  my+m,
Hence
i m—— p
My = Mg/ B -1
f 1 %V m +mu\/}3< +E+m#)
_ v f My +my, mi—mp  —2m,
4 %v e 2m, 2my, My +my,
2
gw
Using the relation
V2 8miy

we finally obtain

<|Mfi|2> = QG%fﬁmi(mi - mi)

d) The non-invariant matrix element squared is obtained by extracting a factor of 2 for every initial
state and final state particle:

|Mgi|* = 2E, - 2E,, - 2E, - |Tti|* = 2my, - 2E - 2p - [T

But 2 2 2 2
ms —m ms;+m
E= r — P = Mg — - £ = = =
m p=m 2my, 2my,
Hence
111 , 1 11 202 20 92 2
|ﬂ1| - 8mﬂ— E_ |Mfi| 3 i E_QGF Trmp,(mw m,u,)
B 8Mmy m2 +m? ' m2 —m? 26 famy, (e =)
_ M 2 £2 9
T m2 +m2 -G frm,
s 3
But
1_g—1 p m2 — mi QmZ
- E T o m24+m2 om2+4+m?
giving finally
s GE
|Th|* = wam,r (1-5)
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DEEP INELASTIC SCATTERING

Find the maximum possible value of ) in deep-inelastic neutrino scattering for a neutrino beam
energy of 400 GeV, and compare with m%;.

SOLUTION
In terms of the lab frame neutrino beam energy F;, we have Q? = 2M E,zy. Since 0 < x < 1 and
0 < y < 1, the maximum value of ()? is

(Q¥)maz = 2ME; = 2 x (0.938 GeV) x (400 GeV) = 750.4 GeV?

This compares with m%, = (80.4 GeV)? = 6460 GeV?, justifying the approximation ¢? < m¥; for
current neutrino experiments.

The figure below shows the measured total cross sections o(v, + N — p~ + hadrons)/E, and
o(7, + N = p~ + hadrons)/Ey for charged-current neutrino and antineutrino scattering, averaged
over proton and neutron targets.

0 10 20 30 50 100 150 200 250 300 350
10 _I | T | T | T T 17T | LI | LI | LI | LI | LI |_ .
- I vN .
08 = o038
;P skl by
S C % % [ ]
5 C -T ]
D o vN E
W 04F é Jo4
£ > e g2
o) I o, i e S 1 - By e g8 g gL -
e g delra gt
F 2 ﬂi_ ]
02F - — 0.2
r [1] @ NuTeV [5] < CDHSW 9] & GGM-PSv [13] w CRS T
r [2] O CCFR (96) [6] & GGM-SPS [10] A THEP-JINR [14] & ANL ]
- [3] X CCFR (90) [71 ¢ BEBC WBB [11] v IHEP-ITEP [15] ® BNL-7ft =
F |41 O CCFRR [8] & GGM-PSv [12] A SKAT [16] X CHARM |
00 -I L I L I L I 1 I L1 1 1 I 1 1 1 I L1 1 1 I L1 1 1 I 1 1 1 I L1 1 1 I_ 00
0 10 20 30 50 100 150 200 250 300 350
E, [GeV]

a) Draw Feynman diagrams for the quark-level processes which contribute to neutrino-nucleon and
antineutrino-nucleon scattering. (Neglect the s, ¢, b and t quark flavours).

b) Show that the parton model predicts total cross sections of the form

G2
O_VN %(O_Vp + O_l/n) _ 21;8 [fq i %fq]
-~ -~ B 2
N =4 (0" +0™) = S [+ i)
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where s is the neutrino-nucleon centre of mass energy squared, and f, = f, + fa and fq = fa + f3
are the average momentum fractions carried by u and d quarks and antiquarks.

c¢) Estimate the average fractions of the nucleon momentum carried by quarks, antiquarks and gluons.
[Take Gr = 1.166 x 107° GeV 2]
SOLUTION

a) For neutrino-nucleon scattering, the possible quark-level processes are v, +d — p~ + u and
v, +u—p +d:

In the second case, the initial U in the nucleon must belong to the quark-antiquark sea, having been
produced via g — ut for example. In the first case, the initial d could be either a valence quark or a
sea quark.

For antineutrino-nucleon scattering, the possible quark level processes are 7, + u — p= + d and
v,+d—pt 4w

b) For vp scattering, the differential cross section in the quark-parton model was derived in the lec-

tures:
d®o"  Gizs

dedy 7

[d(z) + (1 - y)*u(x)]

The total cross section is therefore

1 pl d2gvP G2 1 G2
o= [ [ ordedy = [ adta) + hoa(a)] do = 5 [fa+ 4]
0 0

where



are the fractions of the proton’s momentum carried by d quark and w antiquark constituents, respec-
tively.
For Dp scattering, we have 7, +u — p* +dand 7, +d — pt + @

d*c™  Gizs -

[(1 = y)*u(z) +d(z)] .

dedy 7
For scattering from a neutron target, we have
d?o"™  Gius Gixs -
— n 1— 2—n — F 1 — 2
o = R [+ (1= @) = T (o) + (1L )]
d?0™  Giuzs 5 o Gizxs ) _
Ty = o (=P e) + 0 @)] = TS [ () + )]
using d"(z) = uP(x) = u(x) etc. Altogether then, the total cross sections are as follows:
Gis o Gis
o =— i [fd+3fu] o’ = [ fu+fd:|
G2 s - G2 s
vn ~F° [fu 3fJ:| o’ — ~F° |: fd + fu:|

Averaged over proton and neutron targets:

vN 1 vp vn G%S 1 1
o =5(0"+o ):_[fd+fU+§fJ+§fﬂ:|

2
o = (0™ +0™) = S [ fa A+ St £

¢) In the lab frame, we have s = (p, + px)? with p, = (E,, 0,0, E,) and px = (M, 0,0,0):
s=M?*+2p,py = M> +2ME, ~ 2ME,, ,
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for £, > M. Hence

o'V GEM
E, = 1;. [fq + %fq}
o’V GAM
Eu - 1;. [%fq + f(ﬂ

where f, = f, + fs and f; = f; + f; are the momentum fractions for quarks and antiquarks,
respectively.

Thus, at high energy, o~ /E, and o”N / E,, are expected to be constant, as seen in the figure.
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Comparing with the measured values gives (1 cm? = 1026 fm?)

falp o T oY wx(0.68x 107 cm®GeV ) 1 043

T3 GZM B, T (1166 x 1075 GeV2)2 x (0.938 GeV) (0.197 GeV fm)?

py g T o 7 x(0.33x 107 cm? GeV ) 1 091

3T G2 MOE, T (1.166 x 1075 GeV2)2 x (0.938 GeV) (0.197 GeV fm)2 ~
Hence

3
fo =3 (3x043-0.21) = 041
3
fg =g (8% 0.21-0.43) = 0.08
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with the remaining momentum, f, ~ 0.50, being carried by gluons.

20. The figure below shows measurements of the cross section do/dQ? from the H1 experiment at HERA
for the neutral current (NC) processes e p — e~ X and e™p — e'X, and the charged current (CC)

processes e p — X and e*p — 7. X, with unpolarised incoming e or e~ and proton beams:
a) Draw Feynman diagrams for the quark-level processes which contribute to CC e"p — v.X and

etp — 7. X scattering. (Neglect the s, ¢, b and t quark flavours).

b) The HERA data extends to values of Q% > m3,. Starting from the parton model cross sections
d?0 /dxdy for (anti)neutrino-nucleon scattering derived in the lectures for Q? < m;, explain why
the CC cross sections can be written down directly as

a2 B G2mA a

et 0 = )+ -t
d2 - G2 _

0 g Bt 4y

c¢) Explain why the e p CC cross section is always higher than the e™p CC cross section.

d) Explain why the CC cross sections become approximately constant as (Q* decreases, while the NC
cross sections grow indefinitely large. Account approximately for the observed slope of the NC cross
sections at low values of Q2.

e) Explain why the NC cross sections become similar in magnitude to the CC cross sections at high
values of Q? ~ m2.

f) (optional) Explain why the two NC cross sections are equal at low (2, but differ at high Q2.
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Neutral and Charged Current
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SOLUTION

Measurements at HERA of the NC processes e p — e~ X and e™p — e X, and the CC processes
e p— v.Xand etp — 7 X, for unpolarised e*, e~ and proton beams:

a) For the CC process e " p — 1. X, the quark-level processes are e"u — v,.d and e~d — v

e Ve e” Ve

W W

=l

u d d

For e*p — 7,.X scattering, the quark-level processes are etd — 7,u and etu — 7.d:
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W W

d u u d

b) For vp scattering, the differential cross section in the quark-parton model for Q? > m3, was

derived in the lectures:
d’e"*  Ggas

dedy 7
Since Q? = sxy (for s > M?), we have

d?o dy d%o 1 d?o

dzd@? ~ dQ%?dady sz dady’

[d(z) + (1 —y)*u(z)] .

and hence Lo o
o™ GE 2

The W propagator contributes a factor —ig,,, /(¢*> — miy) = ig,,/(Q* +mi,) to the matrix element
M;;. For Q% < mi, this becomes ig,,,/m3,. Hence, relaxing the approximation Q* < m#; gives an
extra factor m%, /(Q* + m3y) in the matrix element, or m3y, /(Q? + m%;)? in the cross section:

2o G2 mb

——=—E___W___Td2)+ (1 —y)*uz)] .

dzdQ? T <Q2+m%v)2 [ ( ) ( y) ( )]
For vp scattering, it was only necessary to average over the two possible spin states of the proton,
since the incoming neutrino is always in a unique spin state. For unpolarised e*p scattering, it is
necessary to average over the two possible e spin states and over the two possible proton spin states,
so that, relative to (anti)neutrino scattering, an extra factor of % is needed.

For e p — 1,.X, summing over e u — v.d and e"d — ., with their appropriate y distributions,
and including the extra factor of one-half gives
4
d*c _ GEmiy
2mz(Q? + miy)

2 [u(@) + (1 — y)%d(z)]

Similarly, for etp — 7.X scattering, summing over e*d — T,u and et — 7.d gives

a2 B G2 3
et 0 )+ -t

¢) The e~ p CC cross section is higher than the e*p CC cross section because u(z) is larger than d(x)
(by about a factor of two). In addition, the d(x) contribution to e*p is suppressed by the extra factor

(1 —y)>
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21.

Neutral and Charged Current
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d) At low Q?, the propagator factor mys,/(Q? + m%;)? in the CC cross sections tends to a constant
(unity), whereas the photon propagator factor 1/Q* in the NC cross sections grows without limit.

From the plot, the cross section falls from approximately 90 pb GeV 2 at Q> = 100 GeV? to approxi-
mately 0.33 pb GeV ™2 at Q% = 1000 GeV?. Parameterising the cross section as do/dQ? oc 1/(Q?)",

we can estimate

A(logyo @?) b 3—2
so that we have do/dQ? ~ 1/(Q?)%35 ~ 1/Q*7, reasonably close to 1/Q*.

2.35

e) At low Q?, the two NC processes e p — ¢~ X and e™p — e*X are dominated at leading order by
single photon exchange and the leading-order cross sections are equal.

At high QQ?, there is a significant contribution also from the weak interactions, via Z° exchange. The
e*p and e~ p cross sections differ because the contribution from F3 changes sign, similarly to the sign
change for the F3 contributions to neutrino and antineutrino scattering. Hence, for Q? ~ m2, the e*p
and e~ p NC cross sections differ, and become similar in magnitude to the CC cross sections.

NEUTRINO OSCILLATIONS

In the Daya Bay experiment (arXiv:1203.1669 and arXiv:1310.6732) electron antineu-
trinos from six nuclear reactors were observed in six detectors in three experimental halls, some
~ 0.5 km and some ~ 1.5 km distant from the reactors. The nuclear reactors emit electron antineu-
trinos of mean energy £ ~ 3 MeV, and the detectors can resolve their energy to within a few percent.

56



a) Show that neutrino oscillations associated with the (solar) mass-squared difference |Am?3,| ~
7 x 107°eV? can be neglected for the Daya Bay experiment, and that

P(ﬁe — ﬁe) ~1-— sin2 2613 Sin2 A23

where

b) In the limit [Am32,| > (E/L), explain why a given measurement, P, of the survival probability
P(v, — 7,) determines the neutrino mixing to be sin? 20,3 = 2(1 — P).

¢) In the limit |[Am3,| < (E/L), show that a given measurement, P, of the survival probability
P(v, — 7.) determines the neutrino mixing to be sin® 203 oc 1/(Am3,)?, with constant of propor-
tionality (1 — P)(4F/L)?.

d) The third experimental hall is a (weighted) distance of 1.63 km from the reactor complex. A detec-
tor here sees a fractional deficit in the number of electron antineutrinos of 0.071 £ 0.010, compared to
that expected from the neutrino fluxes of the reactors. Place a lower bound on the value of sin® 265.

The deficit is observed to monotonically decrease for neutrinos of energy greater than 4 MeV average.
What bound does this place on Am3,?

e) The plot below shows the ratio of the number of observed to number of expected electron antineu-
trinos, as a function of the effective detector-reactor distance L.g over the observed neutrino energies
E,. 1t comprises data from all the detectors in the three experimental halls. Estimate values for
sin® 26,3 and Am2,.

- 'y | —— EH2
~ L I -ﬁ“ l —e— EH3
7 - T1|+ \
o 0.951 Y ”
= | +
o

L L L L L L | L L L | L L L L
0 0.2 0.4 0.6 0.8
L,/ E, [km/MeV]

f) Sketch your results of parts (d) and (e) on a plot of the values of sin” 26,5 and Am§3, as fitted to the
data by the Daya Bay collaboration.
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SOLUTION

a) For E = 3MeV, the wavelength associated with the solar mass-squared difference |Am2,| ~
7 x 107°eV?is
drE 4w x 3MeV

Mo = =
T Am, T 7Tx 105 eV?

x (0.197 GeV fm) = 105km .

For the Daya Bay experiment, located . ~ 1km from the reactor core, oscillations due to Am?,
therefore do not have time to develop appreciably and can safely be neglected.

It was shown in Handout 12 that, neglecting CP violation (i.e. assuming the PMNS matrix is real)
and using |Am3,| &~ |Am?,]|, a general expression for the survival probability P(v, — v) is

e

P(ve = ve) ® 1 —AUZUZsin® Ay — 4 (1 — UZ) Uz sin® Ao .

where Am2, L Am2.L
m m
Ay, = 127 Aoy = — 237
12 ) 23 4E

The result is the same for P(v, — 7.), as the PMNS matrix is assumed to be real. Neglecting the
term involving Am?,, and using U3 = sin 613 = s;3, we obtain

P, =)~ 1—4(1-UZ) UZsin® Ao
=1—4(1 - siy) siysin® Ao

=1 — sin% 20,5 sin? Aos . (65)

b) As |Am3,;| — oo, the oscillation wavelength

Aog =
Am3,



becomes much smaller than the dimensions of the detector and the experiment is no longer sensi-
tive to individual oscillations but only to an average over many oscillations. The factor sin® Ao in
Equation (65) should therefore be replaced by its average value of one-half:

Plve—=v,)=1-— %sin2 2015 .

A measured value P of the oscillation probability P (v, — v, ) therefore determines the mixing to be
sin? 203 = 2(1 — P).

C) If Amgg < (E/L), then A23 = (Am§3L>/4E < 1 and SiIl2 A23 ~ (Agg)z. Hence

AmZ, L\’
P(ve — v.) = 1 —sin? 2013(Ags)* = 1 — sin® 20,5 ( Tg’ ) )
This can be rearranged to give
AEN® 1
in?203=(1—-P) | — ) ——5— 66
sin® 26,3 = ( ) 7 (AmZ,)? (66)

i.e. sin? 20,3 o< 1/(Am32;)? with constant of proportionality (1 — P)(4E/L)>2.

d) The smallest compatible value of sin? 20,3 would occur if the third experimental hall is positioned

. . ey . . Am2. L
at a minimum of the survival probability, viz., sin? % = 1.

Then sin® 20,3 = 1 — P = 0.071 £ 0.010, or sin® 26,5 > 0.071 — 2 x 0.010 at approx. 97.5%
confidence.

If neutrinos above 4 MeV show increasingly less chance of oscillating with increasing energy, then

sin? AT—%L < 1forall E > 4MeV, and hence, for E = 4 MeV:

1.267Am2;(eV?)L(m) L
E(MeV) 2

|Am3,| < 3.0 x 1073 eV?

e) Here is the plot with the “best fit” line provided by the Daya Bay collaboration.

—— EH1
—— EH2
——EH3

Tm 0.95 — Best fit
>
R i
0.9
I S S U SRR S
0 0.2 0.4 0.6 0.8

L/ E, [km/MeV]

1

The minimum is around (480m/ MeV, 0.908) = (%Wm
. 23

0.09, |[Am2,] = 2.6 x 1073 eVZ.

, 1—sin? 2013), whence sin® 20,5 =
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22.

a) It was shown in the lectures (see Equation (14) of Handout 12) that a general expression for the
probability that an initial v, oscillates into a v, is

P(ve = v,) =2 Re (Ul Uz Uy [e7 P50 —1])

ni=ej
i<j

Show that

P(ve = v,) = =4 Re(UaUpUUyy) sin® Ay + 2 Im(UnUp Uz Uy sin 24

wi=ej pi~ej K
1<j 1<J
where
L= J
YT 4R AE
b) Use the unitarity of the PMNS matrix to show that

(m? —m?)L _ Am3; L

A

Im(UelUslU::;ng) = —Im(UegUzzUngug) = —Im(UelelU:QUHQ) = —J, say.

¢) Hence show that

piej

Plv. —v,) =—4 Z Re(U.;U;;UU,;) sin? Ajj + 8J sin Aqgsin Ayz sin Agg

[You may wish to use the trigonometric identity

A B A+ B
sin A + sin B — sin(A + B) = 4sin — sin — sin -]
2 2 2
d) The standard parameterisation of the PMNS matrix is
—3d
U Ue Ues C12€13 512€13 s13e”"
_ ) 0
Uul Uu2 UM3 = | —S12C23 — C12523513€" C12C23 — S12523513€" $23C13
) )
U Un Us S12823 — C12C23513€" —C12823 — S12C23513€" C23C13

where ¢;; = cos 0;; and s;; = sin 0;;. Show that, in this parameterisation,
1 . . . .
J = 3 cos 613 sin 2615 sin 26,3 sin 26,3 sin &

and find the maximum possible value of |.J| given the present experimental knowledge of the mixing
angles 615, 023 and 6;3.

e) The conversion probabilities for antineutrinos are obtained by replacing U by U*. Show that
P(v. = v,) — P(Ve = 7,) = 16J sin Ay sin Ay sin Ay .

f) It is proposed to build a “neutrino factory” to search for evidence of CP violation in neutrino
oscillations; P(v. — v,) # P(V. — 7,). A neutrino factory would produce an intense beam of
neutrinos with typical energy 10 GeV. Roughly how far away should a neutrino detector be positioned
to optimise the chances of observing CP violation, and how large an effect might be expected ?

SOLUTION
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a) It was shown in the lectures (see Equation (6) of Handout 12) that

P(Ve — VM) = QRe(UelU* Ue*2Uu2 [e_i(El—E2)t . 1])

pl
+ 2Re(Ua U UZsUys [em(Fr=Es)t _1])
+ 2Re(UeaU3, Uy Uys [emiF2mE)t _1])

or equivalently
P(ve = v,) =2 Re (Ul Uz Uy [e7 P50 —1])
i<j
where e~*Fi! is being used as a shorthand for e?* £ For any pair of complex numbers z; = 1 +iy;

and 2o = 79 + 1y,, we have
Re(z122) = Re [(x1 + iy1) (22 + iy2)] = 122 — 1192 = Re(z1)Re(22) — Im(2q)Im(22)
and hence each term in the sum is

Re (Uez‘U*U* U,j [g—i(Ei—Ej)t _ 1]>

i~ ej
=Re(UeU U U, )Re [e PPt — 1] — Im(U U3 US U,y )Im [e” P Bt — 1]
:Re(UeiU;iU:ij) [COS(EZ‘ — Ej)t - 1] + Im(UeiU:jiU:quj) Sil’l(EZ' — Ej)t
= — 2Re(UeiU;Z’U:j‘qu) SiIl2(EZ‘ — E]>t -+ Im(UeiU;iUngMj) SiH(Ei — E])t
= — 2Re(Up U UL U,;) sin® 20 + I (U Uy, U U5 ) sin 205
where ) ) )
A= (m; —mj)L _ Ami; L
v 4F - 4F
and we have used the approximation
m2L
pix — Eit = (p; — E))r ~ — 5E

Hence

P(ve = v,) = =4 ) Re(UaUp,UsUpy) sin® Ay + 2 ) Tm(UnUp,UsUpg) sin 24| (67)

pie;j pie;
1<J 1<J

b) Unitarity gives

Ue*lU,LLl + U:2Uu2 + U:3Uu3 =0
UelU:;:[ + UGQUZQ + U€3U;3 = 0

so that
(U Uy Uy Usis) = I [Uas Uy (=U5 Uyt = Uy Up)] = —Im(UaaUia U2 U,2)
Im(UegUzzUQ})ng) =Im [(_Uelel — UegU:?))U:gng] = —Im(UelelU:gng)
In summary:

(U U\ Ul Ups) = —Im(UpoUry Uiy Ups) = —Im(Ua Ur UU) = —J |.
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¢) The last term in Equation (67) involves

Pr =2 Im(UyUy Uz U, ) sin 24

ui~ ej ,UJ
1<J

= 2Im(UelU;1U:2Uu2) sin 2A12 + QIm(UelelU;ng) sin 2A13 + 21m<U62U;2U:3UM3) sin 2A23
= 2J(sin 2A15 — sin 2A13 + sin 2A3)
But the A;; are related via
Ajg 4+ Agg = Ayg

SO
P[ =2J [Sin 2A12 — sin 2(A12 + Agg) + sin 2A23]

Using the trigonometric identity

A B A+ B
sin A+ sin B —sin(A+ B) = 4sin§ sin; sin ;
this becomes
P] = 8Jsin Alg sin Alg sin Agg
In summary
Plv. = v,) =-4 Z Re(U;U,,,UZU, ) sin Azy + 8J sin Ao sin Az sin Ags | . (68)
1<jJ

d) We have

Since U,; = ci9¢13 and U,y = s1o¢13 are real, and since
Im(2122) = Re(z1)Im(z2) 4+ Im(z1)Re(22)

we have
J = Ueerg [Re(UMl)Im(ng) — Im(Uul)Re(ng)] .

But Ulﬂ = —S8192C23 — 6128235136i5 and ng = C12C23 — 5128238136i6 so that

2 . .
J = C12€13512 [(812623 + C12523S513 COS 5)812823813 sin § + C12893513 SIn (5(012623 — 512523513 COS (S)}
2 2 : 2 .
= C12C]3512 [312023823513 Sin 0 + €]5C23523513 Sin 5]

2 .
= C13C12512C23523513 sind .

Using sin 26015 = 2sin 015 cos 015 = 2s15¢14 etc. this can also be written

: 1 : . . :
J = 033813812012823023 sind = g COS 613 S 2&12 Sin 2613 S1n 2623 sind |.

Experimentally, we have

SiIl2 913 < 0.065 .

1
Clg =~ 085, S19 =~ 053, Co3 X S93 N ——;
V2
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Taking 60,3 as large as possible (s13 = 0.25, ¢;3 = 0.97) and sind = 1 gives

1
Jmaa: == 053813812612523623 == (097)2(025)(053)(085)5 = 0.053

e) The conversion probabilities for antineutrinos are obtained by replacing U by U™ in Equation (68):

P(ﬁe — vﬂ) =—4 Z Re(U;UmUer;j) sin2 Aij + 8jSiI1 Alg sin A13 sin Agg

i<j
where B
J=Im (U:1UM1U€2U;2) .
But
Im(U;UuergU;) = —Im(UelelU;}U“g)
so J = —.J and hence

P(v. - v,) — P(V. = 7,) = 16J sin A5 sin A3 sin Agg

Therefore, unless U is purely real, we have CP violation:

Pv. - v,) # P(V. = 7,)

As an aside, it is easy to show in similar fashion that, unless U is purely real we also have
P(v. = v,) # P(v, — v.)

which is T violation. However, even if U is complex, we always have
Pv. —»v,)=PU, —U.)

and therefore CPT is always conserved.

f) Since |Am?;| ~ |Am3,

, we have |A3| & |Ag3| and hence
AP = P(Ve — V’u) — P(ﬁe — ﬁu) ~~ 16J sin Alg sin2 A13 .
For a neutrino energy £ = 10 GeV, the wavelengths associated with the A5 and A3 terms are

_ArE 4w x 10GeV
- Am?,  Tx105¢eV?

ArE 4w x 10 GeV
)\13 = 5 = — D)
Amis 2 x1073eV

Ai2 x (0.197 GeV fm) = 350,000 km

x (0.197 GeV fm) = 10,000 km .

To get a potentially measurable CP violating effect needs AP as large as possible. The sin? A5 term
is maximised at L = 5,000 km, L. = 15,000 km etc. , while the long-wavelength sin A, term grows
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approximately linearly with distance but doesn’t reach a maximum until L ~ 175,000 km. For an
Earth-bound experiment, L ~ 5, 000 km is about the optimum length.

With sin® A5 ~ 1, the largest CP violating effect which can be expected is

Am?, L
AP~ 16Jmax SinA12 = 16Jmam sin < TEl'Q )
7 x 107 eV? x 5000 km 1
— 16 x 0.053  si
e ( Ix10GeV  0.197GeV. fm)

= 16 x 0.053 x sin(0.044)
—0.038 .

Notice that a measurement of the sign of AP would also give the sign of Am?, = m? — m3, and

would therefore distinguish between the two cases m; > ms and m; < ms.
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CP VIOLATION AND THE CKM MATRIX

23. a) Draw Feynman diagrams for the decays K — 77~ and K® — 77", and for the decays K° —
7979 and K® — 7070,

b) Draw Feynman diagrams for the decays K — 7~ e*v, and K — 7te~7,, and explain why the
decays K — 7~ eTv, and K® — 7nte~ 7, cannot occur.

¢) How does the decay rate for each of the above decays depend on the Cabibbo angle 0 ?

SOLUTION

a) The leading-order Feynman diagrams for the decays K° — 7t7~ and K° — 7t7~ involve the
subprocesses s — tud and s — utd, with a virtual Wt or W~ boson, respectively:

™ 4 7T+a
u

=l
|

KO

2]
+
|

Al

The same subprocesses are involved in the decays K — 7%7° and K® — 77, but with a different
decay topology:

al

KO

2]

b) The leading-order Feynman diagrams for the decays K® — 7~e* v, and K® — 7te~7, involve the
subprocesses s — Tetr, and s — ue v.:
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24.

=l
a

KO

0|
o~
S
)

W+ W~

The decays K° = 7~ e, and K® — nTe 7, cannot occur because they would need s — ue* v, and
S — ue” V., which are forbidden by charge conservation.

Hence, decays to final states containing an e directly measure the K component of the beam while
decays to e~ directly measure the K component.

¢) The decays K — 777~ and K — 7% both involve the quark level processes § — U+ virtual W+
and Wt — ud. The first of these vertices gives a factor sin f¢ in the matrix element M;, while the
second gives a factor cos . Overall therefore, the decay rate is proportional to sin? §¢ cos? 6.

For K — 7t7~ and K® — 797, the quark level processes are s — u + virtual W~ and W~ — Td,
which again gives a decay rate proportional to sin” f¢ cos? ¢.

For the decays K — 7~ e*v, and K° — nte 7., the vertices § — U + virtual Wt and s —
u + virtual W~ both give a factor sin f¢ in the matrix element. The decay rates are therefore both
proportional to sin” .

In the CPLEAR experiment at CERN, neutral kaons are produced in low energy proton-antiproton
collisions via the channels pp — K*7 K and pp — K~ 7+ K°. The strangeness of the initial K° or
KY is tagged by the charge of the accompanying K+ or K, and the K° or K? is subsequently detected
via decays into the semileptonic final states 7~ e¢*v, and 77 e 7,.

a) Draw Feynman diagrams for the reactions pp — KT7~ K and pp — K~ 77K, and explain why
the reactions pp — KT7~ K and pp — K~ 71K cannot occur.

b) Show that, for a system which is initially in a pure K° state, the decay rates R, and R_ to the
semileptonic final states 7~ e" v, and 77e~ 7, depend on the proper decay time ¢ as

[e77s! 4 T2t 4 2~ (Is+IL)t/2 (g Amt]

[1 — 4Ree] [e "' + 711 — 2e~ IsHLI2 ¢og Amt]

R+ = F(ngo — 7T_6+Ve) = Nweuzll
R_=T(K)_,— 7te V)~ Ny,

where I's = 1/75, ', = 1/7,, Am = my, —msg, € is the CP violation parameter, and N, is an overall
normalisation constant. Show that the corresponding expressions for a system which is initially in a
pure KO state are

Ry =T(K{_y = 7 e'v) ® Nyepd [1+ 4Ree] [e775" e — 2e~ TS HTL/2 ¢og Amt]
R.=TKL,—»7nten,) = Nﬂe,,i [eiFSt + 7Tt 4 2= TsHTLIl2 g Amt] .
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c¢) The figure overleaf shows a measurement from the CPLEAR experiment of the asymmetry

(Ry +R_)— (Ry + R.)
(Ri+R_)+ (R +R_)

AAm

as a function of the proper decay time 7 = ¢ (plotted in units of the Kg lifetime 7g = 0.9 x 10~5).
Show that Ax,, is given by

2 cos (Amt) e~ (Ts+TL)t/2

and obtain an estimate of the mass difference Am.

AAm
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d) Show that the time-reversal asymmetry

A= 'K, — K% - I'(K)_, — K
= N(KY_, — K% + I'(K)_, — KO)

is independent of the decay time ¢ and that

Ar =~ 4Re(e) = 4|€e| cos ¢ .

SOLUTION

a) Feynman diagrams for pp — K*7~K° and pp — K~ 7TK":
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These are strong interaction processes involving uu — g — ss at the quark level. The reactions

pp — KT~ K and pp — K77 K" cannot occur through the strong interactions because the final
states contain Ss or ss rather than ss, which would not conserve strangeness.

b) The K" can be expressed in terms of the states Ky, and Kg as

1K) = [ () + k)

The states Kr, and Kg have well defined masses and lifetimes and evolve with time as

Kp (1)) = [Kp) 6y (t) = |Kp) eIt/
Ks(t)) = [Ks) 0(t) = |Kg) e mst-Tst/2

Hence the initial K state evolves with time as

TP 1
— (|K;) 0 Kq) 6O
5 1Jr€(| L) Or + [Ks) 0s)

K1) =

Now express this time evolution in terms of the eigenstates K° and K°:

0 14?1
|K (t)>_ 2 1+6X

1 1 0 _ oK c 0y (1 — ) |IKO s
XEW([(1+E)‘K>+(1 ) K] 6L+ [(1+€) |[K?) — (1 —€) |K?)] 65)

11—¢

1 _
= — (0 + 0s) |[K°) + = O, — 6s) |K°
5 (O + 05) [K?) 4 5 (0 — 6) [K7)
Hence
T(KY)_y — K°) oc 116, + 65)°
— 1—¢l?
(L K oc d =] 10— a4
But )
1—e¢ :(1—6*)(1—6)%1—2R86%1_4Re€
1+e (14+e€e)(14+€ 1+ 2Ree
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Since e can only come from K° and e~ can only come from K, we have

Ry =T(KLy = 1 ") = Npoyd [e775" + 7T 4 26~ T HT02 o5 At ] (69)
R_=T(KY., = 1re D) = Npwd [1 — 4Ree] [e7 78" + e7T18 — 26~ (TsHTL2 cog Amt]  (70)

Similarly, an initially pure K° becomes

K= S - k) 6)
_ ; (00— 05) [K°) + 5 (60 + 65) [K7)
and we find
(K, — K’ =16+ es|2
(R K%)= 3| 22 o — g
and
Ry =T(KY, = 7 e"ve) = Npey 2 [L + 4Ree] [e 5! 4 e 710 — 20 TSHTWI2 0o Amt]  (71)
Ro=T(K),—= e ) =Nt e+ + 2e~ TsHILIt/2 (g Amt] (72)

c¢) The asymmetry Ap,, is defined as

A :(R++R—)—(R—+R+)
AT R+ R)+(R.+R,)

From Equations (69)-(72), we have

R-‘r + R— = Nrev
R+ R—i— = Nrev

[e—rst + e Trt 4 2~ Ts+TL)t/2 (o Amt}

1
2
% [e‘rst + e Tt _ 9= (TsHTL)t/2 (g Amt}

and hence

2¢~ TsHIL/2 09 At

e—Fst + e—FLt

AAm -

The value of Am can be estimated from the plot by considering the time for which the asymmetry A
first becomes zero: 7/7g ~ 3.3. At this point, we have Am.7 = 7/2, and hence
7 7w x(6.58 x 1072 GeV.s)
Am = — =
21 2x3.3x(0.9x10710%)

=35x%x 1071 GeV

(using i = 6.58 x 1072* GeV.s and 7 = 0.9 x 10~05).

d) From Equations (70) and (71), we see that, in the presence of CP violation, the rate for the transition
K° — K" is no longer equal to the rate for KY — K°. Thus we have T violation: the laws of physics
are not invariant under time reversal, ¢ — —t, at the microscopic level.
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This is quantified by defining the time-reversal asymmetry A (Kabir test)

_ T'(K° = K% —T'(K° — K%
T = pr—

I['(K° — K% + I'(K® — K°)

In terms of measurable semi-leptonic decay rates, this is

MK, = 7 efr,) — DK\, = nrev,)
MK, = 7 etv.) + (K, — mte 7,)

Ap =
From Equations (70) and (71), the time-dependent terms cancel in the ratio leaving an asymmetry Ar
which is constant, independent of time:

(14 4Ree) — (1 — 4Ree)
(1 4+ 4Ree) + (1 — 4Ree)

AT%

So approximately:

Ar =~ 4Re(€) = 4e| cos ¢
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25.

THE Z BOSON

Consider the decay of the Z° to a fermion-antifermion pair, Z° — ff, where the fermion couples to
the Z° with vector and axial vector coupling constants cy and cy:

a) Use the Feynman rules to show that the matrix element for the decay Z° — ff can be written in the
form

M = cr, - 9z6,(p1)U(p3) 72 (1 — °)v(pa) + cr - gz€u(p1)u(ps) V"3 (1 + 7°)v(pa)
ECL~ML+CR-MR
where p; is the Z° 4-momentum, ps; and p, are the 4-momenta of the fermion and antifermion, and

cr, = 3(ev +ca), cr = 3(cv — ca).

b) Assuming the fermion mass can be neglected, draw diagrams illustrating the spin configurations
which result in non-zero values of M}, and Mgy.

c¢) Use the results of the calculation of the W~ — e~ 7, decay rate in the lectures to show that, for
unpolarised Z%’s,

(| My ]?) = %9%771%(0% + cR)
and hence that the decay rate is

2
D(Z° — ff) = gjg;z (& +c2).

SOLUTION

a) The leading-order Feynman diagram for the decay Z° — ff is

f
D4
z0 p
b1
b3
f

The Feynman rules determine the invariant matrix element M¢; for the decay to be

—iMy; = eu(Pl) -u(ps) - —Z'%ZVH(CV - CA'75) - v(pa)
= Mz = Sgzeu(pr)u(ps)y* (ev — can”)v(pa)

where ps and p, are the 4-momenta of the fermion and antifermion, and €,(p,) is the polarisation
vector of the Z°, with 4-momentum p;.

The left-handed and right-handed couplings c;, and cp are given by

Cy = C[, +CR Ccr, = %(Cv—f—cA)

CA = CL, — CR Cp = %(CV—CA)
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Then:
tev—eay’)=c- 21 =" +cp-5(1+7°)

and the expression for the matrix element becomes

Mi; = cr - gzeu(p)a(ps)y" 5 (1= ")0(pa) + cr - gze,(pr)u(ps)y" 5(1 +7°)v(pa)
ECL‘ML—FCR'MR

b) The spin configurations corresponding to each term are:

]

sl

The My, term, containing the factor 1 — ~°, corresponds to a V' — A interaction, and only left-handed
chiral components contribute. Neglecting the fermion and antifermion masses, this is equivalent to
saying that the fermion must have negative helicity and the antifermion positive helicity.

The Mgy term contains the factor 1 4+, corresponding to a VV + A interaction, and only right-handed
chiral components contribute (see question 13). The fermion has positive helicity and the antifermion
negative helicity.

¢) The term
My, = gzeu(pr)u(ps)y"5(1 —~°)v(pa)

is identical to the matrix element

Ma(W™ = e77,) = g—x/geml)a(mw;u —7*)u(ps)

for W~ — e~ 7, decay evaluated in handout 13, except that gy //2 is replaced by gz. For unpolarised
W decays, it was shown that

(M) = ggwmiy -
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Therefore, the contribution of M, to the matrix element squared for Z° decays is
(1Mii[*) = 5(v292)*m3 = §95m3

By symmetry of the spin configurations corresponding to My, and Mg, the values of {|M;;]?) from
My, and My must be equal. Therefore the overall result is

(|My]?) = %g%m%(ci + cp)

The decay rate is

p 2
I' = My
Sz (M)

where p* = my/2 is the centre of mass momentum of either final state particle. Hence we obtain
finally

2 2
T gzmz, gzmsz,
[(Z° — ff) = 2Z47T (c3 +ck) = ZSW (¥ +c3)

where we have used

3+ c% = i(Cv +ca)? + i(cv —cp)? = %(c%/ +c3)
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26.

a) Use the result of question 25 to compute the total width of the Z°, and compare to experiment.
[Take sin? fyw = 0.23, and remember that quarks have three colour states].

b) What will be the value of
o(ete” — hadrons)

R p—
olete = ptp~)

at the peak of the Z° resonance ?

¢) Calculate the cross section for e*e~ — Z° at the resonance peak, and show that the cross-section
for ete™ — ™ is increased by a factor of ~ 200 relative to the QED cross section.

d) The width I'(Z° — bb) has been measured at LEP to be 0.378 GeV. Show that the weak isospin
of the b quark is compatible with a value of —0.5. Explain why this result effectively guaranteed the
existence of the top quark, even before it was directly discovered.

[Gy = 1.166 x 107° GeV~2.]
SOLUTION

a) First add up all the factors of ¢§, + ¢ for all possible Z° final states. In the Standard Model we have
ey = I3, — 2Q sin? Oy, ca = I3

where I3, is the third component of weak isospin and () is the particle charge in units of |e|. Assuming
sin? @y = 0.23, and remembering a colour factor of 3 for the quark-antiquark final states, this gives:

particles cy cA &+
e, uT, T —142sin’0y =—0.04 -3 3 x 0.2516
Ve, Uy, Vr —i—% —i—% 3x0.5
u,c - ‘glsm2 Ow =0193 45 3 x2x0.2874
d,;s,b —5+isin’Oy =—0.347  —3 3 x3x0.3702

which gives a total of Y (c%, + ¢4) = 7.311. Hence
2

r :g%mZZ(CQ—i—cQ): c Mz Z(C2+62)
Z 487 voTA sin? Oy (1 — sin? Oyy) 487 voTTA

- a 1z 2 4 2
sin? Oy (1 —sin? Oyy) 12 Z(CV ey

(1/137) 91.2GeV
_ 7.311 = 2.20GeV
023x (1-023) 12 ©

[The experimental value, I'; = 2.49 GeV, is larger than this because of higher order corrections.]

b) At the peak of the Z° resonance, from the Breit-Wigner formula,

o(ete”™ — hadrons) I'(e*e” — hadrons)

R= -
olete” — ptp~)  Tlefem = ptp)
(@ Rmaons _ 3 X 2x 02874+ 3 x 3% 03702 _
C(E+A) 0.2516 -
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c) The Breit-Wigner formula gives the total Z° cross section on the peak of the resonance as:

127 T(Z° — ete” 12
o(ete” — Z° — anything) = ;T ( ere’) = ;TBR(Z0 —eten)
my I'z my

The Z° — e*e~ branching ratio is

0.2516
BR(Z’ = efe™) = =3.44
(Z" — eTe) —311 3.44%
SO
+ - 0 . 127 —4 )
0'(6 e -7 — anythlng) = m x 0.0344 = 1.56 x 107°GeV
. c

= 1.56 x 107*GeV 2 x (0.197 GeV.fm)? = 0.061 fm* = 61 nb
The QED cross section is

Ao
3s

ogep = o(efe” =y = ptpT) =
On the Z° resonance peak, with s = mZ, we have

olete” = 72° = ptp™)  (12m/mZ)BR(Z° — ete”)BR(Z® — ptp™)

olete = v* = utu-) 4 /3m?

9
= = - [BR(Z® — e*e)]” = 9 x (137)% x (0.0344)% = 200.0
(07

d) From Question 25, and including a factor 3 for colour, the Z° — bb width is

D(Z° - bb) = 392;? ()2 + ()] = glzgjrz [(c0)? + (ch)?]

where the coupling gy is given by

9 e? B dma
927 Gin? Ow (1 —sin®Oy)  sin Oy (1 — sin® Oyy)
Hence
167 —
b\2 b2 0
cv) 4 (cy) = -I'(Z" — bb
() + () = = T(2 = D)
_ 1671(Z° — bb) sin® (1 — sin® Oyy)
N my 4o
4 x 0.378 GeV
= 2 1-0.2 137 = 0.402
ooy X 0235 (1 0.23) x 137 = 0.40
But ¢y = I}y, — 2Q sin® by and cx = I}, where Q, = —3 for the b quark. Hence

()2 + (h)? = (I3 + 2 x 0.23)2 + (I3,)? = 0.402 .
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27.

Solving the quadratic equation for I3, gives I3, = 0.36 or I3, = —0.52, which clearly suggests
I}, = —3 for the b quark.

Since [ 5’[, = —% for the b quark, it must be a member of a weak isospin doublet, and there must be a
partner state with I3, = —l—%. Thus the existence of the top quark could be inferred long before it was
directly discovered.

a) It was shown in the lectures that the centre of mass frame differential cross section dopr/d cos 6
for the process ete™ — ff on the peak of the Z° resonance, for the case that the incoming electron is
left-handed and the outgoing fermion is right-handed, is given by

dorr
dcosf

eN2( )2 2
o (¢f)*(cg)*(1 —cosh)= .
Show that the corresponding forward and backward cross sections of and o are given by
F eN2( f )2 B eN2( )2
orr o (¢) (cr)%, opg o 7(cf) (cr)”
d ite d imil : f h : F B F B F B
and write down similar expressions for the cross sections oy, ORL» 011 OLL> ORR> ORR-

b) The asymmetry A'E is defined as

AFB — (of —or) = (‘715 _ 01]%)
LR =

(of +op) + (o + oR)

where o1, = o1, + opr and or = oRy, + ogrg are the total cross sections for left-handed and right-
handed incoming electrons, respectively. Show that

Y

3(c)?—(ch)? 3
AFB _ “\"L R |
A () A

and compare with the similar predictions for the asymmetries Apg and Apg.

¢) Using a polarised electron beam, the SLD experiment has recently measured AR for the process
ete” — cc, and obtained the result A, = 0.6712 + 0.0274. Determine the corresponding value of
sin? Oy and (optionally) its error.

SOLUTION

a) The differential cross section doy g /d cos 6 for the process e*e™ — ff for the case that the incoming
electron is left-handed and the outgoing fermion is right-handed is given by

dO’LR -
dcost

The forward and backward cross sections are defined by

L deo " do
= d 0 = d 0.
or /0 deosd @ PP 7B / , dcosf €08

(c£)*(cr)*(1 — cos ).

Using the integrals

! 1 0 7
/(1—0089)2dc080:§ / (1—cos@)2dc088:§,
0

-1
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Therefore the forward and backward cross sections of and oy are in a ratio 7:1

orp < (¢£)*(cr)*,  orm o< T(¢f)*(cR)? |
Similarly, we have
dogry, 2/ £12 2
~“RL e 1
ST o ()1 cos)
dopy, 2/ £12 2
¢ 1
Toos 0 x (¢f)*(er)*(1 4 cos )
TRR e 2 12(1 4 cos )2
dcosf R R
and hence
oRr, % (¢R)*(c1)?, ofy, < T(cg)*(c)?
oy, o< 7(cf)*(c)?, oty o (f)*(cr)’
ohe o 7(cR)?(cr)*, ohr o (c})*(ck)’

b) The asymmetry Af'E is defined as

AEB — (UE - UE) - (Ug - UIB{)
BT (of +0P) + (o + ob)

where o1, = op1, + opr and or = oRy, + ogrg are the total cross sections for left-handed and right-

handed incoming electrons, respectively. Therefore

(
UE = JEL + JER X (Ci)2(0£)2 +7(
R = 0pp, + Ofe X (cR)*(c1)? + T(R)*(cR)* = (cR)* [(c1)? + T(cr)?]
oR = Ry, + ORe X T(cR)*(cr)” + (cR)*(cr)® = (cR)? [T(er)” + (cr)?]
Hence
e _ () [6(cf)” = 6(cg)?] + (&) [6(cf.)” — 6(cp)®
HE ()2 [8(ef)? + 8(cr)?] + ()2 [8(ct))? + 8(ck)?]
Hence

For comparison, the expressions for the asymmetries Apr and Apg derived in lectures are given by

A=A, Am=AA;.

¢) We have



where
c 1 2 .2 c __ 2 2.2
cf, = 5 — 3sin” Oy, Cr = —3sin” Oy .

Writing = sin® Oy, we have

This can be rearranged to give the quadratic equation
3240 +24(1 — Az + 9(A.— 1) =0,

For the central measured value of A. = 0.6712, this quadratic equation can be solved to give z =
sin? Gy = 0.2305.

To estimate the error on sin® fy, consider the upper end of the SLD measurement A, = 0.6712 +
0.0274 = 0.6986. Solving the quadratic equation for this value of A. gives x = sin® Oy = 0.2223,
which is d(sin? fy) = —0.0082 below the central value of 0.2305 .

Similarly, solving the quadratic equation for the lower end of the SLD measurement A, = 0.6712 —
0.0274 = 0.6438 gives z = sin® By = 0.2382, which is d(sin® ) = +0.0077 above the central
value of 0.2305.

Overall therefore, we can estimate

sin? Oy = 0.230 + 0.008 |.
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28.

THE TOP QUARK

a) The top quark decays into final states containing 1) two quarks and an antiquark, or 2) a quark, a
lepton and an antilepton. List the possible final states of each type and draw the generic leading order
Feynman diagram for these decays. Explain why the total top quark decay rate is dominated by the
rate for the decay t — Wb into a real W™ boson and b quark.

b) Use the Feynman rules to show that the matrix element for the decay t — Wb is given by

Mg = 97\’[6;(])4)@@3)7#%(1 —7")u(p1)

where p; is the 4-momentum of the top quark and p3 and p, are the 4-momenta of the b quark and
W, respectively.

c¢) Consider the decay t — Wb in the top quark rest frame, with the b quark travelling in the
+z direction. Neglect the b quark mass. Draw diagrams illustrating the two spin configurations
which are allowed in this case. Show that, when the top quark spin points in the +z direction, the
matrix element My, is given by

My = —gwn/2myp*

where p* = (m? — m¥;)/2m; is the magnitude of the three-momenta of the W™ and the b quark.

Show that when the top quark spin points in the —z direction, the matrix element becomes

d) Explain why the decay of an unpolarised sample of top quarks must be isotropic, and show that the
total decay rate in this case is

2
p:GF_mi’(l_@) (1+2m§v) |
87T\/§ my my

e) Calculate the top quark lifetime. Use the uncertainty principle to estimate a typical hadronisation
timescale and comment on the result.

SOLUTION

a) The possible top quark decays into two quarks and an antiquark are
t — dud, dus, dub, decd, dcs, dcb
t— sua, Ssus, suB, sca, SCS, sch
t — bud, bus, bub, bed, bes, beb .
The possible decays into a quark, a lepton and an antilepton are

t — detve, duty,, drhv,

e, sut vy, sTU,

t — se
t — betv,, butvy,, brtu,

The leading order Feynman diagram for all these decays contains t — d + W, t — s+ W or
t — b+ W, followed by W — qqor W — (Tu,:
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Because V;, ~ 1 is much bigger than V,, or V,, the decays containing t — b + W completely

dominate. In addition, the W propagator factor is proportional to 1/(¢* —m%;), which is a maximum
when ¢* ~ m3y, i.e. when the W boson is real rather than virtual.

Hence the total top quark decay rate is dominated by the rate for the decay t — Wb into a real W+
boson and b quark.

b) The Feynman diagram for t — Wb decay is

b3
D1

P4 W+

The Feynman rules give a factor € (p,) for the outgoing real W boson:

—iMy; = u(ps) - gw’Y”%(l - 75) ~u(pr) - Eu(m)

V2

where p; is the 4-momentum of the top quark and p; and p, are the 4-momenta of the b quark and
W, respectively. Hence

My; = g—\/V;GZ(m)ﬂ(ps)V“ﬁ(l —7")u(p) |-

c¢) Consider the decay t — Wb in the top quark rest frame, with the b quark travelling in the
+z direction, and neglect the b quark mass.

Since we have a V' — A interaction, in the massless limit the b quark must be left-handed, and must
therefore have its spin pointing in the —z direction. If the top quark spin points along +z, then, to
conserve angular momentum, the W+ spin must also point along +z. Alternatively, if the top quark
spin points along —z, then the W™ spin must be longitudinal, i.e. S, = 0. In summary, the two
allowed spin configurations are:

Since the b quark is left-handed, we have u(ps) = u(ps). Since (1 —~°)u(ps) = u,(ps), the matrix
element then becomes

Mg; = %62(194)%(}?3)7“16(1)1) :
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5+(P4) ul(l’a)

t
A AR S aVAVAVAVAVAVAY ) i b
UT(Pl) 4

& (p,) u,(py)
t
W+ <—/\/\/\@\/\/\/\/ . i b
<= N
u¢(p1) z

The four-momenta of the top quark, b quark and W+ boson can be taken to be

b1 = (mt7 07070) 3 p3 = (p*70707p*)7 Ps = (E70707 _p*)

where E = /(p*)? + mé, is the energy of the W boson and the centre of mass momentum p* is the
magnitude of the W and b quark 3-momenta.

The two possible spin states for the initial t quark, and the final state b quark spinor are then

1 0 0
0 1 =
UT(pl) = th 0 3 ui(pl) = th 0 5 Ui(pg) = \/p_ 0

0 0 —1

For the case u(p;) = u4(p1), standard matrix multiplication gives the current as
ﬂi<p3)’y'uuT(pl) =V thp* (07 _17 _Z.a O) ;

while for the case u(p;) = u (p1) the current becomes

H,L<p3),y‘uul,(pl) =V thp* (17 07 Ou 1) .
The three possible spin states for the W+ are
Ei(pll) = __1(07172.a0)7 eli(pél) = L(0717_ia0)7 5’2@4) = L(_pﬂ(?()?Oan .
V2 V2 mw
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For the case u(p;) = us(p1), the scalar products €*.j are

-1
€ .J= E (0,1,—1,0) - \/2myp* (0, =1, —i,0) = —2¢/myp*

1
€ .j= 7 (0,1,4,0) - \/2myp* (0,—1,—12,0) =0

62] - m <_p*7 0707E) Y thp* (O? -1, _i70) =0

Thus, as anticipated above, when the top quark spin points in the +z direction, the matrix element is
non-zero only when the W spin also points in the +z direction.

-5

The matrix element Mg; for this case is given by

My = —gwn/2mep*|.

The centre of mass momentum p* can be found using the general result derived in Question 3, or by
eliminating the energy E between the two equations £ = /(p*)? + m%, and m; = E + p* (energy

conservation). Either method gives
2 2
p* — mt — mW
2mt

For the case u(p;) = u;(p1) when the top quark spin points in the —z direction, the scalar products
are

-1

€= E (0,1, —14,0) - v/2myp* (1,0,0,1) =0
1

e .j=—1(0,1,4,0) - /2mip* (1,0,0,1) =0

2
2 *
€ .j = —— (—p",0,0, E) - \/2mep* (1,0,0,1) = — YL

mw mw

3

(E+p")
Thus, as anticipated above, the matrix element is non-zero only when the W™ spin is longitudinal.

Energy conservation in the decay gives

Hence the matrix element for this case can be written

m
M, = —gu g,

W

d) The decay of an unpolarised sample of top quarks must be isotropic because there is no preferred
spatial direction in the initial state.

The spin-averaged matrix element squared is

1 2
(M) = § (M + IMLP) = gt 24+ 2
A%
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The total top quark decay rate is

*

bl gy - S0 b 1]

8mwm?2 167m;

G (mi-md mg
= 24+ —-
167mmy 2my miy

In terms of G, using

the total decay rate is

3 2\ 2 2

p_ Gem (1—m—V2V> (1+2m§v) |
871'\/§ my my

e) With Gy = 1.166 x 107> GeV 2, m, = 178 GeV and my = 80.4 GeV, the top quark decay rate is

(1166 x 1075) x (178)% /- (80.4)%\” 2(80.4)2
e S1v2 (1 Grr) (e

The top quark lifetime is then

) =1.65GeV .

6.582 x 1072 GeV.s
— =40x10"%s.
T 1.65 GeV % i

Taking a typical energy involved in hadronisation to be the pion mass, the timescale can be crudely

estimated to be % (o
6.6 x 10~ eV.s
ad ~ ~ 107 %5 .
Thad 0.135 GeV i
Thus the top quark lifetime is much less than the time it takes for quarks to hadronise. The top quark

therefore decays before it can form a hadron - hadrons containing t quarks are not expected to exist.
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29.

THE HIGGS BOSON
a) Use the Feynman rules to show that the matrix element for the decay H — W W™ is

My; = _gwmwguueu (pQ)*EV (p3>*

where p, and p3 are the 4-momenta of the W~ and W, respectively.

b) Show that My; = —gwmw when both W bosons are left-handed or both are right-handed, that

Mg = (gw/mw)(3m? — m3y) when both W bosons are longitudinally polarised, and that M; = 0
for the six remaining combinations of W boson spin states.

c¢) Show that the H — W+ W™ decay rate is

3
I'H—-WW™) = UL Wiprye (1— 42 +12X%)
87/2

where A\ = my /my.

d) For H — Z°Z° decays, an extra factor of % is required to account for the fact that the final state
contains two identical particles. Show that

FH — 2°Z°) = IT(H — WW ) | nyw—smy) -
e) For H — ff decays into a fermion-antifermion pair, the decay rate is
Gy mimy ] 4m? 3/2
V2 Aw 2

my
where NNV, is the number of colour degrees of freedom of the fermion f of mass m¢ [See Tripos paper,
Jan 2002, for a derivation of this result]. Compute the H — W*W~, H — Z°Z° and H — tt
branching ratios and the total Higgs width I" for a Higgs mass of 500 GeV. [Note that the decay rates
into ff final states other than H — tt are negligibly small since m; < m.]

I'(H — ff) = N,

SOLUTION

a) The leading-order Feynman diagram for the decay H — W W™ is

W+
b3

y4!

D2
W

The Feynman rules give a factor igwmyg,, for the HWW vertex, a factor €”(ps)* for the outgoing
W~ boson, and a factor €”(p3)* for the outgoing W boson. The product of these factors determines
—iMfiZ

—iMg; = igwmw g - € (p2)” - € (p3)”
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and hence the matrix element is

My = —gmeQWGM(Pﬂ*EV(p?,)* .

b) Take the W~ and W+ 4-momenta to be p, = (F,0,0,p) and p; = (E,0,0, —p), with E?

p* +miy and E = my /2:

The three possible polarisation 4-vectors for the W™ are:

Ei (p2) =
e (p2) =

e (p2) =

L 0.1,1,0)
——F=\U, 1,1,
V2

1
—(0,1,—12,0
7501, -.0)

1

(p7 07 07 E)

mw
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while the three possible polarisation 4-vectors for the W+ are:

1 :
Ei(p?,):_ﬁ(o,l,Z,O) h=-1
1
Eli(p3) = E(Oa L, =1, 0) h=+1
1
62(}73) = m_w(_p70707E) h=0

Therefore, of the nine possible 4-vector scalar products of the form ¢(ps).€(p3), only three are non-
zZero:

H v __i 7 L —1 =

)€ () = = 75(0,1,0,0).—5(0,1,—5,0) =41
1
V2

1 1
,0,0,E).—(—p,0,0,FE) = —(—p* — E?
W(p )mw( p ) m%v( p )

e (p2).€(p3s) = —=(0,1,—14,0). — —=(0,1,7,0) = +1

—_
-3

e (p2)-€7(p3) =

3

Thus the matrix element is non-zero only if both W bosons have the same helicity. This is to be
expected: the Higgs boson has spin zero, and these are therefore the only possibilities consistent with
conservation of angular momentum.

Since E? = p? + m%; and E = my /2, we have
p= /B2~y = [~y

2 2 _ 1,2 2 ;1.2 _ 1.2 2
p”+ E° = ymyg — myy + ymp = 5My — My -

and hence

Therefore the non-zero matrix elements are:
H—-> W, W, : My = —gwmw
H—- W_W_: Mg = —gwmw

1
Ho WoWo: My = —gwmw - ——o (0 + B2) = 2 (1m2 — m,)

where W, W_, W denotes a W with helicity h = +1, —1, 0 respectively.

¢) For an isotropic two-body decay, the decay rate is

*

p

2
I'= Fp— | M|
My

where

2

my 4m
* 1,2 2 W
p = p — =m J— —_— — R
47H w 2 m
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Hence, for the case where both W’s are transversely polarised, we have

T(H— W, W,)=T(H—>W_W_) = 8:7  gEmy

H

:@m%\] 1_47”%\1

2
8T 2my My

while if the W’s are longitudinally polarised we have

*

2
P(H — W, W;) = 87fm2 : %@2 4 )
H %%

2 2
__ L mu __47”“/éiﬂL(l 2 m2,)?
- 8tmZ 2 m% m3 P
H o Mw
2
gy iy [ amiy (1 2m%v)
- 2 - 2 - 2
64m miy mg mg

The total decay rate is obtained by summing over all possible final state spins:

I(H— WW™) =T(H— W, W,)+T(H—W_W_)+T(H—> W,W,)

gw my 4mw Ry mH
87r 2my m¥ 647T mé m¥

_ Gw mi 4mi, (8miy dm%,  4Amdy,
64 mi, b m e T

mi My My
_ 9w mi . 4m, (1 _ Amiy N 12m%v)

641 m2, m¥ m¥ mi
Using
Gr _ 9w
V2 8miy

we finally obtain

€ Am? am2,  12m?
D(H — wew) = e [y Ay (1— "Wy ”ZW>
87V2 M My

(73)

(74)

(75)

(76)

(77

(78)

d) For the decay H — Z°Z°, the Feynman rules give a vertex factor igzmy, 9w 10 place of tgwmw g,
Thus the H — Z°Z° decay rate is given by Equation (76) with myy replaced by my, gw replaced
by gz, and with an extra factor of % included to take into account the fact that the H — Z°Z° decay

contains two identical particles in the final state:

P(H — 7070) = L. 92.M [y 4my (1_4m%+12m%>.

2 1
2 647 mZ mi mg My
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The relations my = myz cos Oy and gw = gz cos Oy, give g, /miy = g2/m3. Hence

T(H — 2°7°) = 9w my [ 4m%( 4m7 12m‘é>'

1
2 64w m, m¥

Using Equation (77) to convert from gw to G, we then obtain

I'(H— z°2%) = 1 Grmy | A <1 A + 127”%) .

2
my my

A comparison with Equation (78) then shows immediately that

D(H — 2°7°) =

1
2

e) The decay rate into a fermion-antifermion pair is given by

I'(H — ff) = N.—

For the decay H — tt, with N, = 3, myig = 500 GeV, m; = 175GeV and Gy = 1.166 x 107> GeV 2
we have

Gr m%mH (1 4m? ) 3/2

I'(H — tf) = 3 x

1.166 x 10~ 1752 x 500 4 % 1752\ 2/?
X _—_— GeV
NG Am 5002
—11.0GeV .

For the decays H — WTW~ and H — Z°Z°, with mw = 80.4GeV and my; = 91.2 GeV, we have
m2, fm? = (80.4/500)% = 0.0259 and m2/m? = (91.2/500)? = 0.0333, giving

1166 x 1075 x 500%
D(H — WW™) = X O T A% 0.0250 (1 — 4 x 0.0259 + 12 x 0.0259?)

872
= 35.1GeV

1.166 x 107° x 500°

16mv/2
= 16.8 GeV

I'H — 2°Z°) = V1 —4x0.0333 (1 —4 x 0.0333 + 12 x 0.0333%)

The total width of a Higgs boson of mass 500 GeV is therefore
['=11.0+35.1 +16.8 = 62.9 GeV
and the branching ratios are

BR(H — WtW™) = 35.1/62.9 = 55.8%
BR(H — Z°Z") = 16.8/62.9 = 26.7%
BR(H — tt) = 11.0/62.9 = 17.5% .
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

NUMERICAL ANSWERS
a) L =198m, M =79 kg. BMI = 20.1

d) /s = 300GeV; E = 48000 GeV

['(p — nm)/T(K* — Kn) = 3.46; expt = 2.98

a) Ty = 3.0 x 1016GeV~1=1.97 x 1078s; expt = 2.6 x 107 %5

b) from phase space alone: I'(nt — e*v,) /T (7" — pfy,) = 2.34

a) A =0.84GeV; b)0.81fm; c)~ 0.68fm

b) x = 0.09, Q% ~ 610 GeV?, y &~ 0.075; ¢) Mx ~ 78 GeV

d) relative probabilities that scattering is from u, d, T, d are

u:d:u:d=~0.73:0.12:0.12:0.04 .

e) the F; term contributes only ~ 0.3% of events.

d)4.7° <0 < 21.3°

(Q)max = 750 GeV?

fqa =041, fg~0.08, fy = 0.51

d) sin? ;3 > 0.051 at 97.5% C.L., |Am2;| < 3.0 x 1073 eV?;

2.6 x 1073 eV?

89

e) sin?f13 = 0.09, |Am,| =



22.

23.

24.

25.

26.

27.

28.

29.

d) |J|max = 0.053; f) about 5000 km, |AP|pax == 0.04

a)'; =23GeV; b)R=20.1; ¢)6lnb
¢) sin? fyw =~ 0.230 & 0.008
)T~ 4.0 x 1072°s, Thag ~ x10723s

e) BR(H — W+W~) = 55.8%, BR(H — 7°7°) = 26.7%, BR(H — tt) = 17.5%;
T = 62.9GeV
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87(173) 8+(Pz)

\AR A VAVAVAVAVAVAVE RVaVaVAVAVAVAVE A\ %

£.(p;) e (p,)

VAR T aVAVAVAVAVAVAVE ReVaVaVAVAVAVAVE A e
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