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1 Abstract
A program written in the Python [1] language was designed and created to be able to quickly 
produce realistic sea-level cosmic rays for use in other projects and experiments, without the 
need to simulate them directly. The generator is based upon theoretical calculation as well as 
parametrised sea level data from many experiments. A Monte-Carlo simulator was then used 
to validate some of the generator's results and provide confidence in its output.

2 Introduction
This project aims to produce a program that will output realistic sea-level cosmic rays, such 
that they can be used in simulations or experiments in the future. This is useful as simulating 
the creation of the comic rays requires significant time and computational power. I will start 
by summarising the necessary background of cosmic rays and air showers, before outlining the 
theoretical background for the models used. A summary of cosmic-ray experimental data is 
then given to aid the understanding and creation of the generator. I will then motivate the 
design of the generator, and give some results of its output. Finally, simulations using 
CORSIKA, a program for simulating cosmic-ray air showers, will be presented in an attempt 
to validate the output of the generator and the theory and data behind it.

3 Background

3.1 Primary cosmic rays and secondary formation
Cosmic rays are particles originating extra-terrestrially that collide with the atmosphere. 
Primary cosmic rays ('primaries') are produced by astrophysical objects such as stars – 
including the sun, while ‘secondaries’ are synthesised from interactions between primaries and 
particles in the Interstellar Medium (ISM), and (more importantly for this project) Earth’s 
atmosphere. Primaries consist of all charged particles with a lifetime of order 106 years or 
greater [2], including electrons, positrons, etc. though they are most commonly bare atomic 
nuclei.



Figure 1 (data from [3]) shows relative abundances of nuclei from Hydrogen up to Zinc in 
cosmic rays above the atmosphere. The majority of cosmic rays that arrive at Earth’s 
atmosphere are protons and α particles, with heavier nuclei up to Nickel being of order 102 to 
103 less abundant. Large nuclei with A > 65 are present in cosmic rays but their abundance is 
suppressed [4], [5]. Many experiments have measured the flux and energies of primary cosmic 
rays at the top of the atmosphere. The resulting data have shown simple power-law 
dependencies in different energy regions of the cosmic ray spectrum, with shifts in power-law 
indices at 1015 and 1018 eV per particle, and a high-energy cut-off around 1020 eV [6].

Primaries are understood to be essentially isotropic in deep space, with deviations from this 
very small (though of some astrophysical interest) [7]. 

Upon colliding with the atmosphere, the nuclei produce hadronic showers, largely comprised of 
pions and kaons, in events called Extensive Air Showers (EAS) [6]. These in turn form sub-
showers until their energy is low enough that they decay before interacting, with charged 
hadrons producing muons, K± ⟶ μ± and π± ⟶ μ±. As such, muons are the most abundant 
cosmic ray particle at sea level [2], and will be the main focus of this project.

3.2 Cascade equations
The behaviour of a cascade of particles in an EAS can be modelled by the use of the very 
general cascade equations – Equation 1. The following equations are defined as in [6].

Figure 1: The relative abundances of nuclei in cosmic rays arriving at Earth’s atmosphere, 
normalised to Carbon = 100. Note the logarithmic y scale.  
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Most of the relevant particle physics is contained in the last term, where Fij gives the 
'dimensionless particle yield' that corresponds to a particle of energy Ej producing a particle i 
of energy Ei < Ej on collision with an atmospheric particle. 

In subsequent analysis, it is often assumed that the nuclei can be treated as a set of 
independent nucleons, called the superposition model. This assumption is supported by the 
the large interaction energies relative to binding energies in the nuclei [4]. Taking the average 
over many showers, this assumption “distribution of nucleon interaction points in the 
atmosphere coincides with that of more realistic calculations that account for nucleus 
interactions and for breakup into remnant nuclei” [4].

An important solution to these equations is that of a power law, which occurs when we 
assume that "for energies that are large compared to the critical energy, collisional losses and 
Coulomb scattering can be neglected" and "the radiation length is independent of Energy" [6]. 
These assumptions are in fact not well motivated for data acquired from most sea-level 
detector experiments, with relatively low particle energies (see Figure 3).  The details of this 
analysis will not be repeated here, but it motivates the form for Hadronic flux given in 
Equation 2. 

This is a simple power law spectrum. Secondary cosmic ray flux data are sometimes 
transformed to Ep log(dN/dE) for some power p (note dN/dE "differential flux") which makes 
it easy to relate them to power law spectra. 

However, the flattening of the distribution at higher energies shows that the assumptions hold 
better here. It is noteworthy that the primary cosmic ray spectra are described by power laws 

Equation 2 Hadronic flux given in at slant depth X and energy E, with γ being the integral 
spectral index and Λ being some characteristic decay length in the atmosphere.

N (E , X )∝ exp (−X / Λ) E−(γ+1)

Equation 1 The cascade equations. All quantities in lab frame. dNi(Ei,X)dEi is the flux of type i 
at depth X (measured along the line of the cascade) in energy interval [E, dE]. The 
probabilities of particles of type j (having interaction and decay lengths λi and di) interacting in 
distance dX are dX/λi and dX/di. The dimensions of X, λi and di are all [mass][length]-2 where 
decay and interaction lengths are defined as the density multiplied by the appropriate decay 
length. This provides a density-independent interaction length, but means the decay lengths d i 
are now proportional to density.
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quite precisely in certain energy regions (as mentioned in 3.1), but the astrophysical 
mechanisms of this and any deviation from it are beyond the scope of this project.

3.3 Response Curves
Response curves give an estimate of the range of energies of primary particles that produce a 
secondary particle with a given energy (in fact a range from some E up to ∞). They are 
defined in detail in [6]. The important result from this type of analysis is to calculate the 
mean primary energy 〈E0〉 given a secondary energy E. This is given in Equation 3.

This equation can be solved numerically, and an important result given in [6] is that for 
muons at ∼20 GeV (an overestimate for sea-level muons), the mean primary cosmic ray 
energy is ∼750 GeV. This uses the assumption of negligible muonic decay and importantly the 
power-law spectrum of primaries and secondaries as above.

This will become important when simulating muon production, as a large range of primary 
energies must be used to allow accurate simulation of muon fluxes at sea-level. This will to 
some extent motivate the simulation parameters used later, though the constraints set by 
simulation software will be more significant.

3.4 Atmospheric muon parametrisation

Given the production channels of muons in the atmosphere, with  K± ⟶ μ± and  π± ⟶ μ±, is 
is possible to derive a simple parametrised formula for the energy spectrum of muons at sea 
level, as set out in [6]. This is shown in Equation 4 and Equation 5. The first and second 
terms on the RHS of Equation 4 represent the pionic and kaonic contributions to the muon 
flux. Note that at higher energies, the Kaon channel becomes more significant in the total 
flux, but never surpasses the pion channel. 

Equation 4: Parametrised formula for differential muon cross section at sea-level, with zenith 
angle θ and muon energy Eμ. The suppression factor Sμ is given below.

dNμ

dEμ
=Sμ

14000 Eμ
−2.7

m2 sec sr GeV { 1

1+
1.11 Eμ cos (θ)

115 GeV

+ 0.054

1+
1.11 Eμ cos (θ)

850 GeV }

Equation 3: Mean primary energy for production of secondary of energy E with flux n.

⟨E0⟩=
E n ' (E , X)
n (E , X)

where n' is the flux if primary spectrum were E '0 =[E0/E ] N0



The cos(θ) prefactors and other constants are functions of the relevant branching ratios, 
masses and physical constants that are measured using accelerator data. 

This suppression factor may be simplified if one assumes muon production occurs high in the 
atmosphere (upper integral limit to ∞ and second term has no X dependence). This leads to 
Equation 6. 

It is clear to see from Figure 2 that the "no muonic decay" (i.e. Sμ = 1) assumption breaks 
down at lower energies, as the theoretically predicted muon flux is much higher than the 
various experimental values. The unsuppressed theory seems to fit well above ∼200 GeV/c, 
while the suppressed theory is better at lower energies but still systematically higher than the 
data. The results in the figure were produced using the theory() and suppressed_theory() 

functions in the codebase. 

The angular dependence of Equation 4 is difficult to analyse, as it is a differential spectrum 
not an integral spectrum. In [6] this integration is performed using the approximation of low 
energy muons (justified by experimental data similar to that in Figure 3) and that p1 is small; 
it is shown that the approximate theoretical muon flux scales as approximately cos2ϑ. This is 
also motivated by experimental data, see [8] which measures the distribution to be cosnϑ with 
n = 2.33 ± 0.11.

Equation 5: Suppression factor for muon production given muon energy Eμ, α is rate of energy 
loss through atmosphere (defined in the same way as in the cascade equations). ΛN and γ are 
the decay length and spectral index as in the power law equation. εμ is the decay constant as 
defined in [5].

Sμ (Eμ)= ∫
0

X 0 / cos (θ)
dX
ΛN ( Xcos (θ)

X0 )
p1

( Eμ

Eμ+α (X0 /cos (θ)− X))
p1+ γ+ 1

exp [− X
ΛN ]

where p1=
ϵμ

Eμ cos (θ)+α X 0

Equation 6: Simplified suppression factor. Note that αX0 ≅2GeV at sea level.

Sμ (Eμ)≈( ΛN cos (θ)
X 0 )

p 1

( Eμ

Eμ +2 GeV / cos (θ))
p1+γ+ 1

Γ [ p1+1]



3.5 Primary cosmic ray data
As mentioned in 3.1, primary cosmic rays generally follow a power-law spectrum, valid for 
certain energy ranges. The differential energy spectrum for a certain particle can be described 
by Equation 7. Note the inclusion of the mass number of the nucleus as all energies are 
considered per nucleon.

Table 1 shows the power law indices and prefactors for elements Hydrogen to Iron in primary 
cosmic rays, taken from table 1 in [9]. This uses data from various experiments as listed in 
Appendix A. These data were considered in the lowest energy region, i.e. E < 1015 eV before 
the first shift in power law behaviour. It is appropriate to consider the range below 1015 eV 

Equation 7: Flux of primary cosmic ray species i given mass number Ai.
N i (E) dE= A i K i E

−γ i dE

Figure 2: All muon flux data (besides BESS data) plotted against the theoretical formula for 
muon flux at the zenith. All data sources shown in Appendix B. Good agreement with no 
suppression is shown above 200 GeV but below this the non-suppression assumption breaks 
down. Even the suppressed theory appears systematically higher below 200 GeV using 
parameters taken from [5]. 
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given that our focus is on sea-level muon fluxes, with a mean energy around 4 GeV, and the 
results in 3.3 regarding response curves.

Table 1: Values of Ki and γi for primary cosmic ray particles.

Element Ai
Ki(cm2 s sr 
GeV/n) 1− γi

H 1 8540.20e-8 1.63

He 4 507.07 e-8× 1.66

C,N,O 14 46.96e-8 1.76

Ne–Si 28 0.8438e-8 1.63

Fe 56 0.012e-8 1.47

3.6 Sea-level muon data
Data on cosmic rays at sea level has been taken in many experiments. Some of these data are 
plotted in Figure 3, along with an order-3 polynomial best fit. This has not been done to test 
any particular theory, but to allow evaluation of the best-fit curve which was useful in creating 
the generator. Error bars are not included with the data as they were impossible to account 
for when creating the best-fit curve (the main aim of the plot), and are mostly too small to 
see on the plot.

The BESS datasets were excluded in the best-fit as they appeared systematically lower than 
others at all energies, and were very dense (small ΔEμ), which would skew the fitting 
algorithm towards them. At high energies (>100 TeV), the best-fit polynomial begins to 
increase again, which does not seem to fit the trend of the data. The validity (more precisely 
lack thereof) of this extrapolation is discussed in 4.2.

The generally accepted overall integral intensity of muons above 1 GeV is approximately 70 s-1 

sr-1 m-2 [2] [10]. 



4 Methods/Results

4.1 Requirements for the generator
The end-product generator had design requirements, constrained by its intended usage and 
purpose. The main points are summarised below: 

1. Be able to generate energies and zenith angles for cosmic rays - these can be 
used for other simulations/programs. This is the main aim of the project.

2. Low computational overhead – The point of the generator is to be able to input 
realistic sea-level cosmic rays into a simulation or other program, without having to 
also simulate the formation of said particle. As such the generator should not have to 
perform significant computation to output the intended result.

Figure 3: Plot of cosmic ray sea-level data and order 3 polynomial best-fit (excluding both 
BESS datasets). References for data used and trend-line formula can be found in Appendix B. 
R2 =  0.9978. Both scales are logarithmic and the y-axis flux has been multiplied by the 
corresponding muonic energy to the third power, as is done in many publications and 
textbooks, to make the plot more readable. See Appendix A for best-fir trend-line.
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3. Universality – The output should be easily ported to the relevant program that the 
generator is being implemented into, and easily customisable. A future developer 
should be able to easily transform the output of the generator to suit their needs.

4. Portability – The generator would ideally be cross-platform and useable in a wide 
range of computational environments. Some of the early lessons learned during this 
project involved the difficulties with distributing and installing software to a variety of 
environments. Given the relatively small scope and simplicity of this project this should 
be easily achievable. 

Given these main requirements, it was decided that the Python [1] language would be used for 
the project. It is an interpreted language, so the difficulty of compilation/installation on many 
different systems would be negligible. Python is very widely used, and a version of Python is 
pre-installed on most modern Linux distributions. Coupled with the NumPy package, Python 
becomes a powerful tool for vectorised mathematics [11], and highly universal and easy to 
manipulate.

4.2 Modes of generation
The formulae given in Equation 4, Equation 5 and Equation 6 provides a useful distribution 
for certain circumstances. Figure 2 shows its output for ϑ = 0 and a range of given energies. 
However, it is not appropriate as a probability distribution for all energies as it is clear that 
the curve plotted does not fit the data for E<200 GeV, with a systematic error above the 
data. The best-fit formula, plotted on Figure 3 has a relatively low R2 value of 0.9978 and fits 
well to the low-energy data. However, the extrapolation of the best-fit to higher energies 
outside the dataset is unfounded, especially as it is not based on any theoretical background.

Additionally, collection of muon flux data at non-zenith angles is more difficult, and finding 
enough experimental data to be able to parametrise the muon angular distribution for all 
relevant energies is challenging. Data are often given only for large bins of 10° or larger, and 
detectors have varying nuance with respect to sensitivity at different angles, etc. Hence, 
different method of generation are used if the user wants to generate muons with zenith angle 
ϑ ≠ 0. 

Note on statistics: it may not be immediately obvious that quantities like dNμ/dEμ can be 
used as probability distributions for muonic energies. However, integrating said equation dEμ 
up to some E0 gives the number of particles produced with energy less than E0 i.e. Nμ(Eμ < 
E0). When normalised, this is exactly a Cumulative Distribution Function (CDF) for Eμ; hence 
the original function (again when normalised) fits the definition of a Probability Distribution 
Function (PDF) for Eμ. The normalisation will not necessarily be important for our purposes 



given my implementation of rejection sampling. This also explains why they are not proper 
probability distributions for ϑ.

4.2.1 ϑ = 0 

It seems most sensible to use the theoretical formula at higher energies, where the no-
suppression assumption is more valid as the muons have a lower interaction cross-section at 
more relativistic energies. The best-fit formula will then be used at lower energies. Both 
functions are plotted on Figure 4. Their coincidence was found numerically to be at 18857 
GeV. This, along with the "composite" function, are also plotted in Figure 4. These are 
evaluated by the theory(), theory_suppressed(), best_fit() and composite() functions 
in the functions.py script. 

The mean of the composite() function is calculated numerically by integration of Eμ · 
composite(Eμ) between 0 and ∞ (normalised), and is 4.7360 GeV (error of order 10-7). Likewise 
the mean of theory_suppressed() for ϑ = 0 is 3.0887 GeV. As expected this is smaller as the 
theory PDF is systematically larger than the experimental data best-fit for low energies. 

Figure 4: The theoretical (both suppressed and not) and best-fit functions plotted against 
energy along with the Δ of theory and best-fit. Also shown is the proposed composite function. 
The composite, theory, theory (suppressed) and best-fit data are simply the outputs of 
composite(), theory(), theory_suppressed() and best_fit() in the codebase, with the 
usual E3 factor for consistency. The 'coincidence' line shows the point at which the theory and 
best-fit meet.
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The functions are sampled using a simple rejection sampler. For ϑ = 0 this simply trials the 
function in a rectangular range between Emu = 0 and some upper limit, and the maximum of 
the distribution, calculated at runtime. This is extremely inefficient given that the sampled 
area for the uniform distribution is so much larger than the area under the curve.  This is 
discussed in 5.2.

Timestamps for muon production can be created by the generator given a horizontal detector 
area by a simple Poisson distribution, using the value given for overall intensity in 3.6.

4.2.2 ϑ ≠ 0
For non-zero zenith angles, we must rely on the theoretical formula as it gives a 
parametrisation of the muonic flux for any ϑ. The generator generates n random angles 
according to a cos2ϑ distribution via the angle_generator() function. This is motivated by the 
theory in 3.4 but also much experimental work, see [8]. The method of generation is then the 
same as described above except that the theory_suppressed() function is used, and the n 
angles are passed to it in turn. Figure 5 shows histograms for the zenith angles and energies of 
20,000 produced muons. The angular distribution follows cos2ϑ as expected. Optimisations are 
again discussed in 5.2.



4.3 Validating the Results

4.3.1 CORSIKA

CORSIKA (COsmic Ray SImulations for KAskade) is a Monte-Carlo simulator that can be 
used to simulate primary cosmic ray-initiated air showers [12].

CORSIKA is primarily written in Fortran, with some of the data-processing utility programs 
written in C++, using their COAST (COrsika data AccesS Tools) package. CORSIKA is a 
large and comprehensive software package, with many tools and options to allow much 
versatility. The program distinguishes between ‘high’ and ‘low’ energy hadronic-nuclei 
interaction models to allow different methods to be used for particle interactions at different 
energies. By default CORSIKA will use the HDPM [13] model at high energies and FLUKA 
(FLUktuierende KAskade) [14] at low energies, and was the case for the initial simulations. 
The details of the installation options and simulation parameters are given in Appendix C, 
but the main points are summarised here.

Figure 5: Histograms of log10(Energy/(GeV/c)) and zenith angle produced by the 
generator. 20,000 muons produced in 345.78s.
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The program was set to simulate air showers produced by Hydrogen and Helium nuclei 
arriving at the top of the atmosphere (initially just H, see below), as these are by far the most 
abundant primary particles. The nuclei are assigned energies according to a power-law curve, 
using data from Table 1. The atmosphere model used was the US Standard Atmosphere [15]. 
The particle interactions are then tracked and all particles arriving at the “detector level” (at 
110m above sea level) are logged. 

Figure 6 shows the muon properties for 577,528 primary proton showers, with energies 
between 10 and 109 GeV producing 257,667 Muons reaching detector level. Importantly, 
CORSIKA requires a lower cut-off to the energies of the particles being produced. For all 
simulations this was left at 0.3 GeV, especially given that the generator function combined() 
has a lower cut-off at a higher 0.5 GeV. However, this may skew some of the statistics of the 
produced particles. This hard cut-off is shown clearly on the left of Figure 6.

The mean energy of the muons at near sea level was slightly higher than the literature 
suggests, and the variance on the mean is very large (5.8 ± 6.1 GeV), which is discussed in 

Figure 6: Histograms showing the kinetic energies and angular distribution of muons for the 
HDPM simulation of . The mean energy was 5.8 ± 6.1 GeV, and the mean zenith angle was 
6.63°. Each histogram has 50 bins. Note small secondary peak/tail around 100 GeV.



5.1. Given the prediction by the response curve in [6], this mean should not be sensitive to 
high energy primaries. An increase in maximum primary energy to 1012 GeV on re-running the 
simulation gave a mean Eμ of 5.9 ± 4.2 GeV, which supports this, though the variances are 
very large. All simulations so far were performed using only H nuclei as primary cosmic ray 
particles, which could also have affected the mean.

Problems were experienced attempting to use He nuclei as primaries with the simple HDPM 
high-energy interaction model. Subsequently, the simulation was repeated using different 
interaction models, specifically DPMJET III [16] for high energy interactions and GHEISHA 
(as distributed with the Geant4 package [17]) at low energies. Note that for He interactions 
the superposition model is used, as explained in 3.2.

The histograms for the DPMJET-based simulations appear much the same as those above, for 
both He and H nucleus primaries. The H nuclei produced a mean muonic energy of 9.8 ± 2.3 
GeV while the He produced 10.8 ± 2.2 GeV. These variances are much smaller than before. 

The zenith angle distributions don't at all resemble the cos2ϑ distribution that was predicted 
in 3.4. They are much narrower nearer the zenith. This is discussed in 5.1.

5 Discussion

5.1 Mean energies & simulation models

The mean of both the PDFs used for muon generation and the simulations performed with 
CORSIKA were slightly different from that quoted in the literature. A review from the 
Particle Data Group PDG [1] suggests the mean Energy of sea-level muons is approximately 4 
GeV. The closest distribution mean to this was the composite() function, with a mean of 4.7∼  
GeV. The HDPM simulations gave means of between 5 and 6 GeV, with very large variances. 
This is likely due to the small secondary peak (or large tail) shown on the right of the energy 
distribution, around 100 GeV; see Figure 6. I do not understand the origin of this peak, as it 
is not predicted by the theory.

As mentioned in 4.3.1, the high- and low-energy simulation models were changed in order to 
be able to simulate He primaries. There is some evidence that the simple HDPM model for 
high energies becomes less applicable at higher energies, such as the erroneous peak observed 
in Figure 6. This is further illustrated by the data in Figure 7, (taken directly from [14]), 
which shows the mean energy fraction in a H-N collision that is lost to EM radiation. Clearly, 
at higher energies, the HDPM model begins to diverge from the others in this metric. I expect 
that this exact mechanism could also reduce the mean muonic energy as mentioned above, 
giving lower means.



Hence DPMJET III [12] was chosen instead. It is also able to simulate He primaries, while 
some issues were experienced attempting this with the HDPM model. The mean muonic 
energies were larger but the variances were much smaller, likely due to the absence of the 
secondary peak in the distribution.

The high mean energy is probably explained by the use of only vertical incoming primary 
particles for the simulation. This was an oversight that should have been altered very early on. 
This also allows very little interpretation of the angular results of the simulation, and more 
work could easily be done to validate this aspect of the simulation. One final simulation was 
performed to attempt to characterise the angular distribution, with incoming particle angles 
between 0 and 70°, but the angular distributions were very strange and hard to analyse, with 
strong peaks at specific angles. I believe that only a few incoming showers had muonic 
components that reached the ground, producing these strong peaks for each shower. Hence 
more simulations would need to be done to analyse and verify the angular distribution (10,824 
showers analysed with over 12hrs of computing time).

Figure 7: Comparison of the mean Energy fraction lost to photons after a proton-Nitrogen 
nucleus collision as a function of COM energy. Taken from [14]. HDPM shows significant 
deviation from the other models at higher energies.
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5.2 Optimisation
The generator created is highly unoptimised. Given that the distribution being sampled has 
the form of a negative power in Eμ, using a uniform distribution to sample it is very inefficient 
given that the area under the uniform distribution curve is so much larger than that under the 
PDF curve. This is shown in Figure 8. It would be ideal to use a sampling distribution that 
fits the data much better to increase efficiency, a simple example of this is also shown on 
Figure 8. However, performing a simple test revealed that using the uniform distribution or 
the triangular distribution to sample 10,000 muons with ϑ = 0 and maximum energy 104 GeV 
took 61.8s and 17.5s respectively. I expect that this is due to the algorithm used by NumPy to 
obtain random values for the triangular distribution, but this could be looked into further. 
Clearly much better distributions could be sampled, such as some sort of power law, 
exponential or even a normal distribution if they were scaled correctly. This would be a simple 
way to optimise the code.

Additionally, calculating the maximum of each distribution at runtime is computationally 
inefficient, it would be much more efficient to have the maxima stored as a constant, but this 

Figure 8: The composite() distribution, uniform distribution and triangular distribution 
against muonic energy for sampling muons with a maximum energy of 20 GeV (in reality this 
would be much higher).
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is less versatile with respect to the input function being sampled. I opted to keep the 
generator as versatile as possible. The maximum of the PDF varies with the ϑ chosen (shown 
in ), so if ϑ ≠ 0 is specified then the generator must compute this maximum for each ϑ 
chosen, which is very time consuming. The maximum shifts away from Eμ = 0 for large ϑ, as 
shown in Figure 9.

6 Conclusions
As was set out at the start of the project, I wrote a software generator that produces realistic 
sea-level cosmic rays, in much less time than it would take to directly simulate them. The 
output of the generator fits well with experimental data (and is somewhat based on it). 
Simulations were performed to further validate the results and also provided interesting 
comparisons with the experimental data. 

Figure 9: Comparison of PDF for different zenith angles, all normalised to 1 at their 
respective maxima.
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8 Source Code
The files functions.py and rejection_sampler.py are available from: 
https://github.com/condimentman/cosmic_ray_generator

Appendix A
Order 3 polynomial best fit rend-line: 

f(x) = 0.0802084387362498 x3  0.865540849689325 x− 2  0.529814522816601 x + 1.30273127415449−
with f(x) being the log10(Flux) and x = log10(Eμ)



Appendix B
Data used for muon vertical flux plot.

• Green 1979 - Measurments of Muons made at a variety of spectrometer zenith angles, 
with energies between 2 – 300 GeV/c. [18]

• Rastin 1984 – “near-vertical” direction, measuring Muons with energies from 4 to 3000 
GeV/c. [19]

• Ivananko 1985 - [20]

• BESS 1995– Use of the BESS (Balloon-Borne Experiment with a Superconducting 
Spectrometer) at two near-sea level locations (after use on balloon in 1993), with 
measurements taken from 0.6 to 20 GeV/c [21]

• Alkofer 1971 - [22]

• Baber 1968 – [23]

• L3+ Cosmics – CERN underground experiment that used simulations to calculate 
surface muon spectrum from underground data [24]

• Hayman 1962 [25]

• Nandi 1972 [26]

• CAPRICE97 & CAPRICE98 [27]

• Ayre 1975 [28]

Appendix C
Details of the usage of CORSIKA. The default installation options were used, except for the 
switch to DPMJET and GHEISHA models, and the usage of the "INCLINED" option, which 
allows the user to select an inclined detector array. This was not used but is required at 
installation to also install the COAST package for analysis of data.

A C++ script CorsikaRead was used to extract the detected-particle data from the output. 
CorsikaRead was a slightly modified version of an example script provided by the CORSIKA 
authors. The raw data is written to binary output files which mist be translated before 
analysis.

A Python script postprocess.py was then used to extract the desired particles’ (in this case 
muons') properties into a Pandas [29] DataFrame and calculate some relevant parameters (e.g. 
Zenith angle). This data is then saved as a .csv file for plotting or analysis. 



Use of the PARALLEL option may have been useful in speeding up high energy simulations, 
as it can allocate sub-showers between different CPU cores, but this only allows one shower to 
be simulated per-run, which was unideal for this use case. An example of the input file used 
for a CORSIKA simulation can be found with the source code.


