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1 Introduction

We would like to estimate the probability with which we misidentify the charge
of an electron in data. To do so, we use a trick that assumes we can find a region
of phase space which is empty unless a charge flip occurs. For example, di-
electron truth events near the Z-peak are overwhelmingly produced as opposite
charge (OC) pairs due to the Z-resonance, and there are no processes that
produce a significant number of same charge (SC) events in truth. Therefore
one can be confident that vast majority of reco events in the SC region originated
in the OC region but contained a charge-flip in the reconstruction of one of the
truth electrons.

1.1 General strategy

Let us denote the rate at which an OC di-electron event is produced in truth
wherein both muons are reconstructed as λT (e+, e−) where e+/− denotes a
subset of the properties of the positron/electron. Note that λT does not care
what charge the electrons are reconstructed as, just that they have in fact been
reconstructed. Our assumptions let us write the rate at which we observe reco
di-electron events in the OC/SC regions, λR

OC/SC(e1, e2), in terms of λT (e+, e−)

and the charge flip rate for each electron ϵ(e+/−). The exact form of this
relationship depends on some additional assumptions about the form of the
detector response, like whether the momentum reconstruction of charge flipped
electrons is worse than unflipped electrons (it is), but for now we will consider
the simplest case where we assume:

λR
SC(e1, e2) = λT (e1, e2)ϵ(e1)(1− ϵ(e2)) + λT (e2, e1)(1− ϵ(e1))ϵ(e2)

= λT (e1, e2)(ϵ(e1) + ϵ(e2)− 2ϵ(e1)ϵ(e2)) =: λT (e1, e2)ϵ12(e1, e2)

and

λR
OC(e1, e2) = λT (e1, e2)(1− ϵ(e1))(1− ϵ(e2)) + λT (e2, e1)ϵ(e1)ϵ(e2)

= λT (e1, e2)(1− ϵ(e1)− ϵ(e2) + 2ϵ(e1)ϵ(e2)) = λT (e1, e2)(1− ϵ12(e1, e2)).

In the first expression we introduce ϵ12(e1, e2) as the probability with which a
given OC event is reconstructed as an SC event, and similarly in the second
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expression the probability an OC event is reconstructed as an OC event is given
by 1− ϵ12(e1, e2). Notice that under these assumptions, the ratio of these rates
is independent of the truth rates,

λR
OC(e1, e2)

λR
SC(e1, e2)

=
(1− ϵ(e1))(1− ϵ(e2)) + ϵ(e1)ϵ(e2)

ϵ(e1)(1− ϵ(e2)) + (1− ϵ(e1))ϵ(e2)
(1)

=
1 + ϵ(e1)

1−ϵ(e1)
ϵ(e2)

1−ϵ(e2)

ϵ(e1)
1−ϵ(e1)

+ ϵ(e2)
1−ϵ(e2)

. (2)

In a given reco di-electron dataset, the distribution of e1/2 and their reco charge
status can be written as

p(OC ∧ (e1, e2)) =
λR
OC(e1, e2)∫

de1de2λR
OC(e1, e2) +

∫
de1de2λR

SC(e1, e2)

and similarly,

p(SC ∧ (e1, e2)) =
λR
SC(e1, e2)∫

de1de2λR
OC(e1, e2) +

∫
de1de2λR

SC(e1, e2)

Therefore the log probability ratio is similarly given by,

log
p(OC ∧ (e1, e2))

p(SC ∧ (e1, e2))
= log

λR
OC(e1, e2)

λR
SC(e1, e2)

= log
1 + ϵ(e1)

1−ϵ(e1)
ϵ(e2)

1−ϵ(e2)

ϵ(e1)
1−ϵ(e1)

+ ϵ(e2)
1−ϵ(e2)

=: log(1 + eκ(e1)eκ(e2))− log(eκ(e1) + eκ(e2)). (3)

Since neural networks can output any number in R, we introduce κ(e) :=

log ϵ(e)
1−ϵ(e) as a rescaled variable suitable for prediction by a NN. Now this log

probability ratio is precisely the function that minimizes the expected value of
the binary cross-entropy loss,

L[f ] = − 1

N

N∑
i=1

li log s(f(e
i
1, e

i
2)) + (1− li) log(1− s(f(ei1, e

i
2))),

where an event is labelled li = 1 if it is SC and 0 if it is OC. A well trained
classifier fmin(e1, e2) between OC and SC events therefore converges onto an
approximation of log(1 + κ(e1)κ(e2))− log(κ(e1) + κ(e2)).

But we actually want access to the individual κ(e1/2) values (which can be
converted into ϵ(e1/2)), but these cannot be extracted directly from log(1 +
κ(e1)κ(e2)) − log(κ(e1) + κ(e2)). The trick here is to parametrise the clas-
sifier using a network that predicts the κ value of an electron, and to build
the log-likelihood ratio out of the predicted κ values using the structure of
the minimum of the loss in Equation 3. In practice this means using a NN,
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ϕ(e), that produces a real number given an electron and to define f(e1, e2) =
log

(
1 + eϕ(e1)+ϕ(e2)

)
−log

(
eϕ(e1) + eϕ(e2)

)
which then gets used in the loss func-

tion. Equation 3 proves that this highly constrained form of f(e1, e2) can min-
imize L[f ] by attaining ϕ(e) = κ(e). Since ϕ is an approximation of κ, we can
recover the network’s approximation of the single-electron charge-flip probabil-
ity using sigmoid(ϕ(e)) = 1

1+e−ϕ(e) ≈ 1
1+e−κ(e) = ϵ(e).

1.2 Uniqueness

The previous section proved that L[f ] is minimized ϕ(e) = κ(e). However, just
because the loss is minimized by ϕ(e) = κ(e), does not mean that it is the only
value of ϕ(e) that minimizes L[f ]. This would be a big problem because it
would result in our network not learning the function we want! To understand
the degeneracy a little more, realise that the log-probability in Equation 3 is
simply the log-ratio of the probability that an OC truth event is reconstructed

OC vs SC, log ϵ12(e1,e2)
1−ϵ12(e1,e2)

. This is what f is gaurenteed to uniquely converge

upon, and so for a given di-electron event we can use this quantity uniquely to
solve for ϵ12(e1, e2). But for a given di-electron event there are many different
values of the per-electron flip probability that results in the same overall event
flip rate. By tuning the charge flip probability of one electron up as the other
probability is reduced, the overall event flip rate can be held constant. This is
the source of the degeneracy.

In fact the relationship required to hold the flip-rate of a given event constant
is easy to calculate. Suppose that

f(e1, e2) = log
(
1 + eϕ(e1)+ϕ(e2)

)
− log

(
eϕ(e1) + eϕ(e2)

)
= C

=⇒ 1 + eϕ(e1)+ϕ(e2)

eϕ(e1) + eϕ(e2)
= eC

=⇒ 1 + eϕ(e1)eϕ(e2) = eC(eϕ(e1) + eϕ(e2))

=⇒ 1 + eϕ(e1)+ϕ(e2)

eϕ(e1) + eϕ(e2)
= eC

=⇒ 1 + eϕ(e1)eϕ(e2) = eC(eϕ(e1) + eϕ(e2))

=⇒ (eϕ(e1) − eC)(eϕ(e2) − eC) = e2C − 1 (4)

=⇒ ϕ(e2) = log

(
eϕ(e1)+C − 1

eϕ(e1) − eC

)
. (5)

So to hold the event flip rate at a constant C, any value of ϕ(e1) < C is a
valid solution provided the value of ϕ(e2) is taken as above. At first glance this
appears to be a massive problem. Fortunately, once you take into account the
fact that the loss contains tens of millions of events, suddenly it seems incredibly
improbable that the network converges onto a degenerate solution that satisfies
Equation 5 for every pair (e1, e2) other than ϕ(e) = κ(e). Ultimately this isn’t a
proof, but an argument, and the efficacy will need to be tested in Monte Carlo
simulations.
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Note that this problem also exists for the existing di-electron based QmisID
methods even if its not explicitly discussed.

2 Summary of plan

1. Create a clean dataset of OC/SC di-electron events

2. Train a NN, ϕ(e), using as many features as we like of e to minimise
the binary cross-entropy loss function L[f ] using the constrained classifier
f(e1, e2) = log

(
1 + eϕ(e1)+ϕ(e2)

)
− log

(
eϕ(e1) + eϕ(e2)

)
.

3. Use sigmoid(ϕ(e)) as an approximation for ϵ(e).

4. Do checks with truth-matched MC.

5. Possibly iterate accounting for backgrounds and Z-peak shift.

6. Apply to data and check results.
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