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Muon Scanning Tomography Image Reconstruction 

using X-ray Computed Tomography Software 

 

Abstract 

Muon Scanning Tomography (MST) uses cosmic 

ray muons to scan structures. One problem in 

bringing this technology to industry is the lack of 

a consistent reconstruction algorithm. Muons 

undergo multiple coulomb scattering, which has 

a dependence on the mass thickness of the 

material. This is analogous to x-rays, whose 

attenuation also depends on the mass thickness. 

This paper investigates whether these 

similarities can be exploited to image MST data. 

An algorithm was written which converted the 

muon data to mock x-ray data, by calculating 

the mass thickness. The mock x-ray data was 

then passed to open source CT software. The 

algorithm was fed with idealised, computer-

generated muon data, for a range of materials 

and shapes, and the resulting images were 

analysed. The algorithm worked, with promising 

results, producing images which were sensitive 

to the shape and density of the objects being 

scanned. However, further work is required to 

investigate and reduce image artefacts, and to 

test the algorithm with real muon data before it 

can be used in commercial imaging. 

 

1. Introduction  

Muon scanning tomography (MST) uses high 

energy cosmic ray muons to scan structures, 

such as buildings and containers. Its advantage 

is that the muons are naturally present, so no 

radiation generation is required for the 

scanning. MST takes a long time, as the 

incidence of muons is low. Therefore, its use is 

in scanning inanimate objects. MST is not yet in 

industry, and one of the problems to be 

overcome is the development of an algorithm to 

turn the raw data into an image. This paper 

investigates whether the analogy between MST 

and X-ray computed tomography (CT) scanning 

can be exploited to image muon data. 

Section 2 introduces the theory behind this 

concept and section 3 discusses the software 

used. Section 4 discusses the results, and 

section 5 presents some future development 

ideas, as time constraints meant this work was a 

simple proof of concept. 
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2 - Theory 

2.1 - Moliere’s multiple scattering theory 

Muons traversing a material undergo many 

small angle scatters, because of the coulomb 

interaction. The effect of this multiple coulomb 

scattering is an approximately Gaussian [1] 

distribution of scattering angles, which, for small 

angles, is well described by Moliere’s multiple 

scattering theory. The spread depends on the 

distance travelled through the material, the 

scattering length and the muon momentum 

(equation 2.1.1). 

𝜃0 =
13.6𝑀𝑒𝑉

𝑝𝛽𝑐
√

𝑥

𝑋0

 [1 + 0.038 ∙ ln (
𝑥

𝑋0

)] (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1.1) 

Cosmic ray muons are highly relativistic (𝛽~1), 

with an average energy of 4GeV. The scattering 

length depends on material properties. For 

elements, it depends on the density, atomic 

number and mass number (equation 2.1.2). To 

avoid complication, only elements are looked at 

in this proof of concept. 

𝑋0 = [
𝐴∙716.4𝑔𝑐𝑚−2

𝑍(𝑍+1) ln(
287

√𝑍
)
] [

1

𝜌
] (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1.2)   

2.2 - X-ray attenuation theory 

X-rays travelling through matter are attenuated. 

The degree of attenuation depends on the 

density, mass thickness and mass attenuation 

coefficient of the material traversed [2] 

(equation 2.2.1).  

𝐼

𝐼0
= exp(−

𝜇

𝜌
𝑥𝑚) (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2.1)  

In this equation, the mass thickness 𝑥𝑚 is the 

density multiplied by the distance travelled. The 

mass attenuation coefficient (
𝜇

𝜌
) is dependent on 

the x-ray energy, as well as material properties. 

Coefficients are shown for various elements in 

figure 2.2.1. [3] The complexity of these 

functions may cause problems in the data 

conversion stage. 

 
 

Figure 2.2.1 – X-ray mass attenuation coefficients for Lithium (a), Titanium (b), Lead (c) and 

Uranium (d). The dependence on energy has a complex functional form, ranging over several 

orders of magnitude. Whilst Titanium, Lead and Uranium are similar, the coefficient of Lithium 

is an order of magnitude smaller. 

(a) (b) 

(d) (c) 
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2.3 – Analogy between MST and x-ray CT 

This work uses the parallels between muon 

scattering and x-ray attenuation to image muon 

data, using already highly optimised x-ray CT 

reconstruction algorithms. Muon data was 

analysed, and then converted into mock x-ray 

data, which was fed into the CT reconstruction 

software to produce an image. 

Since the radiation length is a function of the 

density of material traversed (amongst other 

things), the value of mass thickness can be 

inferred from measurement of the scattering 

angle. The radiation length can be written in 

terms of a constant, multiplied by the inverse of 

the density (equation 2.3.1).  

𝑋0 =
𝐶

𝜌
 𝑤ℎ𝑒𝑟𝑒 𝐶 =  

𝐴∙716.4𝑔𝑐𝑚−2

𝑍(𝑍+1) ln(
287

√𝑍
)
 (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3.1)  

This constant is dependent on the material’s 

atomic number and mass number. The value for 

a number of elements is shown in Figure 2.3.1. 

 

 

  

Element C / gcm-2 

Lithium-7 81.78 

Titanium - 48 16.52 

Lead - 208 6.33 

Uranium - 235 5.79 

Unlike the x-ray mass attenuation coefficients, 

these numbers are not multiple orders of 

magnitude apart. A representative value of 17 

was chosen for this work, as this is within the 

range – however the value is arbitrary, since it 

simply scales the mass thickness, which is later 

multiplied by an arbitrary number when 

generating the mock x-ray data. After making 

this approximation, equation 2.1.1 takes the 

form (equation 2.3.2):  

𝜃0 =
13.6𝑀𝑒𝑉

4000𝑀𝑒𝑉
√

𝑥𝑚

17
 [1 + 0.038 ∙ ln (

𝑥𝑚

17
)] (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3.2) 

From this, the value of mass thickness was 

obtained.  

Once the mass thickness was known, fake CT 

data could be generated. The muon geometry 

was converted to 2D Cone Beam x-ray CT 

geometry. Figure 2.3.2(a) shows the muon 

Figure 2.3.2 – Acquisition geometries. (a) shows the muon acquisition geometry. The positions and incidence angles of 

incoming muons are measured – then the position and angle are measured after passing through the sample. The data 

is grouped by incidence position and angle, which translates to a “source position”. This source position is labelled by 

an angle 𝜃, and is assumed to be on the circle shown, which requires the region between the actual square of 

detectors and the inscribed circle to be empty. (b) shows the fan beam x-ray CT geometry, which the muon data has 

been mapped onto. An anticlockwise rotation of the material in this diagram corresponds to a clockwise rotation of 

source and detector in (a). 

Figure 2.3.1 – The value of the prefactor for 

equation 2.3.1 for various elements. 

(a) 
(b) 
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acquisition geometry, and 2.3.2(b) [4] shows the 

x-ray CT acquisition geometry. 

After this, mock x-ray transmission data was 

generated using equation 2.2.1. Since real x-rays 

were not used, the mass attenuation coefficient 

is arbitrary, so could be chosen to optimize the 

images produced. Once this data was generated, 

it could be fed to the CT Package, which 

produced an image. 

3 – Software  

3.1 – X-ray Software  

The CT package used was the core imaging 

library (CIL) [5]. This software was chosen 

because it is open source, and has a large 

number of demos. It is easy to use, and allows 

the user to specify the scanning geometry. The 

specific algorithm used was filtered back 

projection (FBP) from the Astra toolbox [6]. Back 

Projection takes absorption data, and projects it 

back along the ray path, based on the angle and 

detector pixel number. After doing this for all 

ray paths, a set of simultaneous equations is 

produced. Each voxel has a specific absorption 

associated with it, and the simultaneous 

equations add various combinations of voxels 

together. The FBP algorithm then solves this set 

of equations, to obtain the amount of 

absorption, and therefore the density of each 

individual voxel. Figure 3.1.1 shows a simple 

example. 

The filtering step serves to sharpen the image – 

the default filter was used. Recently, iterative 

reconstruction algorithms have gained 

popularity in CT imaging. These perform FBP, 

but then take this image, and simulate what x-

ray absorption data the image would give, and 

then compare this to the original data. This 

process continues for a specified number of 

iterations, improving the image. Since the 

project already generates imperfect CT data, 

this method may not have improved the results, 

and simple FBP was sufficient. More information 

about CIL can be found in ‘Core Imaging Library - 

Part I: a versatile Python framework for 

tomographic imaging’ [5].  

3.2 - Data Generation 

As this was a proof of concept, mock data was 

generated using a simple python script. The 

script determined which materials were passed 

through, and the distance traversed. The first 

pass found the average material properties 

across the entire muon path, and used this 

information to calculate an average radiation 

length. This was combined with the total length 

of the muon path to find an approximation to 

𝜃0. Twenty random numbers were then 

generated, from a Gaussian distribution of 

standard deviation 𝜃0. The data was returned as 

a numpy [7] array, with a set of muon entry  

positions and angles, and a corresponding set of 

twenty scattering angles.  

Later, an alternative method of calculating 𝜃0 

for the generated data was tried. This depended 

on the number of material blocks traversed. If 

3 

3 

1 5 
Figure 3.1.1 – A simple demonstration of 

filtered back projection. (a) represents the 

data given to the algorithm. There are 4 

voxels of unknown value, but the pink 

numbers show the total value of a given 

row or column. For example, if you add up 

the first row, you get a total value of 3. (b) 

shows the result of the algorithm, which 

solves the 4 equations to obtain the values 

of the voxels.  

(a) (b) 
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no materials were traversed, 𝜃0 was simply 

zero. If one material was traversed, equation 

2.1.1 was used. If multiple materials were 

traversed, an average radiation length across 

the materials, and total distance travelled 

through the materials were calculated. This is 

better than adding the contributions in 

quadrature – which gives a result which is 

systematically too small [1]. The final images 

produced were compared with the original 

method. 

4 - Results 

4.1 – The effect of changing the data 

generation 

The effect of changing the data generation 

method was investigated, to heuristically find 

the best method. It was investigated for a single 

object, and then for two objects of different, but 

similar densities. The results for a single square 

of Uranium-235 are shown in Figure 4.1.1.  

The averaging method of data generation (b) 

clearly leads to a worse image. The edges of the 

square are fainter, and the cross shaped artefact 

is stronger. The density scales of the two images 

are also quite different. This is expected, since 

(c) corresponds to the actual expected gaussian 

width, whereas (b) involves averaging, so you 

would expect the result to be more “spread 

out”. The “density” of the square in the 

averaging image is about 5 times weaker than 

that of the exact calculation image.  This is 

expected – the value of x/X_0  for the averaging 

method is approximately 10, whilst that for the 

more realistic method is approximately 50 – 

giving the observed factor of 5.   

Figure 4.1.2 shows a 1-Dimensional slice 

through the centre of the image, normalised by 

the maximum density. The normalised density 

for the image with the averaging data 

generation is clearly below that for the exact 

calculation for at least the first 15% of the  

Figure 4.1.1 – The effect of changing the data generation method on the quality of the image. (a) shows a 

density map of the situation being simulated – a square of Uranium in the centre of the sample. (b) shows 

the image with data generated using the averaging method, whilst (c) shows the image with data generated 

using the radiation length and distance travelled through the square.  

Figure 4.1.2– A 1D slice for both methods, 

normalised by the maximum density. The 

averaging method performs worse at the 

edges, but in the centre the performance is 

similar. 

(a) 

 
(b) 

 

(c) 
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object. This further emphasises the observation 

that the edges are less well defined with the 

averaging method. 

Figure 4.1.3 shows the images for the two 

different methods for two squares, one made of 

Lead and one of Uranium.   

Again, the first method (b) produces a worse 

image than the second method (c). There is a 

clear “Leakage” artefact between the two 

squares in (b), whereas (c) has much better 

defined corners of the squares, and you can 

observe the correct situation of two 

unconnected squares from this image. This time,  

 

(c) has about a factor of 3 more density than (b) 

– we would expect the discrepancy to be less 

than with a single object, as the actual situation 

is closer to the averaging.  

Figure 4.1.4 shows a 1D slice of the images, from 

the top left corner to the bottom right. These 

pass through the Uranium first and then the 

Lead. The first data generation method clearly 

has problems here – the Lead cannot be 

distinguished from the empty space between 

the two squares. Comparing the two methods, 

we see a clear region of lower density between 

Figure 4.1.4 – A diagonal slice through the images. (a) shows the slice for averaging across the entire sample, and (b) 

for averaging just across the objects. (c) shows a comparison of the normalised densities. The second method of 

averaging across only the materials leads to a better result. 

Figure 4.1.3– The effect of changing data generation on the images produced for two objects made of different 

materials. (a) is a density map of the situation being imaged – two squares, one made of Uranium and one made of 

Lead. (b) shows the image produced when data is generated by averaging across the entire ray path. (c) shows the 

image produced when data is generated by averaging only across the objects. 

(a) 

 

(b) 

 

(c) 

 

(a) (b) 
(c) 
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the objects with the second data generation 

method, but no such region for the first.    

After viewing this data, the second data 

generation algorithm is clearly more accurate, 

so this was used for all future plots.  

4.2 - The effect of changing pixel number 

Three different numbers of pixels were 

investigated. Data was taken for a single square 

of Uranium-235 in the centre of the scanner. A 

density map for the generated data is shown in 

figure 4.2.1 (a).  

As there was a single object, the data was 

generated using the distance travelled through 

the Uranium, and the radiation length of 

Uranium-235. The data was then analysed for 

each pixel number. As expected, increasing the 

number of pixels reduced the pixelation, and 

sharpened the image. A reduction in the 

visibility of image artefacts was also seen.  

However, in the real world, increasing the 

number of pixels results from increasing the 

data collection time. A lower bound for the rate 

of measurable muons is approximately 4.2m-2s-1 

[8]. The lowest resolution image has data for 

10,000 different muon paths. Since we need 

approximately 20 measurements to 

meaningfully find the standard deviation of the 

scattering angle, this image corresponds to 

200,000 muons.  The resulting data collection 

phase, for a 1m square detector, would take 

approximately 13 hours. The central image 

would take 9 days and the highest resolution 

image 33 weeks. If the detector size was of a 

similar order to the sort of large structure that 

MST could be used for, for example a square of 

area 400m2 – analogous to a motorway bridge, 

these numbers come down to 2 minutes, 32 

hours, and 5 weeks. For the rest of the results, 

we will proceed with the resolution of the 

central image. 

Figure 4.2.1 – the effect of changing pixel 

number on image quality. (a) is a density map of 

the sample. (b) shows the image with 200 

position points and 50 angles. (c) shows the 

image with 800 position points and 200 angles. 

(d) shows the image with 4096 position points 

and 1024 angles. All angles range from -45 to 

+45 degrees. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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4.3 - The effect of changing attenuation 

coefficient 

The value of the x-ray mass attenuation 

coefficient is arbitrary, since we are dealing with 

imaginary x-rays, so can be tuned to highlight 

specific image qualities. Increasing the 

coefficient is analogous to increasing the 

contrast of a scan – the x-rays are attenuated 

more as the coefficent increases. The changing 

sensitivity provides a method of identifying the 

absolute density or specific material of an object 

– whereas a single scan in isolation can only 

identify shapes. Figure 4.3.1 shows a series of 

images of two squares, one made of Uranium 

and one made of Titanium, with varying 

coefficients. 

With the lowest two values of attenuation 

coefficient (𝜇 = 0.001, 𝜇 = 0.01), only the 

Uranium square is visible. The third image (𝜇 =

0.1) is the first where the Titanium square is 

visible, although it is significantly fainter than  

 

 

 

 

the Uranium. In the fourth image (𝜇 = 1) the 

squares look identical. Only through looking at 

the combination of images with different values 

of 𝜇, can it be concluded that there are two 

squares, one with a higher density than the 

other. 

Figure 4.3.2 shows the image densities of a 

square of various types of materials, as well as 

the densities of image artefacts, and how these 

are affected by the attenuation coefficient. This 

data was generated by considering a single 

square of each type of material, in the centre of 

the detector. The average density across the 

expected position of the square in the image 

was then calculated. The background numbers 

are the average density across the rest of the 

image (with a small exclusion zone around the 

square), whilst the density of artefacts was 

calculated by considering the densest 5% of the 

background. Both of these numbers were 

calculated with a square of Uranium, since the 

 

 

 

 

 

Figure 4.3.1– The effect of changing the attenuation coefficient on materials of different densities. (a) 

shows a density map of the situation to be imaged – a square of Uranium and a square of Titanium. 

(b)-(e) show images with increasing values of the attenuation coefficient, 𝜇,  (0.001, 0.01, 0.1, 1 ). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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 densest object gives rise to the largest 

artefacts, and an upper bound was sought.  

 

At low values of attenuation coefficient, the 

relative density is larger for denser materials, as 

expected. As the attenuation coefficient 

increases, the average density increases – and a 

factor of 10 increase in the coefficient leads to 

approximately a factor of 10 increase in the 

density. This is expected, since increasing the 

coefficient increases the mock x-rays’ sensitivity 

to density, and is analogous to increasing the 

contrast. The artefacts and background do not 

have the same sensitivity to density, and remain 

approximately constant throughout. This means 

that as the coefficient is increased, lower and 

lower density materials overtake the artefacts in 

visibility. This is why in Figure 4.3.1, the 

Titanium square starts to be visible between a 

coefficient of 0.01 and 0.1. We could therefore 

predict that a Lithium square in a similar 

arrangement would become visible between a 

value of 1 and 10. This coefficient dependence is 

very useful, as it means we can also use this 

software to distinguish between different 

materials. For example, test objects of various 

materials could be imaged using the algorithm, 

at varying attenuation coefficients and the 

images from scans compared, to determine the 

actual material scanned.  

As attenuation coefficient is increased further, 

there is a saturation value of approximately 1.5. 

Again, this is expected – at high values of 

attenuation coefficient, any amount of mass will 

lead to complete attenuation, so no information 

can be gained other than that there is some 

minimum amount of mass thickness between 

source and detector. This explains why in Figure 

4.3.1, at an attenuation coefficient valus of 1, 

the two squares appear to be the same density.  

4.4 - Imaging complex shapes 

One potential application of MST is to check 

internal structures of buildings. Therefore, it 

would be useful if complex shapes could be 

accurately imaged. Figure 4.4.1 shows an image 

of “complicated shapes” – here a smiley face 

and a sad face.  

There are significantly more artefacts than for 

simple shapes, which provide uncertainty as to 

the actual shape of material. However, the 

overriding features are still there – the image 

does resemble a smiley/sad face. If we have 

some prior information – for example we know 

that the object is either a smiley face or a sad 

one – the images produced can tell us which it 

is.  

Figure 4.3.2– The average relative 

densities of various materials, as well 

as background and artefacts. This 

shows that different materials 

become visible at different 

attenuation coefficients. At high 

coefficients, all materials appear the 

same, since mock x-rays are fully 

attenuated.  
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5 – Future Developments 

5.1 – Artefact Reduction 

A significant problem throughout these results 

has been the presence of image artefacts. 

Unfortunately, time constraints meant there 

was no time to investigate the causes of these 

artefacts, and therefore take steps to remove or 

at least reduce them. However, some 

suggestions are presented here for future 

developments of this type of MST 

reconstruction software. The images of the 

central square (Figure 4.2.1), being the least 

complicated can provide good insight into the 

type of artefacts. The highest resolution image 

shows predominantly streak artefacts, which are 

a known problem with x-ray CT images [9]. 

Therefore there is some hope that the CT 

package used would be able to eliminate some 

of these, through existing functions. These 

functions involve iterative reconstruction 

algorithms, which have become more popular 

due to increasing computing power in recent 

years [9]. This technique could improve the 

images, however, there is significant danger that 

this would actually worsen the images, since the 

x-ray data being used is not from real x-rays.  

 

 

Figure 4.4.1 – Images of complicated shapes. (a) and (b) show density maps of the situation being 

imaged – a smiley/sad face. (c) and (d) show the resulting images. There are large artefacts, but the 

images still strongly resemble the real situation. 

(a) 

 

(c) 

 

(b) 

 

(d) 
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5.2 – Potential Developments 

Another improvement would involve trying to 

extract more information about the particular 

material. Both MST and x-ray CT data actually 

depend on the type of material, not just its 

density, as is assumed in the work above. A 

future algorithm could take extensive data for 

known samples using both muons and x-rays, 

and compare these heuristically. After learning 

the data, the machine could more realistically 

convert muon data to x-ray data. 

The algorithm has only been tested on idealised, 

computer-generated muon data. Future 

developments would need to test it on more 

realistic simulated data, such as from Geant-4 

[10], and eventually on real muon data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 - Conclusions 

The work has shown that it is possible to exploit 

the similarities between x-ray CT and MST data 

to create an image reconstruction algorithm for 

MST. The resulting algorithm was sensitive to 

density differences between materials, and the 

shape of the objects. The mass attenuation 

coefficient of simulated x-rays can be tuned to 

identify specific materials. The algorithm is 

already sufficient to determine the contents of 

the area if prior knowledge indicates the 

contents to be one of a finite number of 

options. However, further work needs to be 

carried out, in particular to reduce the artefacts. 

Additionally, the algorithm needs to be tested 

on real data. Overall, the results have been 

promising, and represent a step towards a 

consistent algorithm for MST being developed.  
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