
Parity Odd Event Variables for Hadron Colliders

Takis Angelides∗

Supervisor: Dr. Christopher Lester

May 17, 2021

Abstract

Parity odd functions of hadron collider events can be used to probe novel parity violating
processes through asymmetries in their distributions. In this paper we present results used
for the construction of such functions. Geometric Algebra algorithms are provided for the
computational validation of our results.

Except where specific reference is made to the work of others, this work is original and has not been
already submitted either wholly or in part to satisfy any degree requirement at this or any other
university.

Contents

1 Introduction 2

2 Theory 2

3 Method 3

4 Results 4

5 Computational test of results using Geometric Algebra 15

6 Geometric perspective 21

7 Conclusion 23

8 Acknowledgements 23

A From events to event variables 24

B Proofs for algorithms 24

C Notation 26

∗Email: takis.angelides@gmail.com

1

D Case 2 calculation for collision events 27

E Code 29

1 Introduction

Following the results of experiments by Wu et al in 1957 [1] which showed that the weak interaction
violates parity, tests of parity violation have hitherto been limited, especially on LHC data [2]. Non-
standard parity violating processes beyond the weak interactions can manifest themselves through
asymmetries in distributions of event variables which are parity odd, applied to data generated by
the LHC.

The data consist of events characterised by a set of real non space-like four-momenta. Given
our methods are purely data-driven, at no point in constructing the variables do we rely on any
theoretical model. Consequently, the method of this paper that follows from [3] aims to probe all
sources of non-standard parity violation if any exist.

In this paper we specifically focus on the case of events which consist of two incoming and four
outgoing objects, which can be two incoming protons and four outgoing jets. We aim to identify
certain properties of the results obtained that can be used to generalise to N outgoing objects.
The paper will present conditions for events to be non-chiral - see section 2 for the definition of
non-chiral events - with the ambition of building event variables for different types of two to four
events in future work.

In the following section we provide the theoretical background for our work, including necessary
definitions and conventions. We then present the general method for this paper and our results for
each type of events considered. A computational validation of the results follows, which utilizes the
elegant power of Geometric Algebra. We give a geometric picture of our work before conluding in
the last section. In the appendix, we provide a flowchart showing the method of this paper, proofs
for the validity of our algorithms, some important notation used for the results in this paper and
the explicit calculation of one of the cases considered below.

2 Theory

Let S = {Vi | i = [1, N]} be the set of N event variables and Ω = {e | e is chiral} the set of chiral
events. An event is defined as chiral if after applying parity to it, it cannot be mapped onto itself
by any combination of group elements from our choice of a symmetry group G. The symmetry
group in this paper will be the Lorentz group × S2 × S4, where Sn is the permutation group of n
elements. Note that S2 only permutes incoming particles (if identical) and S4 outgoing particles.
As discussed with detail in [3], S must satisfy the properties of:

• Sufficiency: at least one Vi evaluates to a non-zero value for all e ∈ Ω

• Necessity/irreducibility: removing any Vi would violate sufficiency

• Reality: Vi : e→ R

2

• Continuity: small changes - in energy or momenta - to e should lead to small changes in the
output of Vi

• Lorentz and permutation invariance: Vi should be Lorentz invariant and invariant under
permuting identical objects such as jets or photons in incoming or outgoing states

• Parity-odd: all Vi change sign under parity ~x→ −~x

• Minimality: if two sets satisfy all properties, we choose the one with the least number of
elements.

Our ultimate aim is to construct the sets Sc and Snc for 2→ 4 chiral, collision and non-collision
events respectively. The classes of events called collision events E c and non-collision events E nc

are given by definitions 2.23 and 2.26 in [3]. Roughly, a collision event has an initial state of two
particles that can define a center of mass frame and in that frame the equal and opposite 3-momenta
are non-zero. A non-collision event is an event that cannot satisfy these properties.

Intuitively, non-standard parity violating processes will push the average of at least one of the
parity-odd event variables towards being very negative or very positive. This is because the variable
will change sign if we evaluate it on a chiral event e or on the same event after applying parity to
it Pe. Hence, if nature does not prefer a handedness for parity and produces equal numbers of left
and right handed chiral events of the same process, then the output of the variable will have on
average half of the time a positive sign and the other half a negative sign. Averaging over the ‘+1’
and ‘-1’, corresponding to outputs of positive and negative sign, would of course give 0. Now, if
nature decides that it prefers a handedness for a given process, then for that class of chiral events
the sign of at least one event variable will be the same throughout the sample of events and would
drive the average significantly far from 0.

This is why we are not concerned about non-chiral events. Since they can be mapped onto
themselves after parity by actions of the symmetry group, they evaluate to 0 on any parity odd
function. Hence, they cannot be used to probe non-standard parity violating processes. The idea
is that if we have a logic statement that is true for chiral events, then we can use it to construct
event variables while ensuring that at least one of the event variables would evaluate to a non-zero
value for any chiral event input. We need to enforce the last property so that any chiral event can
be labelled left or right handed.

3 Method

The method to obtain Sc and Snc is to first obtain a logic statement that is true when an event is
non-chiral - see figure 5. Since we are concerned only with chiral events, we negate the latter logic
statement. By having the logic statement which is true for chiral events, we can ensure that both
Sc and Snc satisfy the sufficiency condition. Using the latter logic statement that characterises
which events from our class of events are chiral, we construct the variables Vi in each set (Sc, Snc)
and ensure these will satisfy all the conditions mentioned in section 2.

Given our symmetry group G, and the parity operation denoted by P, a non-chiral event e is
one for which there exists a set of group elements {g1, ..., gN} such that Pe = ĝe, where ĝ is the

3

composition of the N group elements in {g1, ..., gN}. By going through all the possibilities for ĝ,
we derive the logic statement that is true only for non-chiral events. We can then easily obtain the
logic statement for chiral events by negation.

We start by deriving the logic statement which is true only for non-chiral collision events. Let
the four-momenta of the incoming particles be denoted by p and q, while for the outgoing particles
denoted by a, b, c, d. We can represent an event by e and a collision event by ê which follows from
Lemma 2.27 in [3] as

e =

 mp mq ma mb mc md

p q a b c d
pz qz az bz cz dz

 ê =

 mp mq ma mb mc md

0 0 a b c d
p −p az bz cz dz


where we have aligned ~p and ~q with the positive and negative z-axis in the rest frame of (p + q)1.
Here we note mi > 0, j ∈ C and jz ∈ R for j = a, b, c, d. Given any g ∈ G has an inverse, we can
say

g · ê =

(
πx
yz

)
·P · ê⇒ ê is non-chiral (1)

Noting that

(
πx
yz

)
·P · ê =

 mp mq ma mb mc md

0 0 −a∗ −b∗ −c∗ −d∗

p −p az bz cz dz


we see that we can restrict the part of g that comes from the Lorentz group to only rotations by θ
about the z-axis, since ~p and ~q are already fixed to their original state and must remain the same.
Hence we can rewrite equation (1) as(

θx
xy

)
· h · ê =

(
πx
yz

)
·P · ê⇒ ê is non-chiral (2)

for any h ∈ H = S2 × S4, giving a total of 48 cases for collision events.

4 Results

4.1 Collision events

We explicitly go through the first case and then state the final results for the rest of the cases. The
logic statement that is true for non-chiral collision events is given in section 4.1.1. The explicit
calculation for case 2 which is more involved is given in appendix D.

1This means ~p+ ~q = 0.

4

Case 1

In this first case h = 1S2
· 1S4

which represents the identity in both permutation groups. Following
equation (2) we have

(
πx
yz

)
·P · ê =

 mp mq ma mb mc md

0 0 |a|e−iα+iπ+2iπna |b|e−iβ+iπ+2iπnb |c|e−iγ+iπ+2iπnc |d|e−iδ+iπ+2iπnd

p −p az bz cz dz



(
θx
xy

)
· 1S2

· 1S4
· ê =

 mp mq ma mb mc md

0 0 |a|ei(θ+α) |b|ei(θ+β) |c|ei(θ+γ) |d|ei(θ+δ)
p −p az bz cz dz


Now we seek a logic statement that is true when the above 2 expressions are equal. Comparing
each slot of our representation we get2

[
(|a| = 0) ∨ (−α+ π + 2πna = θ + α)

]
∧
[

(|b| = 0) ∨ (−β + π + 2πnb = θ + β)
]
∧[

(|c| = 0) ∨ (−γ + π + 2πnc = θ + γ)
]
∧
[

(|d| = 0) ∨ (−δ + π + 2πnd = θ + δ)
]

⇒
[

(|a| = 0) ∨ (α =
1

2
(π − θ) + naπ)

]
∧
[

(|b| = 0) ∨ (β =
1

2
(π − θ) + nbπ)

]
∧[

(|c| = 0) ∨ (γ =
1

2
(π − θ) + ncπ)

]
∧
[

(|d| = 0) ∨ (δ =
1

2
(π − θ) + ndπ)

]
Given all final state momenta have the same transverse plane angle modulo π, a general event
following the above is one for which the four 3-momenta ~a, ~b, ~c, ~d live on the same plane containing
the beam axis and hence must satisfy

(~i×~j) · ~k = 0

for i, j, k = {a, b, c, d, p}, i 6= j 6= k. This can be translated to a Lorentz invariant form using
Lemma 2.35 and A.2.2 of [3]

εabpq = εacpq = εadpq = εbdpq = εbcpq = εcdpq = 0 (3)

where a, b, c, d, p are 4-momenta and εabpq = εµνσρa
µbνpσqρ. This result generalises to N outgoing

particles by writing

εijpq = 0

for i, j = all possible 2-pairs from {outgoing 4-momenta}, giving
(
N
2

)
terms.

2The ∨ symbol means ‘or’ and the ∧ symbol means ‘and’ in mathematical logic.

5

Case 2

The explicit calculation for this case can be found in appendix D. It serves as an example of how the
calculations for the results presented throughout this paper have been produced. For the meaning
of the notation used in the expression below and the rest of the paper see appendix C.

h = 1S2 · (ab)

(a2 = b2) ∧ (G

(
a− b, p+ q
p− q, p+ q

)
= 0) ∧ (G

(
a− b, p+ q
a+ b, p+ q

)
= 0)

∧
[[

(∆3 (a, p, q) = 0) ∧ (∆3 (b, p, q) = 0) ∧ (∆3 (c, p, q) 6= 0) ∧ (∆3 (d, p, q) 6= 0)
]

∨
[
(∆3 (a, p, q) 6= 0) ∧ (∆3 (b, p, q) 6= 0) ∧ (∆3 (c, p, q) 6= 0) ∧ (∆3 (d, p, q) = 0)

∧ (G

(
a− b, p+ q
c , p+ q

)
= 0)

]
∨
[
(∆3 (a, p, q) 6= 0) ∧ (∆3 (b, p, q) 6= 0) ∧ (∆3 (d, p, q) 6= 0)

∧ (∆3 (c, p, q) = 0) ∧ (G

(
a− b, p+ q
d , p+ q

)
= 0)

]
∨
[
(∆3 (a, p, q) 6= 0) ∧ (∆3 (b, p, q) 6= 0)∧

(∆3 (d, p, q) 6= 0) ∧ (∆3 (c, p, q) 6= 0) ∧ (G

(
a− b, p+ q
c− d, p+ q

)
= 0)

]]
(4)

Cases 3-7

Cases 3-7 follow case 2 by symmetry with the element of S4 in each one being (cd), (bc), (bd), (ac), (ad).
These are 2-cycles in S4 with the rest of the elements in 1-cycles. Each additional final state par-
ticle will double the number of subcases in this case, as can be seen from appendix D, making the
generalisation of equation (4) to N outgoing particles a difficult task. However, one can exploit the
apparent pattern in equation (4) to guess the additions that need to be made in each bracket for
more outgoing particles. Cases like this one, for which h is guaranteed to be found in SN for N
greater than 4, are likely to generalise to more outgoing particles simply by comparison and without
the need for an explicit calculation.

Cases 8-15

Cases 8-15 which are the 3-cycles of S4 combined with 1S2
were found to be sub-cases of case 1 and

were thus discarded. We discard sub-cases since they do not give new information on how a state
can be non-chiral. Concretely, we know that if all final state momenta lie in a plane the event is
non-chiral. If a new case instructs us that an event is non-chiral if all final state momenta are zero,
then that is already included in the information of all momenta lying in a plane and we can thus
discard the new case.

Case 16

h = 1S2
· (ab)(cd)

6

Remark: The group element in S4 for this case is not found in S3, hence this case presents a
new type of non-chirality with respect to the case of 2 → 3 collision events. This new information
inhibits a straightforward generalisation of results for 2 → N collision events, without the explicit
calculation of such new type of cases. This remark applies to other cases presented below regardless
of the type of events considered.

(a2 = b2) ∧ (c2 = d2) ∧ (G

(
a− b, p+ q
p− q, p+ q

)
= 0) ∧ (G

(
a− b, p+ q
a+ b, p+ q

)
= 0)

∧ (G

(
c− d, p+ q
p− q, p+ q

)
= 0) ∧ (G

(
c− d, p+ q
c+ d, p+ q

)
= 0)

∧
[[

(∆3 (a, p, q) = 0) ∧ (∆3 (b, p, q) = 0) ∧ (∆3 (c, p, q) 6= 0) ∧ (∆3 (d, p, q) 6= 0)
]

∨
[
(∆3 (c, p, q) = 0) ∧ (∆3 (d, p, q) = 0) ∧ (∆3 (a, p, q) 6= 0) ∧ (∆3 (b, p, q) 6= 0)

]
∨
[
(G

(
a− b, p+ q
c+ d, p+ q

)
= 0) ∨ (G

(
c− d, p+ q
b , p+ q

)
= 0) ∨ (G

(
a− b, p+ q
d , p+ q

)
= 0)

]]
(5)

Cases 17,18

Cases 17 and 18 are the other two elements of S4 which consist of two 2-cycles and hence follow
case 16 by symmetry.

Case 19

h = 1S2
· (dcba), where in our convention, this means a→ b→ c→ d→ a.

(a2 = b2 = c2 = d2) ∧ (G

(
a− b, p+ q
a+ b, p+ q

)
= 0) ∧ (G

(
b− c, p+ q
b+ c, p+ q

)
= 0)

∧ (G

(
c− d, p+ q
c+ d, p+ q

)
= 0) ∧ (G

(
a− b, p+ q
p− q, p+ q

)
= 0) ∧ (G

(
b− c, p+ q
p− q, p+ q

)
= 0)

∧ (G

(
c− d, p+ q
p− q, p+ q

)
= 0) ∧ (a = c) ∧ (b = d) (6)

Cases 20-24

Cases 20 to 24 follow case 19 by symmetry as they are the 4-cycles of S4. However case 21 is the
same as case 20, case 23 is the same as case 19 and case 24 is the same as case 22. Hence cases 21,
23 and 24 were discarded. One can find the explicit h for each of these cases in code form given in
appendix E. The same applies for subsequent references to enumerated cases.

Case 25

h =

(
θx
xy

)
·
(
πx
yz

)
· (pq) · 1S4

7

(p2 = q2) ∧ (G

(
a , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
b , p+ q

p− q, p+ q

)
= 0)

∧ (G

(
c , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
d , p+ q

p− q, p+ q

)
= 0) (7)

The generalisation to N outgoing particles for this case is trivial. We simply augment the rest of

the Gram determinants G

(
. , p+ q

p− q, p+ q

)
= 0 with a ∧ symbol.

Case 26

h =

(
θx
xy

)
·
(
πx
yz

)
· (pq) · (ab)

(p2 = q2) ∧ (a2 = b2) ∧ (G

(
a+ b, p+ q
p− q, p+ q

)
= 0)

∧ (G

(
a− b, p+ q
a+ b, p+ q

)
= 0) ∧ (G

(
c , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
d , p+ q

p− q, p+ q

)
= 0)

∧ [(∆3 (a, p, q) = 0) ∨ (∆3 (a+ b, p, q) = 0) ∨ (∆3 (a− b, p, q) = 0)] (8)

Cases 27-31

Cases 27-31 follow case 26 by symmetry. Their elements are of the form

(
θx
xy

)
·
(
πx
yz

)
· (pq) and one

of the elements of S4 consisting of one 2-cycle and two 1-cycles. The generalisation to N outgoing
particles follows by symmetry in the second line of equation (8) and gives

(
N
2

)
cases.

Case 32

h =

(
θx
xy

)
·
(
πx
yz

)
· (pq) · (dcb)

(p2 = q2) ∧ (b2 = c2 = d2) ∧ (G

(
a , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
b , p+ q

p− q, p+ q

)
= 0)

∧ (G

(
c , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
d , p+ q

p− q, p+ q

)
= 0) ∧ (G

(
b− c, p+ q
b+ c, p+ q

)
= 0)

∧ (G

(
c− d, p+ q
c+ d, p+ q

)
= 0) ∧ (G

(
a , p+ q

p− q, p+ q

)
= 0)

∧ (ε(b+d)cpq = 0) ∧ (ε(b+c)dpq = 0) ∧ (ε(c+d)bpq = 0) (9)

Cases 33-39

Cases 33-39 are the 3-cyles of S4 combined with the non-trivial element of S2 and follow case 32 by
symmetry. However, cases 33, 36, 38 and 39 are included in previously considered cases and were
thus discarded.

8

Case 40

h =

(
θx
xy

)
·
(
πx
yz

)
· (pq) · (ab)(cd)

(p2 = q2) ∧ (a2 = b2) ∧ (c2 = d2)(G

(
a+ b, p+ q
p− q, p+ q

)
= 0)

∧ (G

(
c+ d, p+ q
p− q, p+ q

)
= 0) ∧ [[(∆3 (a+ b, p, q) = 0) ∨ (∆3 (a− b, p, q) = 0)]

∨ [(∆3 (c+ d, p, q) = 0) ∨ (∆3 (c− d, p, q) = 0)]] (10)

Cases 41,42

Cases 41 and 42 follow case 40 by symmetry with their elements being of the form h =

(
θx
xy

)
·(

πx
yz

)
· (pq) and an element of S4 consisting of two 2-cycles.

Case 43

h =

(
θx
xy

)
·
(
πx
yz

)
· (pq) · (dcba)

(p2 = q2) ∧ (a2 = b2 = c2 = d2) ∧ (G

(
a− b, p+ q
a+ b, p+ q

)
= 0) ∧ (G

(
b− c, p+ q
b+ c, p+ q

)
= 0)

∧ (G

(
c− d, p+ q
c+ d, p+ q

)
= 0) ∧ (G

(
a+ b, p+ q
p− q, p+ q

)
= 0) ∧ (G

(
b+ c, p+ q
p− q, p+ q

)
= 0)

∧ (G

(
c+ d, p+ q
p− q, p+ q

)
= 0) ∧

[
(∆3 (a, p, q) = 0) ∨

[
(ε(p+q)(a−c)pb = 0) ∧ (ε(p+q)(b−d)ap = 0)

]
∨
[
(∆3 (a− c, p, q) = 0) ∧ (∆3 (b− d, p, q) = 0) ∧

[
(∆3 (a+ b, p, q) = 0)

∨
[
(G

(
a+ b, p+ q
p− q, p+ q

)
= 0) ∧ (∆3 (a− b, p, q) = 0)

]]]]
(11)

Cases 44-48

Cases 44 to 48 follow case 43 by symmetry and their elements are of the form h =

(
θx
xy

)
·
(
πx
yz

)
·(pq)

and one 4-cycle element of S4.

4.1.1 Condition for a collision event to be non-chiral

A collision event is non-chiral iff the logic statement - formed by combining all the logic statements
in equations (3)-(11), as well as those that follow by symmetries, with ∨ - is true.

9

4.2 Non-collision events with at least one of p and q being massive

Using corollary 3.3 of [3], a non-collision event with at least one of p and q being massive can be
represented by

e =


p q a b c d
mp mq ma mb mc md

~0 ~0 ~a ~b ~c ~d

 . (12)

The action of parity on this representation gives

P · e =


p q a b c d
mp mq ma mb mc md

~0 ~0 −~a −~b −~c −~d

 , (13)

from which we can see that our symmetry group can exclude boosts and permutations of p with
q. Hence for non-collision events we only consider global general rotations R combined with the S4

permutation group on the final state momenta. We will explicitly go through case 1 with h = 1S4
·R

and state the result of all others.

Case 1

h = 1S4 ·R

1S4
·R ·P · e =


p q a b c d
mp mq ma mb mc md

~0 ~0 −R~a −R~b −R~c −R~d

 , (14)

For non-chiral events we require equation (14) to be equal to equation (12). This forces the condition

(~a = −R~a) ∧ (~b = −R~b) ∧ (~c = −R~c) ∧ (~d = −R~d). A general event following the latter condition
has all four final state momenta lying in a common plane which is perpendicular to the rotation
axis of R, where R must represent a π rotation, and any one of them can be the null vector. This
can be expressed in a Lorentz invariant way as follows

εabc(p+q) = εabd(p+q) = εbcd(p+q) = εacd(p+q) = 0 (15)

The generalisation to N final state particles is trivial and gives
(
N
3

)
ε terms. To see equation (15)

consider the following. If ~a, ~b, ~c are to be in the same plane we require (~a ×~b) · ~c = 0. Note that

(p + q) = [mp + mq, 0, 0, 0] and (~a ×~b) · ~c = 0 ⇐⇒ εijkaibjck = 0, where i, j, k = {1, 2, 3}. Since
(p + q) is only non-zero for the index 0, we can augment it to εijkaibjck = 0 and switch to Greek
indices that run from 0 to 3 as εabc(p+q) = εµνσρa

µbνcσ(p + q)ρ = 0 ⇐⇒ εijkaibjck = 0. In this
last step we have used the property of the ε tensor that is non-zero only when all the indices are
different.

10

Case 2

h = (ab)R

(a2 = b2) ∧ a 6= b ∧ (G

(
a, p+ q
a, p+ q

)
= G

(
b, p+ q
b, p+ q

)
)

∧ (G

(
a, p+ q
c, p+ q

)
= G

(
b, p+ q
c, p+ q

)
) ∧ (G

(
a, p+ q
d, p+ q

)
= G

(
b, p+ q
d, p+ q

)
) (16)

To generalise this expression to N final state particles, we just need to extend the second line in an
obvious pattern so that it consists of N − 2 terms.

Cases 3-7

Cases 3-7 have an h = gR with g being an element of S4 that permutes two final state objects and
leaves the other two unaffected. These follow equation (16) by symmetry.

Case 8

h = (ab)(cd)R

(a2 = b2) ∧ (c2 = d2) ∧ (G

(
a, p+ q
a, p+ q

)
= G

(
b, p+ q
b, p+ q

)
) ∧ (G

(
c, p+ q
c, p+ q

)
= G

(
d, p+ q
d, p+ q

)
)

∧ [[((a+ b)2 = 4a2 = 4b2) ∧ ((c+ d)2 = 4c2 = 4d2)] ∨ [(G

(
a+ b, p+ q
c− d, p+ q

)
= 0) ∧ (c 6= d)]] (17)

Cases 9-10

These cases have an h = gR where g is an element of S4 that consists of two 2-cycles and their
statement follows equation (17) by symmetry.

Cases 11-18

These cases have h = gR with g ∈ S4 being a 3-cycle. They are all subsets of case 1 and were thus
discarded.

Case 19

h = (abcd)R

(a2 = b2 = c2 = d2) ∧ (G

(
a, p+ q
a, p+ q

)
= G

(
b, p+ q
b, p+ q

)
= G

(
c, p+ q
c, p+ q

)
= G

(
d, p+ q
d, p+ q

)
)

∧ (G

(
a− c, p+ q
b− d, p+ q

)
= 0) (18)

11

Cases 20-24

Cases 20-24 have an h = gR with g being a 4-cycle of S4 and their statement follows equation (18)
by symmetry.

4.2.1 Condition for a non-collision event - with at least one of p and q being masssive
- to be non-chiral

A non-collision event with at least one of p and q being massive is non-chiral iff the logic statement
- formed by combining all the logic statements in equations (15)-(18), as well as those that follow
by symmetries, with ∨ - is true.

4.3 Non-collision events with both p and q being massless

Following section 3.3 of [3], a non-collision event with both incoming objects being massless can be
represented in the (a+b+c+d) rest frame with p and q aligned with the z-axis as

ê =

 0 0 ma mb mc md

0 0 a b c d
pz qz az bz cz dz

 with


pz, qz,ma,mb,mc,md ≥ 0,
pz + qz > 0,
a,b, c,d ∈ C,
a + b + c + d = 0,
az, bz, cz, dz ∈ R and az + bz + cz + dz = 0


(19)

We would like to act with a symmetry group on Ry(π) ·P · e and check when it is equal to e. Note
that Ry(π) reduces the amount of minus signs we have to work with and its inverse always exists,
in order to absorb it into the group element that would take the parity inverted e to e. Given the
form of Ry(π) ·P · e is

Ry(π) ·P · e =

 0 0 ma mb mc md

0 0 a∗ b∗ c∗ d∗

pz qz az bz cz dz

 . (20)

we can see that our symmetry group can exclude boosts, (pq) swaps and any rotation other than
about the z-axis, otherwise p and q which are already matched to e will lose this matching. Hence
our symmetry group is Rz(θ) · g where g is an element of S4 that permutes the final state momenta
a,b,c and d. We will explicitly go through case 1 and then state the result for the remaining cases.

We note that an event with (a+ b+ c+ d)2 = 0 has all vectors being massless and pointing in
the same spatial direction. Hence there are only two independent 4-momenta in the event which
cannot form a Lorentz invariant pseudoscalar (at least four are needed). This means an event with

(a+ b+ c+ d)2 = 0 (21)

is always non-chiral.

12

Case 1

In the first case we have h = Rz(θ) · 1S4
. The explicit form of e = h · Ry(π) ·P · e can be written

as3

 0 0 ma mb mc md

0 0 |a|ei(α−2πna) |b|ei(β−2πnb) |c|ei(γ−2πnc) |d|ei(δ−2πnd)

pz qz az bz cz dz

 ?
=

 0 0 ma mb mc md

0 0 |a|ei(θ−α) |b|ei(θ−β) |c|ei(θ−γ) |d|ei(θ−δ)
pz qz az bz cz dz

 (22)

⇒ ((a = 0) ∨ (α = θ − α + 2πna)) ∧ ((b = 0) ∨ (β = θ − β + 2πnb)) ∧ ((c = 0) ∨ (γ =
θ − γ + 2πnc)) ∧ ((d = 0) ∨ (δ = θ − δ + 2πnd))

⇒ ((a = 0) ∨ (α = θ
2 + πna)) ∧ ((b = 0) ∨ (β = θ

2 + πnb)) ∧ ((c = 0) ∨ (γ = θ
2 + πnc)) ∧ ((d =

0) ∨ (δ = θ
2 + πnd))

This is telling us that ~a,~b,~c, ~d, ~p, ~q all lie in the same plane which includes the z-axis and has an
angle θ

2 to the x-axis. Any of the vectors can be the null vector, but not ~p and ~q simultaneously.

We thus want relationships of the form (~a×~b) · (~p+ ~q) = 0 in the (a+b+c+d) rest frame. If we let
Σ = (a+ b+ c+ d), this can be written as follows

εab(p+q)Σ = εac(p+q)Σ = εad(p+q)Σ = εbc(p+q)Σ = εbd(p+q)Σ = εcd(p+q)Σ = 0 (23)

This can be generalised to N outgoing objects by extending the above expression to all pairs in the
first 2 slots of ε.

Case 2

h = Rz(θ) · (ab)

(a2 = b2) ∧ (G

(
a− b,Σ
p+ q,Σ

)
= 0 ∧ (∆2 (a,Σ) = ∆2 (b,Σ))

∧ (G

(
a,Σ
c,Σ

)
= G

(
b,Σ
c,Σ

)
) ∧ (G

(
a,Σ
d,Σ

)
= G

(
b,Σ
d,Σ

)
) (24)

Cases 3-7

These have h = Rz(θ) · g with g being a 2-cycle of S4 with the other two elements left unchanged.
They follow equation (24) by symmetry. Extending these statements to N outgoing objects requires
the extension of the second line of equation (24) in a straight-forward way giving N−2 terms rather
than 2.

3The question mark on the equality sign is asking: ‘What condition must be met for this equality to hold?’.

13

Case 8

h = Rz(θ) · (ab)(cd)

(a2 = b2) ∧ (G

(
a− b,Σ
p+ q,Σ

)
= 0 ∧ (∆2 (a,Σ) = ∆2 (b,Σ))

∧ (c2 = d2) ∧ (G

(
c− d,Σ
p+ q,Σ

)
= 0 ∧ (∆2 (c,Σ) = ∆2 (d,Σ))

∧G
(
a− b,Σ
c+ d,Σ

)
= 0 (25)

Cases 9-10

These cases have h = Rz(θ) · g with g an element of S4 consisting of two 2-cycles. They follow
equation (25) by symmetry.

Cases 11-24

These cases have h = Rz(θ) · g with g ∈ S4 a 3-cycle for cases 11-18 and a 4-cycle for cases 19-24.
They were found to be sub-cases of previously included cases and were thus discarded.

4.3.1 Condition for a non-collision event with both p and q being massless to be
non-chiral

A non-collision event with both p and q being massless is non-chiral iff the logic statement - formed
by combining the logic statements in equations (21)-(25) as well as those that follow by symmetries,
with ∨ - is true.

4.4 Non-collision events with p = q = 0

We can no longer use p and q and we thus orient our coordinate system with the z-axis aligned
with the momentum of particle a. We also work in the (a+b+c+d) rest frame as in the previous
section and the results follow directly from section 3.3.1 onwards in [3]. Note that when az = 0,
which implies ~a = 0 in our choice of coordinate system, we cannot form a pseudoscalar and those
cases are non-chiral leaving the z-axis well defined for the rest of the cases considered.

Our setup can be represented by

e =

 ma mb mc md

0 |b|ei(β−2πnb) |c|ei(γ−2πnc) |d|ei(δ−2πnd)

az bz cz dz

 (26)

and so we can quote the result of [3] in corollary 4.6, with the mapping p+q → a, Σ→ (a+b+c+d),
a→ b, b→ c, c→ d. A non-collision event with p = q = 0 is non-chiral iff

14

G

(
a,Σ
a,Σ

)
= 0

∨
(a+ b+ c+ d)2 = 0

∨
[b, c, d, a] = 0

∨

(b2 = c2) ∧

(
G

(
b− c,Σ
a ,Σ

)
= 0

)
∧
(
∆2 (b,Σ) = ∆2 (c,Σ)

)
∨

(c2 = d2) ∧

(
G

(
c− d,Σ
a ,Σ

)
= 0

)
∧
(
∆2 (c,Σ) = ∆2 (d,Σ)

)
∨

(d2 = b2) ∧

(
G

(
d− b,Σ
a ,Σ

)
= 0

)
∧
(
∆2 (d,Σ) = ∆2 (b,Σ)

)



(27)

where the first line comes from the case when az = 0.

5 Computational test of results using Geometric Algebra

In this section we describe the method used to test the above results. We randomly generate 2
→ 4 events and use geometric algebra to label whether the event is chiral or non-chiral. We then
evaluate the logic statements derived above - which are true for non-chiral states - on these events
and check that the output is true for non-chiral events and false for chiral events.

The motivation to use geometric algebra (GA) rather than the standard linear algebra is that
with GA the geometry is manifest and manipulation of mathematical objects becomes almost triv-
ial, while also boosting the efficiency of computations.

Since from our choice of setup all types of events exclude boosts from their symmetry group, in
this section we are working with 3-vectors and do not involve any boost transformations.

5.1 Basics of geometric algebra

There are numerous sources for an introduction to geometric algebra [4],[5], but here we sketch the
very basics for 3D Euclidean geometry.

Define the geometric product of two vectors using the usual dot product and outer product as

uv = u · v + u ∧ v (28)

15

The outer product forms a bivector and has the following defining properties

u ∧ v = −v ∧ u (29)

u ∧ (v + w) = u ∧ v + u ∧ w (30)

The bivector u∧v can be visualized as the directed plane formed by the vectors u and v - see Figure
1. Let our vector space be spanned by e1, e2, e3. We note the following important results

Figure 1: The outer product. The outer or wedge product of a and b returns a directed area element
of area |a||b|sin(θ). The orientation of the parallelogram is defined by whether the circuit a, b, a,
b is right-handed (anticlockwise) or left-handed (clockwise). Interchanging the order of the vectors
reverses the orientation and introduces a minus sign in the product. The figure is taken from [4].

eiej = ei ∧ ej (31)

eiej = −ejei (32)

(eiej)
2 = −1 (33)

Equation (33) is a profound property of bivectors that behave as imaginary numbers and can be
used to generalise quaternions.

A rotor is an object characterised by an angle θ and a bivector B which are enough information
to fully parameterise a rotation4. We define a rotor as

R = e−
θ
2B = cos

(θ
2

)
−Bsin

(θ
2

)
(34)

4Boosts - not used in this paper - can be represented using the spacetime algebra (STA) with basis vectors
γµ · γν = ηµν as R = eαγiγ0 , for a boost in the γi direction and rapidity α. The transformation with R is the same
as for rotations, see [4].

16

which through the operation RvR† takes the vector v and rotates it by an angle θ in the directed
plane described by B. We define the dagger operator on a bivector to result in the reverse bivector.
For example (e1e2)† = (e2e1). If we have 2 vectors a and b and we would like to rotate a to b then
we construct the appropriate rotor R as described5 in Figure 2, resulting in

n =
a+ b

‖a+ b‖
R = bn (35)

Figure 2: A rotation from a to b. The vector a is rotated onto b by first reflecting in the plane
perpendicular to n, and then in the plane perpendicular to b. The vectors a, b and n all have unit
length. Figure taken from [4].

5.2 Algorithm for collision events

The purpose of the algorithm is to take in a randomly generated event and label it either chiral or
non-chiral, according to the definitions given in section 2.

For a collision event we have p aligned with the z-axis and q = −p, as we are working in
the (p+q) rest frame. Let an event be described by S = [p, q, a, b, c, d] and define RSR† =
[RpR†, RqR†, ..., RdR†], where all vectors are to be understood as 3-vectors. We can write the
algorithm, that does not incorporate permutations, algebraically as follows

Steps6:

5In geometric algebra the reflection of a into the plane perpendicular to n is done simply by a→ −nan.
6Intuition: p, q, a12 define a plane in which we rotate by π using R = a12e3. Note that it does not matter here

if we use a12 from S or S1 since we are doing a π rotation.

17

1) Parity inversion: S → S1 = −S.

2) Project a into the 1-2 plane and normalise: a12 = a−a3
|a−a3| .

3) Map p, q, a back to their original state with R = a12e3: S1 → S2 = RS1R
†.

4) If S2 = S output ‘non-chiral’, otherwise output ‘chiral’.

If a12 is zero, repeat the algorithm with b. If b12 is zero, then repeat the algorithm with c, and if
c12 is zero, output ‘non-chiral’ and terminate. The idea is that after we map p, q and a we have no
subspace in which to perform any other rotations and so we reach the step where we should check
if the rest of the particles mapped back to their original state. With permutations the algorithm
becomes more complex but the idea of subspaces remains and can be found in appendix E in code
form, where we use the Clifford library [6]. The proof that the general algorithm covers all possible
inputs is given in appendix B.1.

5.3 Results for collision events

Now that the algorithm has labeled collision events chiral or non-chiral, we can evaluate the logic
statement in section 4.1.1 on these states and expect an output of true when we use the non-
chiral states and false when we use the chiral ones. As with the rest of the cases discussed below,
we generate 1000 states of each type and check the appropriate logic statement. The results are
presented in figure 3.

True False
0

200

400

600

800

1000

Fr
eq

ue
nc

y

Non-chiral states evaluated on the logic statement
which is true iff the input is non-chiral

(a) Non-chiral states

True False
0

200

400

600

800

1000

Fr
eq

ue
nc

y

Chiral states evaluated on the logic statement
which is true iff the input is non-chiral

(b) Chiral states

Figure 3: (a) Non-chiral and (b) chiral states evaluated on the logic statement that is true when a
collision event is non-chiral. This logic statement can be found in section 4.1.1.

18

5.4 Algorithm for non-collision events with at least one of p and q being
massive

For a non-collision event with at least one of p and q being massive, we have p, q both stationary.
Under parity p and q are invariant so we can exclude boosts and only work with general rotations.
Below we describe the algorithm for the case where no permutations are available. The algorithm
that includes permutations can be found in appendix E in code form, where again we use the Clif-
ford library [6]. The proof for the covering of the general algorithm can be found in appendix B.2.

Steps7:

1) Parity inversion: S → S1 = −S.

2) Map a and b back to their original state with R = a∧b
|a∧b| : S1 → S2 = RS1R

†.

3) If S2 = S output ‘non-chiral’, otherwise output ‘chiral’.

If a, b are collinear, repeat the algorithm with a, c. If the latter are collinear output ‘non-chiral’ and
terminate, since 3 out of 4 final state particles are collinear.

5.5 Results for non-collision events with at least one of p and q being
massive

We test the logic statement given in section 4.2.1 with 1000 randomly generated chiral events and
1000 randomly generated non-chiral events that are labelled by the generalisation of the algorithm
described above. The results are the same as shown in figure 3.

5.6 Non-collision events with both p and q being massless

For non-collision events with both p and q being massless we test the logic statement given in
section 4.3.1. We again present the algorithm for the case where no permutations are available,
while the full algorithm is given in appendix E in code form. In section B.3 we give the proof that
the generalisation of the algorithm below covers all possible inputs.

Steps8:

7Intuition: For 2 final state particles, parity keeps them in the same original plane, hence a π rotation in that
plane brings them back to their original state. A π rotation is achieved with R = e

π
2
B = B, where B = a∧b

|a∧b| . Step

4 says that if a, b, c are collinear we can always do a π rotation in the a− d plane and map everything back, so those
states are non-chiral.

8Intuition: Once we map p and q back to their original state with R1, we can only do rotations in the plane
perpendicular to p and q. Note step 2 fixed the 3rd component of a and arot,12 is extracted from S2.

19

1) Parity inversion: S → S1 = −S.

2) Map p and q back to themselves with R1 = e1e3 : S1 → S2 = R1S1R
†
1.

3) In the 1-2 plane, rotate a to its original state with R2 = a12arot,12 : S2 → S3 = R2S2R
†
2.

4) If S3 = S output ‘non-chiral’, otherwise output ‘chiral’.

5.7 Results for non-collision events with both p and q being massless

We follow the same test procedure as in the previous sections. The results follow what is expected
from the logic statement in section 4.3.1 and match what is shown in figure 3.

5.8 Non-collision events with p = q = 0

For non-collision events with both p and q being 0 we test the logic statement given in equation
(27). The algorithm for the case where no permutations are available is presented below and the
full algorithm is given in appendix E in code form. The proof that the general algorithm covers all
possible inputs can be found in appendix B.4.

Steps9:

1) Parity inversion: S → S1 = −S.

2) Map a back to its original state with R1 = e1e3 : S1 → S2 = R1S1R
†
1.

3) In the 1-2 plane, rotate b to its original state with R2 = b12brot,12 : S2 → S3 = R2S2R
†
2.

4) If S3 = S output ‘non-chiral’, otherwise output ‘chiral’.

5.9 Results for non-collision events with p = q = 0

The test procedure is as mentioned above and the results follow what is expected from the logic
statement in equation (27). They follow figure 3.

5.10 Construction of non-chiral states and precision of algorithms

Non-chiral states are extremely rare to occur just by the random generation of events and hence to
test the logic statements with non-chiral input we constructed them by hand. For example, in the
case of collision events when all particle momenta lie in a given plane (that contains the z-axis) the
state is manifestly non-chiral. From the latter we can rotate the whole state with the rotor e1e2

and still have a non-chiral state. Since the real number 0 can be computationally stored exactly, if
we start all our vectors having for example a 0 y-component, then we know the state is non-chiral
and can be stored exactly as non-chiral. We can generate similar states by rotation. Of course

9In this algorithm b12 is the original b vector projected in the 1-2 plane and brot,12 is the b vector extracted from
S2 and projected into the 1-2 plane.

20

these latter states cannot be computationally stored exactly as non-chiral due to finite precision,
but we call them non-chiral up to that precision.

Events which are non-chiral but require a permutation to be mapped back to their original state
after parity were also constructed by hand. Indeed, this is a drawback of the testing done on the
logic statements, since we followed the structure of the logic statements themselves to find what
makes a state non-chiral. In a way the construction of non-chiral states is circular. Concretely, the
previous paragraph’s idea for collision events emanates from case 1 in section 4.1. The reason it
is a drawback is because while calculating expressions such as that in section 4.1 - that belong to
the logic statement - we might have omitted a case of non-chirality. However, since we are also
generating states randomly in our testing, nothing stops the latter from being non-chiral of any
type and the algorithm - which covers all possibilities - will flag up any non-chiral/chiral states
that evaluate to false/true on the logic statements derived in this paper - given the calculations of
logic statements contain any errors. Of course we expect the randomly generated states to be chiral
since it would be very unlikely to randomly generate a non-chiral one.

At various points in this work some algorithms that test chirality would label correctly a state
non-chiral but that state would evaluate to false on the logic statement. This is due to the fact that
we are doing comparisons of reals - indeed in the logic statements there is a substantial amount
of such comparisons. In Python for example, 0.1 + 0.2 == 0.3 gives false. To overcome this issue
we have used the ‘approx’ function from the ‘pytest’ library [7], which uses a tolerance of 10−6 on
equality comparison. A simple demonstration from real data follows.

Consider a and b from a collision event with ma = mb = 3. Here ~a has been generated
randomly and ~b was obtained by rotating ~a, hence we expect a2 == b2 to give true. Note that
a2 == a · a = dot(a, a) where dot is a custom function that performs the Minkowski dot product
in Python.

~a =

−2.0142326406285003
6.306119476657235
−9.67682972129608

 ~b =

−3.4702690814617765
10.864649396714714
2.7169717385566954


a2 b2 a2 == b2 a2 == approx(b2) Absolute Error

8.999999999980702 8.999999999980762 False True 1.7763568394002 · 10−14

The absolute error is defined as |a2 − b2| and emanates from rounding error while using finite
arithmetic and from quantisation error due to the inexact computer representation of reals. This
demonstration quantifies the magnitude of errors in our computational tests.

6 Geometric perspective

Following from the discussion in section 1.7 of [3], let H be the Lorentz group and G be a group
such that G/H ∼= Z/2 - i.e. G contains an element that acts as parity. Let M be a 24-dimensional

21

manifold10 which represents the space of 2 → 4 events. The dimensionality comes from 6 masses
and 6 3-momenta. For simplicity consider the compactification11 of M into only collision events
with certain energy ranges. By gathering data of such events from hadron colliders we statistically
build a path that nature traverses on M .

We now look at the orbit space12 O = M/H. The latter contains two types of orbits, chiral and
non-chiral. Let p be the non-trivial element of Z/2 ∈ G. The chiral orbits are such that p acting on
the orbit takes us off the orbit and into the other chiral orbit. We have two types of chiral orbits
which we will call left and right handed. In O the stabiliser set13 for chiral orbits thus consists only
of the identity element. For non-chiral states, the stabiliser set is Z/2 i.e. the orbit is fixed under
both elements of Z/2.

Now that we have labelled our orbit space we can visualize the path nature traverses on O
shown in figure 4. In order to know where each event in our samples lands on O, we need to have a
function that will distinguish chiral from non-chiral events - this is done with the logic statements
derived above - and a function that will distinguish left-handed chiral from right-handed chiral. The
latter set of functions are the parity odd event variables derived for example for 2 → 3 processes in
[3].

(a) Most samples in the data lie
in the left-handed orbit of chi-
ral orbits which indicates parity
violation.

(b) Most samples from the data
lie in the right-handed orbit
of chiral orbits which indicates
parity violation.

(c) Even distribution of the two
different types of handedness of
chiral orbits which does not in-
dicate any parity violation.

Figure 4: Examples of hypothetical data on the orbifold O and their interpretation.

10An N dimensional manifold is a set equipped with a topology (which forms then a topological space) that can
be locally mapped to RN . Locally implies over an open subset (no endpoints included) of M . A topology T on M
is a set of subsets of M . The subsets must satisfy the following axioms: 1) M and the empty set are in T , 2) the
intersection of any subsets in T is also in T , and 3) the union of any pair of subsets is also in T .

11Restricting the set which forms the manifold to a compact set. A compact set is defined as closed (contains its
endpoints) and bounded (finite cardinality).

12This is pronounced M modulo H and forms the set of equivalence classes such that in each class every element
can be reached by the repeated application of a given h ∈ H.

13The stabiliser set for O = M/H is the subset of H that leaves an element of O fixed.

22

7 Conclusion

In conclusion, we have looked at four different types of 2 → 4 events, namely collision events,
non-collisions events with the two initial state particles being represented by massive, massless and
zero 4-momenta. For each one of these types, we have calculated the logic statement which is true
when evaluated on non-chiral events.

Further, the validity of these results was scrutinised using algorithms that utilize Geometric
Algebra to label the chirality of randomly generated events. We have discussed the feasibility of
generalising the results to N outgoing particles, with some cases requiring an explicit calculation
to do so, while others were more straightforward to generalise.

The results presented in this paper can be used to generate parity-odd Lorentz invariant event
variables that possess permutation symmetries between identical particles in the initial and final
states, as demonstrated in [3]. These event variables can hint on non-standard parity violating
processes through asymmetries in their distribution on hadron collider data.

8 Acknowledgements

I would like to thank Dr Christopher Lester for his invaluable support, advice and guidance through-
out this project.

References

[1] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of
parity conservation in beta decay. Phys. Rev., 105:1413–1415, Feb 1957.

[2] Christopher G. Lester and Matthias Schott. Testing non-standard sources of parity violation in
jets at the LHC, trialled with CMS open data. Journal of High Energy Physics, 2019(12), Dec
2019.

[3] Christopher G. Lester, Ward Haddadin, and Ben Gripaios. Lorentz and permutation invariants
of particles III: constraining non-standard sources of parity violation, 2020.

[4] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge University
Press, 2003.

[5] Anthony N. Lasenby. Geometric Algebra as a Unifying Language for Physics and Engineering
and Its Use in the Study of Gravity. Adv. Appl. Clifford Algebras, 27(1):733–759, 2017.

[6] The Pygae Team. Clifford: Numerical geometric algebra module for python. https://github.
com/pygae/clifford.

[7] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and
Florian Bruhin. pytest x.y, 2004.

23

https://github.com/pygae/clifford
https://github.com/pygae/clifford

[8] M. Hohenwarter, M. Borcherds, G. Ancsin, B. Bencze, M. Blossier, A. Delobelle, C. Denizet,
J. Éliás, Á Fekete, L. Gál, Z. Konečný, Z. Kovács, S. Lizelfelner, B. Parisse, and G. Sturr.
GeoGebra 4.4, December 2013. http://www.geogebra.org.

[9] Takis Angelides. Part III project. https://github.com/TakisAngelides/Part-3-Project,
2021.

A From events to event variables

Here we present a diagram describing in steps the method we use, going from a set of events to
building the event variables. The blue part of the diagram is what we have presented in this paper
and the red part is what remains for future work.

Figure 5: A flow chart of the method to go from events to event variables. The blue part is presented
in this paper and the red part remains for future work.

B Proofs for algorithms

In this section we present proofs that the algorithms in section 5 cover all possible inputs, i.e.
they can label correctly any state their given either ‘chiral’ or ‘non-chiral’. The proofs work with

24

http://www.geogebra.org
https://github.com/TakisAngelides/Part-3-Project

3-momenta, as do the algorithms, since we have chosen our coordinate system and frame so as to
avoid having boosts in our symmetry group.

B.1 Covering of algorithm for collision events

For this type of events, we have p, q aligned with the z-axis in the (p+q) rest frame. Our symmetry
actions exclude boosts.

Claim: The algorithm in section 5.2 with its generalisation found in code form in appendix E cover
all possible collision event inputs to correctly label them chiral or non-chiral.

Proof: For collision events with permutations we split the proof into two cases of 1S2 or (pq).

For the case of 1S2
, we map p and q back with R1 = e1e3. Now the available subspace for

rotations is the 1-2 plane. We map the (1-2)-projection of a, namely a12, to its original or for any
final state particle x that can be permuted with a, we map the x12 to the original a12 and perform
the permutation (ax). The only degrees of freedom left are permutations between the final state
particles excluding a, if any are available. If a is collinear with the 3-axis or a is zero, we repeat
the above with b instead of a. If the latter is true for b, we repeat the above with c and if c is also
collinear with the 3-axis or zero, we output ‘non-chiral’ and terminate. Checking for non-chirality
with all the aforementioned actions achieves exhaustion for the case of 1S2

.

For the case when we have (pq) available, we can try the above or we can repeat the above but
omit R1 and instead perform (pq). Whenever we check for non-chirality, we can also perform a π
rotation in the plane that contains the 3-axis and has normal a12 (or any other final state particle
we matched to its original in the 1-2 plane), but then we also perform the (pq) swap. The same
caveat of a being collinear with the 3-axis or being zero applies here as well. Exhausting degrees
of freedom - actions of the symmetry group that leave already matched momenta fixed - ensures
covering of the algorithm for any possible input.

B.2 Covering of algorithm for non-collision events with at least one of p
and q being massive

For this type of cases we have p and q being stationary, so we are concerned with mapping the final
state particles back to their original state with general rotations.

Claim: The algorithm in section 5.4 with its generalisation found in code form in appendix E cover
all possible non-collision event inputs (with at least one massive initial particle) to correctly label
them chiral or non-chiral.

Proof: For every particle x that can be permuted with a, including a itself, we map x to a
and perform (ax). Now that a is fixed, we can only rotate in the plane perpendicular a and do
permutations between {b, c, d}. In what follows we are working in the plane perpendicular to a
and w.l.o.g. assume that b has components in that plane. For every particle y ∈ {b, c, d} that can
be permuted with b, we map y to b and perform (by). If b is collinear to a, we repeat the latter

25

with c instead of b, otherwise output ‘non-chiral’ (since 3 out of 4 are collinear). The only degree
of freedom left is (cd), which we also check. We have now exhausted all degrees of freedom and
therefore covered all possible inputs.

B.3 Covering of algorithm for non-collision events with both p and q
being massless

For theses cases our symmetry group excludes boosts, (pq) swaps and any rotation other than about
the z-axis.

Claim: The algorithm in section 5.6 and its generalisation found in code form in appendix E cover
all possible non-collision event inputs (with both p and q being massless) to correctly label them
chiral or non-chiral.

Proof: Our initial degrees of freedom are rotations about the z-axis and permutations between
{a, b, c, d}. W.l.o.g. we assume that a has permutations and components in the 1-2 plane. Further,
all that follows is in the 1-2 plane where rotations are initially allowed. For every particle x that can
be permuted with a - including a itself -, we map x to a and perform (ax). Now, the only degrees
of freedom are permutations between {b, c, d}, which we also check. At this point exhaustion of
possible actions has been achieved.

B.4 Covering of algorithm for non-collision events with p = q = 0

Claim: The algorithm in section 5.8 and its generalisation found in code form in appendix E cover
all possible non-collision event inputs (with p = q = 0) to correctly label them chiral or non-chiral.

Proof: We orient a back to its original state so that the only degrees of freedom are rotations in
the subspace perpendicular to a, namely the 1-2 plane, and permutations between {b, c, d} if any.
In what follows, we are working with vectors projected into the 1-2 plane, leaving the z-component
fixed. W.l.o.g we assume that b has permutations and components in the 1-2 plane. For every
particle x that can be permuted with b - including b itself -, we map x to b and perform (bx),
while also checking for (cd). There are no other degrees of freedom left and thus we have achieved
exhaustion.

C Notation

Following the notation and conventions found in the appendices of [3], we present here the meaning
of some notation frequently used in this paper. The G stands for Gram determinant.

G

(
a, b
c, d

)
≡
∣∣∣∣a · c a · d
b · c b · d

∣∣∣∣ = (a · c)(b · d)− (b · c)(a · d)

26

∆2 (a, b) ≡ G
(
a, b
a, b

)

∆3 (a, b, c) ≡ G
(
a, b, c
a, b, c

)
=

∣∣∣∣∣∣
a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

∣∣∣∣∣∣
D Case 2 calculation for collision events

This case has h = 1S2
· (ab) and we will go through the explicit calculation of equation (4).

Using (
θx
xy

)
· h · ê =

(
πx
yz

)
·P · ê (36)

we start from

[(ma = mb) ∧ (az = bz) ∧ (|a| = |b|)]∧ (37)

[(|a| = |b| = 0) ∨ ((θ + β = π + 2πna − α) ∧ (θ + α = π + 2πnb − β))]∧ (38)

[(|c| = 0) ∨ (θ + γ = π + 2πnc − γ)]∧ (39)

[(|d| = 0) ∨ (θ + δ = π + 2πnd − δ)] (40)

We now call N the whole bracket of line (37). We also name A1 the first term in the bracket of
line (38) and A2 the second term in that bracket, namely A2 = (θ + β = π + 2πna − α) ∧ (θ + α =
π + 2πnb − β). The same for the rest of the lines using B and C.

Now we have 8 subcases which correspond to choosing one of the two terms in each of the lines
(38) to (40). The table below enumerates these subcases.

1) A1B1C1 5) A2B1C1

2) A1B2C1 6) A2B2C1

3) A1B1C2 7) A2B1C2

4) A1B2C2 8) A2B2C2

D.1 Subcase 1: A1B1C1

This subcase has |a| = |b| = |c| = |d| = 0⇒ all 3-vectors of the final state live on the z-axis which
is already covered by case 1 and can thus be discarded.

D.2 Subcases 2-4

These subcases are also covered by case 1 and can be discarded. In each one of them we find that
all final state 3-vectors lie in the same plane.

27

D.3 Subcase 5: A2B1C1

Remember N refers to line (37). Subcase 5 has N ∧ (θ+ β = π + 2πna − α)∧ (θ+ α = π + 2πnb −
β)∧ (|c| = 0)∧ (|d| = 0). The two brackets containing angles give that α+ β = π− θ+ π(na +nb).
However, we can always find a θ in the symmetry group to satisfy the condition and hence effectively
α and β are unconstrained, but we must (|a| 6= 0) ∧ (|b| 6= 0). A general event of this subcase can
be described by N ∧ (|a| 6= 0) ∧ (|b| 6= 0) ∧ (|c| = 0) ∧ (|d| = 0). Note that for example |a| 6= 0 can
be written in a Lorentz invariant form using ∆3 (a, p, q) 6= 0, which follows from Lemma 3.34 of [3].

D.4 Subcase 6: A2B2C1

We start with N ∧(θ+β = π+2πna−α)∧(θ+α = π+2πnb−β)∧(γ = 1
2 (π−θ)+2πnc)∧(|d| = 0).

The bracket with the angle γ has just been algebraicly rearranged from line (39) - remember the
Greek letter angles refer to angles in the transverse plane perpendicular to the z-axis. Now, the
brackets with angles involved give the following with a possible solution for the angles α, β, γ shown
on the right hand side

α+ β = π + 2πna − θ α = π − θ + 2πna

α+ β = π + 2πnb − θ β = 0

γ =
1

2
(π − θ) + 2πnc γ =

1

2
(π − θ) + 2πnc

W.l.o.g. setting α and γ anywhere in the transverse plane, β is forced to be the reflection of α

in the line defined by γ - see figure 6. Hence we choose G

(
a− b, p+ q
c , p+ q

)
= 0 to describe this. To see

the latter we expand the Gram determinant which gives 0 = (a− b) · c = (ma−mb)mc− (~a−~b) ·~c =

−(~a −~b) · ~c = −(a − b) · c = 0. The last equality follows from the condition az = bz and we also
use the condition ma = mb.

-7-7 -6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44 55 66 77 88 99

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

00

aa

bb

c

Figure 6: An example of a and b being reflections of each other in the ray defined by c. The figure
was constructed using [8].

D.5 Subcase 7: A2B1C2

This subcase follows subcase 6 by swapping c with d.

28

D.6 Subcase 8: A2B2C2

This subcase has N∧(θ+β = π+2πna−α)∧(θ+α = π+2πnb−β)∧(θ+γ = π+2πnc−γ)∧(θ+δ =
π + 2πnd − δ). We can see immediately that the brackets other than N give

na = nb

γ − δ = 2π(nc − nd) = 0 mod 2π

γ − 1

2
(α+ β) = π(na − nc)

δ − 1

2
(α+ β) = π(na − nd)

⇒ γ = δ mod π

This is telling us that c and d form a ray in the transverse plane in which a and b are reflections

of each other. We can describe this in a Lorentz invariant form as ((G

(
a− b, p+ q
c , p+ q

)
= 0) ∧

(G

(
a− b, p+ q
d , p+ q

)
= 0)) ⇒ G

(
a− b, p+ q
c− d, p+ q

)
= 0.

D.7 Final result

Gathering all the results from these subcases, we combine them to form the result presented in
equation (4).

E Code

Below we present the full code for all types of events considered. The titles of the files correspond
to the initial state particles and the code can also be found in [9].

Listings

collision events algorithm.py . 29
non collision one massive algorithm.py . 45
non collision massless algorithm.py . 50
non collision zeros algorithm.py . 55

Code file: collision events algorithm.py

1 import time
2 from numpy import pi, cos , sin , e, tan , arctan
3 from clifford.g3 import blades
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import numpy as np
7 from random import uniform , seed , randint
8 from sympy import LeviCivita as eps
9

10 # fig = plt.figure ()
11 # ax = fig.add_subplot (111, projection =’3d ’)

29

12

13 e1, e2 , e3 = blades[’e1’], blades[’e2’], blades[’e3’]
14 I = e1*e2*e3 # Pseudoscalar of 3D Euclidean geometric algebra
15

16 def plot_state(ax, p, q, a, b, c, d):
17

18 X = (0)
19 Y = (0)
20 Z = (0)
21

22 p1, p2 , p3 = p[0], p[1], p[2]
23 q1, q2 , q3 = q[0], q[1], q[2]
24 a1, a2 , a3 = a[0], a[1], a[2]
25 b1, b2 , b3 = b[0], b[1], b[2]
26 c1, c2 , c3 = c[0], c[1], c[2]
27 d1, d2 , d3 = d[0], d[1], d[2]
28

29 ax.quiver(X, Y, Z, p1 , p2, p3, color=’r’, linestyle=’-’, label=’p’)
30 ax.quiver(X, Y, Z, q1 , q2, q3, color=’k’, linestyle=’-’, label=’q’)
31 ax.quiver(X, Y, Z, a1 , a2, a3, color=’b’, linestyle=’-’, label=’a’)
32 ax.quiver(X, Y, Z, b1 , b2, b3, color=’g’, linestyle=’-’, label=’b’)
33 ax.quiver(X, Y, Z, c1 , c2, c3, color=’y’, linestyle=’-’, label=’c’)
34 ax.quiver(X, Y, Z, d1 , d2, d3, color=’orange ’, linestyle=’-’, label=’d’)
35 ax.set_xlabel(’x’)
36 ax.set_ylabel(’y’)
37 ax.set_zlabel(’z’)
38 ax.set_xticks ([])
39 ax.set_yticks ([])
40 ax.set_zticks ([])
41 limit = 10
42 ax.set_xlim([-limit , limit])
43 ax.set_ylim([-limit , limit])
44 ax.set_zlim([-limit , limit])
45 ax.view_init(elev=1, azim=pi / 2)
46 plt.legend ()
47

48 def plot_parity_state(ax, p, q, a, b, c, d):
49

50 X = (0)
51 Y = (0)
52 Z = (0)
53

54 p1, p2 , p3 = -p[0], -p[1], -p[2]
55 q1, q2 , q3 = -q[0], -q[1], -q[2]
56 a1, a2 , a3 = -a[0], -a[1], -a[2]
57 b1, b2 , b3 = -b[0], -b[1], -b[2]
58 c1, c2 , c3 = -c[0], -c[1], -c[2]
59 d1, d2 , d3 = -d[0], -d[1], -d[2]
60

61 ax.quiver(X, Y, Z, p1 , p2, p3, color=’r’, linestyle=’--’, label=’p’)
62 ax.quiver(X, Y, Z, q1 , q2, q3, color=’k’, linestyle=’--’, label=’q’)
63 ax.quiver(X, Y, Z, a1 , a2, a3, color=’b’, linestyle=’--’, label=’a’)
64 ax.quiver(X, Y, Z, b1 , b2, b3, color=’g’, linestyle=’--’, label=’b’)
65 ax.quiver(X, Y, Z, c1 , c2, c3, color=’y’, linestyle=’--’, label=’c’)
66 ax.quiver(X, Y, Z, d1 , d2, d3, color=’orange ’, linestyle=’--’, label=’d’)
67 ax.set_xlabel(’x’)
68 ax.set_ylabel(’y’)
69 ax.set_zlabel(’z’)
70 ax.set_xticks ([])
71 ax.set_yticks ([])
72 ax.set_zticks ([])
73 limit = 10
74 ax.set_xlim([-limit , limit])
75 ax.set_ylim([-limit , limit])
76 ax.set_zlim([-limit , limit])
77 ax.view_init(elev=1, azim=pi / 2)
78 plt.legend ()
79 plt.show()
80

30

81 # ---
82

83 # For a collision event:
84

85 def parity(S):
86 return [-v for v in S]
87

88 def rotate(S, R):
89 return [R*v*~R for v in S]
90

91 def multivec_to_vec(a):
92 return np.array([a[1], a[2], a[3]])
93

94 def energy(m,p):
95 p = multivec_to_vec(p)
96 return np.sqrt(m**2 + np.linalg.norm(p)**2)
97

98 def epsilon(a, b, c, d):
99

100 summation = 0
101

102 for i in range(0, 4):
103 for j in range(0, 4):
104 for k in range(0, 4):
105 for l in range(0, 4):
106 summation += eps(i, j, k, l) * a[i] * b[j] * c[k] * d[l]
107

108 return summation
109

110 def dot(a, b):
111

112 # Minkowski metric
113

114 return a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3]
115

116 def Gram_det_2(a,b,c,d):
117

118 # a b
119 # c d
120

121 return (dot(a, c))*(dot(b, d)) - (dot(a, d))*(dot(b, c))
122

123 def sym_2_Gram_det(a,b):
124 return Gram_det_2(a,b,a,b)
125

126 def sym_3_Gram_det(a,b,c):
127 M = [[dot(a,a),dot(a,b),dot(a,c)],[dot(b,a),dot(b,b),dot(b,c)],[dot(c,a),dot(c,b),dot(c,c)]]
128 return np.linalg.det(M)
129

130 def swap(S,idx_1 ,idx_2):
131

132 tmp = S[idx_1]
133 S[idx_1] = S[idx_2]
134 S[idx_2] = tmp
135

136 return S
137

138 def permute_with_idx(M, E, idx_to_permute):
139

140 same_mass_with_idx = [idx for idx in range(len(M)) if M[idx] == M[idx_to_permute] and idx !=
idx_to_permute and idx != 0 and idx != 1]

141 same_energy_with_idx = [idx for idx in range(len(E)) if E[idx] == E[idx_to_permute] and idx
!= idx_to_permute]

142

143 return list(set(same_mass_with_idx) and set(same_energy_with_idx))
144

145 def permutation_boolean(M, E, idx_1 , idx_2):
146

147 if (M[idx_1] == M[idx_2]) and (E[idx_1] == E[idx_2]):

31

148 return True
149 else:
150 return False
151

152 def logic_statement_true_for_non_chiral(S, E):
153

154 p = multivec_to_vec(S[0])
155 p = np.insert(p, 0, E[0])
156 q = multivec_to_vec(S[1])
157 q = np.insert(q, 0, E[1])
158 a = multivec_to_vec(S[2])
159 a = np.insert(a, 0, E[2])
160 b = multivec_to_vec(S[3])
161 b = np.insert(b, 0, E[3])
162 c = multivec_to_vec(S[4])
163 c = np.insert(c, 0, E[4])
164 d = multivec_to_vec(S[5])
165 d = np.insert(d, 0, E[5])
166 RF = p + q
167

168 case_1 = ((epsilon(a,b,p,q) == 0) and (epsilon(a,c,p,q) == 0) and (epsilon(a,d,p,q) == 0)
and (epsilon(b,d,p,q) == 0)

169 and (epsilon(b,c,p,q) == 0) and (epsilon(c,d,p,q) == 0))
170

171 case_2 = ((dot(a,a) == dot(b,b)) and (Gram_det_2(a-b,RF,p-q,RF) == 0) and (Gram_det_2(a-b,
RF,a+b,RF) == 0)

172 and (((sym_3_Gram_det(a,p,q) == 0) and (sym_3_Gram_det(b,p,q) == 0) and (
sym_3_Gram_det(c,p,q) != 0) and (sym_3_Gram_det(d,p,q) == 0))

173 or ((sym_3_Gram_det(a,p,q) != 0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(c,p,q) != 0) and (sym_3_Gram_det(d,p,q) == 0) and (Gram_det_2(a-b,RF ,c,RF)
== 0))

174 or ((sym_3_Gram_det(a,p,q) != 0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(d,p,q) != 0) and (sym_3_Gram_det(c,p,q) == 0) and (Gram_det_2(a-b,RF ,d,RF)
== 0))

175 or ((sym_3_Gram_det(a,p,q) !=0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(d,p,q) != 0) and (sym_3_Gram_det(c,p,q) != 0) and (Gram_det_2(a-b,RF ,c,RF)
== 0) and (Gram_det_2(a-b,RF,d,RF) == 0))))

176

177 def case_2_symmetry(p, q, a, b, c, d):
178

179 return ((dot(a,a) == dot(b,b)) and (Gram_det_2(a-b,RF,p-q,RF) == 0) and (Gram_det_2(a-b,
RF,a+b,RF) == 0)

180 and (((sym_3_Gram_det(a,p,q) == 0) and (sym_3_Gram_det(b,p,q) == 0) and (
sym_3_Gram_det(c,p,q) != 0) and (sym_3_Gram_det(d,p,q) == 0))

181 or ((sym_3_Gram_det(a,p,q) != 0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(c,p,q) != 0) and (sym_3_Gram_det(d,p,q) == 0) and (Gram_det_2(a-b,RF ,c,RF)
== 0))

182 or ((sym_3_Gram_det(a,p,q) != 0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(d,p,q) != 0) and (sym_3_Gram_det(c,p,q) == 0) and (Gram_det_2(a-b,RF ,d,RF)
== 0))

183 or ((sym_3_Gram_det(a,p,q) !=0) and (sym_3_Gram_det(b,p,q) != 0) and (
sym_3_Gram_det(d,p,q) != 0) and (sym_3_Gram_det(c,p,q) != 0) and (Gram_det_2(a-b,RF ,c,RF)
== 0) and (Gram_det_2(a-b,RF,d,RF) == 0))))

184

185 case_3 = case_2_symmetry(p, q, c, d, a, b) # h = (cd)
186 case_4 = case_2_symmetry(p, q, b, c, a, d) # h = (bc)
187 case_5 = case_2_symmetry(p, q, b, d, a, c) # h = (bd)
188 case_6 = case_2_symmetry(p, q, a, c, b, d) # h = (ac)
189 case_7 = case_2_symmetry(p, q, a, d, c, b) # h = (ad)
190

191 # TODO: In case 16 green and blue bracket are the negation of each other so I can evaluate
once for efficiency

192

193 case_16 = ((dot(a,a) == dot(b,b)) and (dot(c,c) == dot(d,d)) and (Gram_det_2(a-b,RF,p-q,RF)
== 0) and (Gram_det_2(a-b,RF,a+b,RF) == 0) and (Gram_det_2(c-d,RF ,p-q,RF) == 0) and (
Gram_det_2(c-d,RF,c+d,RF) == 0)

194 and (((sym_3_Gram_det(a,p,q)==0) and (sym_3_Gram_det(b,p,q)==0) and (
sym_3_Gram_det(c,p,q)!=0) and (sym_3_Gram_det(d,p,q)!=0) or (sym_3_Gram_det(c,p,q)==0) and
(sym_3_Gram_det(d,p,q)==0) and (sym_3_Gram_det(a,p,q)!=0) and (sym_3_Gram_det(b,p,q)!=0))

32

195 or ((Gram_det_2(a-b,RF,c+d,RF)==0) or (Gram_det_2(c-d,RF,b,RF)==0) or (
Gram_det_2(a-b,RF,d,RF)==0))))

196

197 def case_16_symmetry(p,q,a,b,c,d):
198

199 return ((dot(a,a) == dot(b,b)) and (dot(c,c) == dot(d,d)) and (Gram_det_2(a-b,RF,p-q,RF)
== 0) and (Gram_det_2(a-b,RF,a+b,RF) == 0) and (Gram_det_2(c-d,RF ,p-q,RF) == 0) and (

Gram_det_2(c-d,RF,c+d,RF) == 0)
200 and (((sym_3_Gram_det(a,p,q)==0) and (sym_3_Gram_det(b,p,q)==0) and (

sym_3_Gram_det(c,p,q)!=0) and (sym_3_Gram_det(d,p,q)!=0) or (sym_3_Gram_det(c,p,q)==0) and
(sym_3_Gram_det(d,p,q)==0) and (sym_3_Gram_det(a,p,q)!=0) and (sym_3_Gram_det(b,p,q)!=0))

201 or ((Gram_det_2(a-b,RF,c+d,RF)==0) or (Gram_det_2(c-d,RF,b,RF)==0) or (
Gram_det_2(a-b,RF,d,RF)==0))))

202

203 case_17 = case_16_symmetry(p, q, a, c, b, d) # h = (ac)(bd)
204 case_18 = case_16_symmetry(p, q, a, d, c, b) # h = (ad)(bc)
205

206 case_19 = ((dot(a,a) == dot(b,b) == dot(c,c) == dot(d,d)) and (Gram_det_2(a-b,RF ,a+b,RF) ==
0) and (Gram_det_2(b-c,RF,b+c,RF) == 0) \

207 and (Gram_det_2(c-d,RF ,c+d,RF) == 0) and (Gram_det_2(a-b,RF ,p-q,RF) == 0) and (
Gram_det_2(b-c,RF,p-q,RF) == 0) \

208 and (Gram_det_2(c-d,RF ,p-q,RF) == 0) and (a == c) and (b == d))
209

210 def case_19_symmetry(p,q,a,b,c,d):
211

212 return ((dot(a,a) == dot(b,b) == dot(c,c) == dot(d,d)) and (Gram_det_2(a-b,RF ,a+b,RF) ==
0) and (Gram_det_2(b-c,RF,b+c,RF) == 0) \

213 and (Gram_det_2(c-d,RF ,c+d,RF) == 0) and (Gram_det_2(a-b,RF ,p-q,RF) == 0) and (
Gram_det_2(b-c,RF,p-q,RF) == 0) \

214 and (Gram_det_2(c-d,RF ,p-q,RF) == 0) and (a == c) and (b == d))
215

216 case_20 = case_19_symmetry(p,q,a,b,d,c) # h = (dbac)
217 case_22 = case_19_symmetry(p,q,a,c,d,b) # h = (bcad)
218

219 case_25 = ((dot(p,p) == dot(q,q)) and (Gram_det_2(a,RF ,p-q,RF) == 0) and (Gram_det_2(b,RF ,p-
q,RF) == 0) \

220 and (Gram_det_2(c,RF,p-q,RF) == 0) and (Gram_det_2(d,RF,p-q,RF) == 0))
221

222 case_26 = ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b)) and (Gram_det_2(a+b,RF,p-q,RF)
== 0) and (Gram_det_2(a-b,RF,a+b,RF) == 0)

223 and (Gram_det_2(c,RF,p-q,RF) == 0) and (Gram_det_2(d,RF,p-q,RF) == 0)
224 and (sym_3_Gram_det(a,p,q) == 0 or sym_3_Gram_det(a+b,p,q) == 0 or sym_3_Gram_det

(a-b,p,q) == 0))
225

226 def case_26_symmetry(p,q,a,b,c,d):
227

228 return ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b)) and (Gram_det_2(a+b,RF,p-q,RF)
== 0) and (Gram_det_2(a-b,RF,a+b,RF) == 0)

229 and (Gram_det_2(c,RF,p-q,RF) == 0) and (Gram_det_2(d,RF,p-q,RF) == 0)
230 and (sym_3_Gram_det(a,p,q) == 0 or sym_3_Gram_det(a+b,p,q) == 0 or sym_3_Gram_det

(a-b,p,q) == 0))
231

232 case_27 = case_26_symmetry(p, q, c, d, a, b) # h = (cd)
233 case_28 = case_26_symmetry(p, q, c, b, a, d) # h = (bc)
234 case_29 = case_26_symmetry(p, q, d, b, c, a) # h = (bd)
235 case_30 = case_26_symmetry(p, q, a, c, b, d) # h = (ac)
236 case_31 = case_26_symmetry(p, q, a, d, c, b) # h = (ad)
237

238

239 case_32 = ((dot(p,p) == dot(q,q)) and (dot(b,b) == dot(c,c) == dot(d,d)) and (Gram_det_2(a,
RF,p-q,RF) == 0) and (Gram_det_2(b,RF,p-q,RF) == 0) \

240 and (Gram_det_2(c,RF,p-q,RF) == 0) and (Gram_det_2(d,RF,p-q,RF) == 0) and (
Gram_det_2(b-c,RF,b+c,RF) == 0) \

241 and (Gram_det_2(c-d,RF ,c+d,RF) == 0) and (Gram_det_2(a,RF,p-q,RF) == 0) and (
epsilon ((b+d),c,p,q) == 0) \

242 and (epsilon ((b+c),d,p,q) == 0) and (epsilon ((c+d),b,p,q) == 0))
243

244 def case_32_symmetry(p,q,a,b,c,d):
245

33

246 return ((dot(p,p) == dot(q,q)) and (dot(b,b) == dot(c,c) == dot(d,d)) and (Gram_det_2(a,
RF,p-q,RF) == 0) and (Gram_det_2(b,RF,p-q,RF) == 0) \

247 and (Gram_det_2(c,RF,p-q,RF) == 0) and (Gram_det_2(d,RF,p-q,RF) == 0) and (
Gram_det_2(b-c,RF,b+c,RF) == 0) \

248 and (Gram_det_2(c-d,RF ,c+d,RF) == 0) and (Gram_det_2(a,RF,p-q,RF) == 0) and (
epsilon ((b+d),c,p,q) == 0) \

249 and (epsilon ((b+c),d,p,q) == 0) and (epsilon ((c+d),b,p,q) == 0))
250

251 case_34 = case_32_symmetry(p, q, d, b, c, a) # h = (cba)
252 case_35 = case_32_symmetry(p, q, c, a, d, b) # h = (dba)
253 case_37 = case_32_symmetry(p, q, b, a, c, d) # h = (dca)
254

255 case_40 = ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b)) and (dot(c,c) == dot(d,d)) and
(Gram_det_2(a+b,RF,p-q,RF) == 0) \

256 and (Gram_det_2(c+d,RF ,p-q,RF) == 0) \
257 and ((sym_3_Gram_det(a+b,p,q) == 0 or sym_3_Gram_det(a-b,p,q) == 0)
258 or ((sym_3_Gram_det(c+d,p,q) == 0) or (sym_3_Gram_det(c-d,p,q) == 0))))
259

260 def case_40_symmetry(p,q,a,b,c,d):
261

262 return ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b)) and (dot(c,c) == dot(d,d)) and
(Gram_det_2(a+b,RF,p-q,RF) == 0) \

263 and (Gram_det_2(c+d,RF ,p-q,RF) == 0) \
264 and ((sym_3_Gram_det(a+b,p,q) == 0 or sym_3_Gram_det(a-b,p,q) == 0)
265 or ((sym_3_Gram_det(c+d,p,q) == 0) or (sym_3_Gram_det(c-d,p,q) == 0))))
266

267 case_41 = case_40_symmetry(p, q, a, c, b, d) # h = (ac)(bd)
268 case_42 = case_40_symmetry(p, q, a, d, c, b) # h = (ad)(cb)
269

270 case_43 = ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b) == dot(c,c) == dot(d,d)) and (
Gram_det_2(a-b,RF,a+b,RF) == 0)

271 and (Gram_det_2(b-c,RF ,b+c,RF) == 0) and (Gram_det_2(c-d,RF,c+d,RF) == 0) and (Gram_det_2(a+
b,RF ,p-q,RF) == 0) and (Gram_det_2(b+c,RF,p-q,RF) == 0)

272 and (Gram_det_2(c+d,RF ,p-q,RF) == 0) and ((sym_3_Gram_det(a,p,q) == 0)
273 or ((epsilon(p+q,a-c,p,b) == 0) and (epsilon(p+q,b-d,a,p) == 0))
274 or ((sym_3_Gram_det(a-c,p,q) == 0) and (sym_3_Gram_det(b-d,p,q) == 0)
275 and ((sym_3_Gram_det(a+b,p,q) == 0) or ((Gram_det_2(a+b,RF ,p-q,RF) == 0) and (

sym_3_Gram_det(a-b,p,q) == 0))))))
276

277 def case_43_symmetry(p,q,a,b,c,d):
278

279 return ((dot(p,p) == dot(q,q)) and (dot(a,a) == dot(b,b) == dot(c,c) == dot(d,d)) and (
Gram_det_2(a-b,RF,a+b,RF) == 0)

280 and (Gram_det_2(b-c,RF ,b+c,RF) == 0) and (Gram_det_2(c-d,RF,c+d,RF) == 0) and (Gram_det_2(a+
b,RF ,p-q,RF) == 0) and (Gram_det_2(b+c,RF,p-q,RF) == 0)

281 and (Gram_det_2(c+d,RF ,p-q,RF) == 0) and ((sym_3_Gram_det(a,p,q) == 0)
282 or ((epsilon(p+q,a-c,p,b) == 0) and (epsilon(p+q,b-d,a,p) == 0))
283 or ((sym_3_Gram_det(a-c,p,q) == 0) and (sym_3_Gram_det(b-d,p,q) == 0)
284 and ((sym_3_Gram_det(a+b,p,q) == 0) or ((Gram_det_2(a+b,RF ,p-q,RF) == 0) and (

sym_3_Gram_det(a-b,p,q) == 0))))))
285

286 case_44 = case_43_symmetry(p, q, a, b, d, c) # h = (dbac)
287 case_45 = case_43_symmetry(p, q, b, a, c, d) # h = (dcab)
288 case_46 = case_43_symmetry(p, q, a, c, b, d) # h = (dbca)
289 case_47 = case_43_symmetry(p, q, c, b, a, d) # h = (dabc)
290 case_48 = case_43_symmetry(p, q, b, c, a, d) # h = (dacb)
291

292 return (case_1 or case_2 or case_3 or case_4 or case_5 or case_6 or case_7 or case_16 or
case_17 or case_18

293 or case_19 or case_20 or case_22 or case_25 or case_26 or case_27 or case_28 or
case_29 or case_30

294 or case_31 or case_32 or case_34 or case_35 or case_37 or case_40 or case_41 or
case_42 or case_43

295 or case_44 or case_45 or case_46 or case_47 or case_48)
296

297 def construct_state ():
298

299 mp, mq , ma , mb, mc, md = randint(0, 10), randint(0, 10), randint(0, 10), randint(0, 10),
randint(0, 10), randint (0,10)

34

300

301 p = uniform(-10, 10) * e3
302 q = -p
303

304 a = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
305 b = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
306 c = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
307 d = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
308

309 Ep, Eq , Ea , Eb, Ec, Ed = energy(mp , p), energy(mq, q), energy(ma, a), energy(mb, b), energy(
mc, c), energy(md, d)

310

311 M = [mp, mq, ma , mb , mc, md]
312 E = [Ep, Eq, Ea , Eb , Ec, Ed]
313 S = [p, q, a, b, c, d]
314

315 return S, E, M
316

317 def construct_non_chiral_state (): # Trick
318

319 mp, mq , ma , mb, mc, md = 1, 1, 1, 1, 1, 1
320

321 p = uniform(-10, 10) * e3
322 q = -p
323

324 a = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
325 b = a[1] * e1 - a[2] * e2 + a[3] * e3
326 R = e**(uniform (0,2*pi)*e1*e2)
327 c = R*a*~R
328 d = c[1] * e1 - c[2] * e2 + c[3] * e3
329

330 Ep, Eq , Ea , Eb, Ec, Ed = energy(mp , p), energy(mq, q), energy(ma, a), energy(mb, b), energy(
mc, c), energy(md, d)

331

332 M = [mp, mq, ma , mb , mc, md]
333 E = [Ep, Eq, Ea , Eb , Ec, Ed]
334 S = [p, q, a, b, c, d]
335

336 return S, E, M
337

338 def chirality_test ():
339

340 chiral_states = []
341 non_chiral_states = []
342

343 S, E, M = construct_non_chiral_state ()
344 a, b, c, d = S[2], S[3], S[4], S[5]
345

346 # These lists hold indices (as they appear in S) of the particles that can be permuted with
a,b,c and d respectively

347 permute_with_a = permute_with_idx(M, E, 2)
348 permute_with_b = permute_with_idx(M, E, 3)
349 permute_with_c = permute_with_idx(M, E, 4)
350 permute_with_d = permute_with_idx(M, E, 5)
351

352 permutation_dictionary = {3: permute_with_b , 4: permute_with_c , 5: permute_with_d}
353

354 S_parity = parity(S) # Perform parity on the set of momenta
355

356 flag = False
357

358 if not permutation_boolean(M, E, 0, 1): # If we cant permute p (index 0) with q (index 1)
359

360 if (a[1] == 0 and a[2] == 0) or (a == 0):
361

362 if (b[1] == 0 and b[2] == 0) or (b == 0):
363

364 if (c[1] == 0 and c[2] == 0) or (c == 0):
365

35

366 flag = True
367

368 else: # Here we consider that a,b are either e3 collinear or 0, only c and d are
in the 1-2 plane

369

370 # We can map c_12 to its original or d_12 to the original c_12 and swap (cd)
if they can be

371 # permuted.
372

373 # Since a and b are fixed by R1 = e1e3 we only want to consider permutations
(cd)

374 # Remember that idx 2 corresponds to a and idx 3 corresponds to b in S
375 permute_with_c_new = list([idx for idx in permute_with_c if (idx != 2) and (

idx != 3)])
376

377 R1 = e1*e3
378

379 S1 = rotate(S_parity , R1)
380

381 for idx in permute_with_c_new +[4]: # The index of c is 4 in the list S
382

383 # Map x_12_rotated to c_12_original
384

385 x = S1[idx]
386 x_12 = x - x[3]*e3
387 c_12 = c - c[3]*e3
388 n = (x_12 + c_12).normal ()
389 if n == 0: # If x_12 and c_12 are anti -parallel then we need a pi

rotation
390 R2 = e1*e2
391 else: # Otherwise we construct the rotor as usual with the form R = (

final destination)*n
392 R2 = c_12.normal ()*n
393 S2 = rotate(S1, R2)
394 S3 = swap(S2 , idx , 4)
395

396 if S == S3:
397 flag = True
398

399 else: # Here we consider that a is collinear with e3 or is 0 but b is not
400

401 # We map x_12 to b_12_original and consider permutations between (cd), where
x_12 can be (b,c,d)_12

402

403 permute_with_b_new = list([idx for idx in permute_with_b if (idx != 2)])
404

405 R1 = e1 * e3
406

407 S1 = rotate(S_parity , R1)
408

409 for idx in permute_with_b_new + [3]: # The index of b is 3 in the list S
410

411 # Map x_12_rotated to b_12_original
412

413 x = S1[idx]
414 x_12 = x - x[3] * e3
415 b_12 = b - b[3] * e3
416 n = (x_12 + b_12).normal ()
417 if n == 0: # If x_12 and b_12 are anti -parallel then we need a pi rotation
418 R2 = e1 * e2
419 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
420 R2 = b_12.normal () * n
421 S2 = rotate(S1, R2)
422 S3 = swap(S2, idx , 3)
423

424 if S == S3:
425 flag = True
426

36

427 if permutation_boolean(M, E, 4, 5): # If (cd) is possible
428

429 S4 = swap(S3 , 4, 5)
430

431 if S == S4:
432

433 flag = True
434

435 else: # Here we consider that a is not collinear with e3 and not 0
436

437 # We need to map x_12 to a_12_original and consider permutations (bcd)
438

439 R1 = e1 * e3
440

441 S1 = rotate(S_parity , R1)
442

443 for idx in permute_with_a + [2]: # The index of a is 2 in the list S
444

445 # Map x_12_rotated to a_12_original
446

447 x = S1[idx]
448 x_12 = x - x[3] * e3
449 a_12 = a - a[3] * e3
450 n = (x_12 + a_12).normal ()
451 if n == 0: # If x_12 and a_12 are anti -parallel then we need a pi rotation
452 R2 = e1 * e2
453 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
454 R2 = a_12.normal () * n
455 S2 = rotate(S1, R2)
456 S3 = swap(S2, idx , 2)
457

458 if S == S3:
459 flag = True
460

461 flag_tmp_1 = permutation_boolean(M, E, 3, 4) # This checks if (bc) is available
462

463 if flag_tmp_1:
464 S4 = swap(S3, 3, 4)
465 if S == S4:
466 flag = True
467

468 flag_tmp_2 = permutation_boolean(M, E, 3, 5) # This checks if (bd) is available
469

470 if flag_tmp_2:
471 S5 = swap(S3, 3, 5)
472 if S == S5:
473 flag = True
474

475 if flag_tmp_1 and flag_tmp_2: # If we have (bc) and (bd) then we have (bcd)
476 # The following achieves b->c->d->b
477 S6 = swap(S3, 3, 4) # (bc)
478 S6 = swap(S6, 3, 5) # (bd), here in the 3 index lies c but we name it b

still , notice we use S6
479 if S == S6:
480 flag = True
481 # The following achieves b->d->c->b
482 S7 = swap(S3, 3, 5) # (bd)
483 S7 = swap(S7, 3, 4) # (bc), here in the 3 index lies d but we name it b

still , notice we use S7
484 if S == S7:
485 flag = True
486

487 if permutation_boolean(M, E, 4, 5): # If we have (cd)
488

489 S8 = swap(S3, 4, 5)
490 if S == S8:
491 flag = True
492

37

493

494 else: # Now we consider the case where (pq) is available
495

496 # We can either try the above or omit using R1 and just use (pq)
497 # Whenever we check for non -chirality we can can also perform a pi rotation in the plane

that contains the
498 # 3-axis and has normal the final_state_particle_12 we matched in the 1-2 plane (usually

this is a unless a has
499 # no 1,2 components)
500

501 # The following is repeating the above but incorporating the (pq) degree of freedom
502

503 if (a[1] == 0 and a[2] == 0) or (a == 0):
504

505 if (b[1] == 0 and b[2] == 0) or (b == 0):
506

507 if (c[1] == 0 and c[2] == 0) or (c == 0):
508

509 flag = True
510

511 else: # Here we consider that a,b are either e3 collinear or 0, only c and d are
in the 1-2 plane

512

513 # We can map c_12 to its original or d_12 to the original c_12 and swap (cd)
if they can be

514 # permuted.
515

516 # Since a and b are fixed by R1 = e1e3 we only want to consider permutations
(cd)

517 # Remember that idx 2 corresponds to a and idx 3 corresponds to b in S
518 permute_with_c_new = list([idx for idx in permute_with_c if (idx != 2) and (

idx != 3)])
519

520 R1 = e1*e3
521

522 S1 = rotate(S_parity , R1)
523

524 for idx in permute_with_c_new +[4]: # The index of c is 4 in the list S
525

526 # Map x_12_rotated to c_12_original
527

528 x = S1[idx]
529 x_12 = x - x[3]*e3
530 c_12 = c - c[3]*e3
531 n = (x_12 + c_12).normal ()
532 if n == 0: # If x_12 and c_12 are anti -parallel then we need a pi

rotation
533 R2 = e1*e2
534 else: # Otherwise we construct the rotor as usual with the form R = (

final destination)*n
535 R2 = c_12.normal ()*n
536 S2 = rotate(S1, R2)
537 S3 = swap(S2 , idx , 4)
538

539 if S == S3:
540 flag = True
541

542 # Now we can try the pi rotation in the plane v-e3 where v is
perpendicular c_12 and e3

543

544 v = (-I*(e3^c_12)).normal () # Cross product in geometric algebra , I is
the pseudoscalar , v = e3 x c_12

545 R3 = e3^v
546

547 S4 = rotate(S3, R3)
548 S5 = swap(S4 , 0, 1)
549

550 if S == S5:
551 flag = True

38

552

553 else: # Here we consider that a is collinear with e3 or is 0 but b is not
554

555 # We map x_12 to b_12_original and consider permutations between (cd), where
x_12 can be (b,c,d)_12

556

557 permute_with_b_new = list([idx for idx in permute_with_b if (idx != 2)])
558

559 R1 = e1 * e3
560

561 S1 = rotate(S_parity , R1)
562

563 for idx in permute_with_b_new + [3]: # The index of b is 3 in the list S
564

565 # Map x_12_rotated to b_12_original
566

567 x = S1[idx]
568 x_12 = x - x[3] * e3
569 b_12 = b - b[3] * e3
570 n = (x_12 + b_12).normal ()
571 if n == 0: # If x_12 and b_12 are anti -parallel then we need a pi rotation
572 R2 = e1 * e2
573 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
574 R2 = b_12.normal () * n
575 S2 = rotate(S1, R2)
576 S3 = swap(S2, idx , 3)
577

578 if S == S3:
579 flag = True
580

581 v = (-I * (e3 ^ b_12)).normal () # Cross product in geometric algebra , I is
the pseudoscalar , v = e3 x c_12

582 R3 = e3 ^ v # (pq) degree of freedom , rotation by pi in the plane e3-v
583

584 S4 = rotate(S3, R3)
585 S5 = swap(S4, 0, 1)
586

587 if S == S5:
588 flag = True
589

590 if permutation_boolean(M, E, 4, 5): # If (cd) is possible
591

592 S6 = swap(S3 , 4, 5)
593

594 if S == S6:
595

596 flag = True
597

598 S7 = rotate(S6, R3)
599 S8 = swap(S7 , 0, 1)
600

601 if S == S8:
602 flag = True
603

604 else: # Here we consider that a is not collinear with e3 and not 0
605

606 # We need to map x_12 to a_12_original and consider permutations (bcd)
607

608 R1 = e1 * e3
609

610 S1 = rotate(S_parity , R1)
611

612 for idx in permute_with_a + [2]: # The index of a is 2 in the list S
613

614 # Map x_12_rotated to a_12_original
615

616 x = S1[idx]
617 x_12 = x - x[3] * e3

39

618 a_12 = a - a[3] * e3
619 n = (x_12 + a_12).normal ()
620 if n == 0: # If x_12 and a_12 are anti -parallel then we need a pi rotation
621 R2 = e1 * e2
622 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
623 R2 = a_12.normal () * n
624 S2 = rotate(S1, R2)
625 S3 = swap(S2, idx , 2)
626

627 if S == S3:
628 flag = True
629

630 v = (-I * (e3 ^ a_12)).normal () # Cross product in geometric algebra , I is the
pseudoscalar , v = e3 x c_12

631 R3 = e3 ^ v # (pq) degree of freedom , rotation by pi in the plane e3-v
632

633 S4 = rotate(S3, R3)
634 S5 = swap(S4, 0, 1)
635

636 if S == S5:
637 flag = True
638

639 flag_tmp_1 = permutation_boolean(M, E, 3, 4) # This checks if (bc) is available
640

641 if flag_tmp_1:
642 S6 = swap(S3, 3, 4)
643 if S == S6:
644 flag = True
645

646 S7 = rotate(S6, R3)
647 S8 = swap(S7, 0, 1)
648

649 if S == S8:
650 flag = True
651

652 flag_tmp_2 = permutation_boolean(M, E, 3, 5) # This checks if (bd) is available
653

654 if flag_tmp_2:
655 S9 = swap(S3, 3, 5)
656 if S == S9:
657 flag = True
658 S10 = rotate(S9, R3)
659 S11 = swap(S10 , 0, 1)
660

661 if S == S11:
662 flag = True
663

664

665

666 if flag_tmp_1 and flag_tmp_2: # If we have (bc) and (bd) then we have (bcd)
667 # The following achieves b->c->d->b
668 S12 = swap(S3, 3, 4) # (bc)
669 S13 = swap(S12 , 3, 5) # (bd), here in the 3 index lies c but we name it b

still , notice we use S6
670 if S == S13:
671 flag = True
672 S14 = rotate(S13 , R3)
673 S15 = swap(S14 , 0, 1)
674

675 if S == S15:
676 flag = True
677 # The following achieves b->d->c->b
678 S16 = swap(S3, 3, 5) # (bd)
679 S17 = swap(S16 , 3, 4) # (bc), here in the 3 index lies d but we name it b

still , notice we use S7
680 if S == S17:
681 flag = True
682 S18 = rotate(S17 , R3)

40

683 S19 = swap(S18 , 0, 1)
684

685 if S == S19:
686 flag = True
687

688 if permutation_boolean(M, E, 4, 5): # If we have (cd)
689

690 S20 = swap(S3, 4, 5)
691 if S == S20:
692 flag = True
693 S21 = rotate(S20 , R3)
694 S22 = swap(S21 , 0, 1)
695

696 if S == S22:
697 flag = True
698

699

700 # The following is omitting R1 and just uses (pq), it again incorporates the (pq) degree
of freedom

701

702 if (a[1] == 0 and a[2] == 0) or (a == 0):
703

704 if (b[1] == 0 and b[2] == 0) or (b == 0):
705

706 if (c[1] == 0 and c[2] == 0) or (c == 0):
707

708 flag = True
709

710 else: # Here we consider that a,b are either e3 collinear or 0, only c and d
are in the 1-2 plane

711

712 # We can map c_12 to its original or d_12 to the original c_12 and swap (cd)
if they can be

713 # permuted.
714

715 # Since a and b are fixed by R1 = e1e3 we only want to consider permutations
(cd)

716 # Remember that idx 2 corresponds to a and idx 3 corresponds to b in S
717 permute_with_c_new = list([idx for idx in permute_with_c if (idx != 2) and (

idx != 3)])
718

719 S1 = swap(S_parity , 0, 1)
720

721 for idx in permute_with_c_new + [4]: # The index of c is 4 in the list S
722

723 # Map x_12_rotated to c_12_original
724

725 x = S1[idx]
726 x_12 = x - x[3] * e3
727 c_12 = c - c[3] * e3
728 n = (x_12 + c_12).normal ()
729 if n == 0: # If x_12 and c_12 are anti -parallel then we need a pi

rotation
730 R2 = e1 * e2
731 else: # Otherwise we construct the rotor as usual with the form R = (

final destination)*n
732 R2 = c_12.normal () * n
733 S2 = rotate(S1, R2)
734 S3 = swap(S2 , idx , 4)
735

736 if S == S3:
737 flag = True
738

739 # Now we can try the pi rotation in the plane v-e3 where v is
perpendicular c_12 and e3

740

741 v = (-I * (e3 ^ c_12)).normal () # Cross product in geometric algebra , I
is the pseudoscalar , v = e3 x c_12

742 R3 = e3 ^ v

41

743

744 S4 = rotate(S3, R3)
745 S5 = swap(S4 , 0, 1)
746

747 if S == S5:
748 flag = True
749

750 else: # Here we consider that a is collinear with e3 or is 0 but b is not
751

752 # We map x_12 to b_12_original and consider permutations between (cd), where
x_12 can be (b,c,d)_12

753

754 permute_with_b_new = list([idx for idx in permute_with_b if (idx != 2)])
755

756 S1 = swap(S_parity , 0, 1)
757

758 for idx in permute_with_b_new + [3]: # The index of b is 3 in the list S
759

760 # Map x_12_rotated to b_12_original
761

762 x = S1[idx]
763 x_12 = x - x[3] * e3
764 b_12 = b - b[3] * e3
765 n = (x_12 + b_12).normal ()
766 if n == 0: # If x_12 and b_12 are anti -parallel then we need a pi rotation
767 R2 = e1 * e2
768 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
769 R2 = b_12.normal () * n
770 S2 = rotate(S1, R2)
771 S3 = swap(S2, idx , 3)
772

773 if S == S3:
774 flag = True
775

776 v = (-I * (e3 ^ b_12)).normal () # Cross product in geometric algebra , I is
the pseudoscalar , v = e3 x c_12

777 R3 = e3 ^ v # (pq) degree of freedom , rotation by pi in the plane e3-v
778

779 S4 = rotate(S3, R3)
780 S5 = swap(S4, 0, 1)
781

782 if S == S5:
783 flag = True
784

785 if permutation_boolean(M, E, 4, 5): # If (cd) is possible
786

787 S6 = swap(S3 , 4, 5)
788

789 if S == S6:
790 flag = True
791

792 S7 = rotate(S6, R3)
793 S8 = swap(S7 , 0, 1)
794

795 if S == S8:
796 flag = True
797

798 else: # Here we consider that a is not collinear with e3 and not 0
799

800 # We need to map x_12 to a_12_original and consider permutations (bcd)
801

802 S1 = swap(S_parity , 0, 1)
803

804 for idx in permute_with_a + [2]: # The index of a is 2 in the list S
805

806 # Map x_12_rotated to a_12_original
807

808 x = S1[idx]

42

809 x_12 = x - x[3] * e3
810 a_12 = a - a[3] * e3
811 n = (x_12 + a_12).normal ()
812 if n == 0: # If x_12 and a_12 are anti -parallel then we need a pi rotation
813 R2 = e1 * e2
814 else: # Otherwise we construct the rotor as usual with the form R = (final

destination)*n
815 R2 = a_12.normal () * n
816 S2 = rotate(S1, R2)
817 S3 = swap(S2, idx , 2)
818

819 if S == S3:
820 flag = True
821

822 v = (-I * (e3 ^ a_12)).normal () # Cross product in geometric algebra , I is the
pseudoscalar , v = e3 x c_12

823 R3 = e3 ^ v # (pq) degree of freedom , rotation by pi in the plane e3-v
824

825 S4 = rotate(S3, R3)
826 S5 = swap(S4, 0, 1)
827

828 if S == S5:
829 flag = True
830

831 flag_tmp_1 = permutation_boolean(M, E, 3, 4) # This checks if (bc) is available
832

833 if flag_tmp_1:
834 S6 = swap(S3, 3, 4)
835 if S == S6:
836 flag = True
837

838 S7 = rotate(S6, R3)
839 S8 = swap(S7, 0, 1)
840

841 if S == S8:
842 flag = True
843

844 flag_tmp_2 = permutation_boolean(M, E, 3, 5) # This checks if (bd) is available
845

846 if flag_tmp_2:
847 S9 = swap(S3, 3, 5)
848 if S == S9:
849 flag = True
850 S10 = rotate(S9, R3)
851 S11 = swap(S10 , 0, 1)
852

853 if S == S11:
854 flag = True
855

856 if flag_tmp_1 and flag_tmp_2: # If we have (bc) and (bd) then we have (bcd)
857 # The following achieves b->c->d->b
858 S12 = swap(S3, 3, 4) # (bc)
859 S13 = swap(S12 , 3, 5) # (bd), here in the 3 index lies c but we name it b

still , notice we use S6
860 if S == S13:
861 flag = True
862 S14 = rotate(S13 , R3)
863 S15 = swap(S14 , 0, 1)
864

865 if S == S15:
866 flag = True
867 # The following achieves b->d->c->b
868 S16 = swap(S3, 3, 5) # (bd)
869 S17 = swap(S16 , 3, 4) # (bc), here in the 3 index lies d but we name it b

still , notice we use S7
870 if S == S17:
871 flag = True
872 S18 = rotate(S17 , R3)
873 S19 = swap(S18 , 0, 1)

43

874

875 if S == S19:
876 flag = True
877

878 if permutation_boolean(M, E, 4, 5): # If we have (cd)
879

880 S20 = swap(S3, 4, 5)
881 if S == S20:
882 flag = True
883 S21 = rotate(S20 , R3)
884 S22 = swap(S21 , 0, 1)
885

886 if S == S22:
887 flag = True
888

889 if flag:
890 non_chiral_states.append ([S, E])
891 else:
892 chiral_states.append ([S, E])
893

894 return non_chiral_states , chiral_states
895

896 # chiral_states = []
897 # non_chiral_states = []
898 #
899 # for _ in range (10):
900 #
901 # non_chiral_states_tmp , chiral_states_tmp = chirality_test ()
902 # non_chiral_states += non_chiral_states_tmp
903 # chiral_states += chiral_states_tmp
904 #
905 # # The first slot is incremented for every true and the second for every false
906 # non_chiral_evaluation_on_logic_statement = [0, 0]
907 # chiral_evaluation_on_logic_statement = [0, 0]
908 #
909 # for non_chiral_state in non_chiral_states:
910 # flag = logic_statement_true_for_non_chiral(non_chiral_state [0], non_chiral_state [1])
911 # if flag:
912 # non_chiral_evaluation_on_logic_statement [0] += 1
913 # else:
914 # non_chiral_evaluation_on_logic_statement [1] += 1
915 #
916 # for chiral_state in chiral_states:
917 # flag = logic_statement_true_for_non_chiral(chiral_state [0], chiral_state [1])
918 # if flag:
919 # chiral_evaluation_on_logic_statement [0] += 1
920 # else:
921 # chiral_evaluation_on_logic_statement [1] += 1
922 #
923 # x = [’True ’, ’False ’]
924 # height_non_chiral = [non_chiral_evaluation_on_logic_statement [0],

non_chiral_evaluation_on_logic_statement [1]]
925 # height_chiral = [chiral_evaluation_on_logic_statement [0], chiral_evaluation_on_logic_statement

[1]]
926 #
927 # plt.bar(x, height_non_chiral , color = ’k’, width = 0.1)
928 # plt.title(’Non -chiral states evaluated on the logic statement\nwhich is true iff the input is

non -chiral ’)
929 # plt.ylabel(’Frequency ’)
930 # plt.show()
931 # # plt.savefig(’non_chiral_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)
932 # #
933 # plt.bar(x, height_chiral , color = ’k’, width = 0.1)
934 # plt.title(’Chiral states evaluated on the logic statement\nwhich is true iff the input is non -

chiral ’)
935 # plt.ylabel(’Frequency ’)
936 # plt.show()
937 # plt.savefig(’chiral_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)
938

44

939 # ---

Code file: non collision one massive algorithm.py

1 import time
2 from numpy import pi, cos , sin , e, tan , arctan
3 from clifford.g3 import blades
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import numpy as np
7 from random import uniform , seed , randint
8 from sympy import LeviCivita as eps
9 from main import parity , rotate , energy , epsilon , Gram_det_2

10 from pytest import approx
11

12 # Works only for a,b,c,d != 0 (it is very unlikely that any one will be randomly generated in
momentum 0)

13

14 e1, e2 , e3 = blades[’e1’], blades[’e2’], blades[’e3’]
15 I = e1^e2^e3
16

17 def dot(a,b):
18 dot = a[1]*b[1] + a[2]*b[2] + a[3]*b[3]
19 return dot
20

21 def multivec_to_vec(a):
22 return np.array([a[1], a[2], a[3]])
23

24 def swap(S,idx_1 ,idx_2):
25

26 tmp = S[idx_1]
27 S[idx_1] = S[idx_2]
28 S[idx_2] = tmp
29

30 return S
31

32 def logic_statement_true_for_non_chiral(S, E, mp , mq):
33

34 p = np.array([mp, 0, 0, 0])
35 q = np.array([mq, 0, 0, 0])
36 a = multivec_to_vec(S[0])
37 a = np.insert(a, 0, E[0])
38 b = multivec_to_vec(S[1])
39 b = np.insert(b, 0, E[1])
40 c = multivec_to_vec(S[2])
41 c = np.insert(c, 0, E[2])
42 d = multivec_to_vec(S[3])
43 d = np.insert(d, 0, E[3])
44 RF = p + q
45

46 case_1 = ((epsilon(a, b, c, RF) == approx (0)) and (epsilon(a, b, d, RF) == approx (0)) and (
epsilon(b, c, d, RF) == approx (0)) and (

47 epsilon(a, c, d, RF) == approx (0)))
48

49 case_2 = ((dot(a,a) == approx(dot(b,b))) and (not (a == b).all()) and (Gram_det_2(a,RF,a,RF)
== approx(Gram_det_2(b,RF,b,RF))) and (Gram_det_2(a,RF,c,RF) == approx ((Gram_det_2(b,RF,c,

RF)))) and (Gram_det_2(a,RF ,d,RF) == approx(Gram_det_2(b,RF,d,RF))))
50

51 def case_2_symmetry(a,b,c,d):
52 return ((dot(a,a) == approx(dot(b,b))) and (not (a == b).all()) and (Gram_det_2(a,RF,a,

RF) == approx(Gram_det_2(b,RF,b,RF))) and (Gram_det_2(a,RF,c,RF) == approx ((Gram_det_2(b,RF
,c,RF) == 0))) and (Gram_det_2(a,RF ,d,RF) == approx(Gram_det_2(b,RF,d,RF))))

53

54 case_3 = case_2_symmetry(a,c,b,d)
55 case_4 = case_2_symmetry(a,d,c,b)
56 case_5 = case_2_symmetry(b,c,a,d)
57 case_6 = case_2_symmetry(b,d,c,a)
58 case_7 = case_2_symmetry(c,d,a,b)
59

45

60 case_8 = ((dot(a,a) == approx(dot(b,b))) and (dot(c,c) == approx(dot(d,d))) and (Gram_det_2(
a,RF ,a,RF) == approx(Gram_det_2(b,RF,b,RF))) and (Gram_det_2(c,RF,c,RF) == approx(
Gram_det_2(d,RF ,d,RF))) and ((((dot(a+b,a+b) == approx (4* dot(a,a)) == approx (4*dot(b,b))))
and ((dot(c+d,c+d) == approx (4* dot(c,c)) == approx (4*dot(d,d))))) or ((Gram_det_2(a+b,RF ,c-
d,RF) == approx (0)) or (not (c == d).all()))))

61

62 def case_8_symmetry(a,b,c,d):
63 return ((dot(a,a) == approx(dot(b,b))) and (dot(c,c) == approx(dot(d,d))) and (

Gram_det_2(a,RF ,a,RF) == approx(Gram_det_2(b,RF,b,RF))) and (Gram_det_2(c,RF,c,RF) ==
approx(Gram_det_2(d,RF,d,RF))) and ((((dot(a+b,a+b) == approx (4*dot(a,a)) == approx (4*dot(b
,b)))) and ((dot(c+d,c+d) == approx (4*dot(c,c)) == approx (4*dot(d,d))))) or ((Gram_det_2(a+
b,RF ,c-d,RF) == approx (0)) or (not (c == d).all()))))

64

65 case_9 = case_8_symmetry(a,c,b,d)
66 case_10 = case_8_symmetry(a,d,b,c)
67

68 case_19 = ((dot(a,a) == approx(dot(b,b)) == approx(dot(c,c)) == approx(dot(d,d))) and (
Gram_det_2(a,RF ,a,RF) == approx(Gram_det_2(b,RF,b,RF)) == approx(Gram_det_2(c,RF,c,RF)) ==
approx(Gram_det_2(d,RF,d,RF))) and approx ((Gram_det_2(a - c,RF,b - d,RF) == 0)))

69

70 def case_19_symmetry(a,b,c,d):
71 return ((dot(a,a) == approx(dot(b,b)) == approx(dot(c,c)) == approx(dot(d,d))) and (

Gram_det_2(a,RF ,a,RF) == approx(Gram_det_2(b,RF,b,RF)) == approx(Gram_det_2(c,RF,c,RF)) ==
approx(Gram_det_2(d,RF,d,RF))) and approx ((Gram_det_2(a - c,RF,b - d,RF) == 0)))

72

73 case_20 = case_19_symmetry(a,b,d,c)
74 case_21 = case_19_symmetry(a,c,b,d)
75 case_22 = case_19_symmetry(a,c,d,b)
76 case_23 = case_19_symmetry(a,d,c,b)
77 case_24 = case_19_symmetry(a,d,b,c)
78

79 return (case_1 or case_2 or case_3 or case_4 or case_5 or case_6 or case_7 or case_8 or
case_9 or case_10

80 or case_19 or case_20 or case_21 or case_22 or case_23 or case_24)
81

82 def construct_state ():
83

84 B = (uniform (-10, 10) * (e1 ^ e2) + uniform(-10, 10) * (e1 ^ e3) + uniform(-10, 10) * (e2 ^
e3)).normal ()

85 R = (e ^ (uniform(0, 2 * pi) * B)).normal ()
86

87 rdm = randint(0, 4)
88

89 if rdm == 0:
90 ma, mb , mc , md = randint(0, 10), randint(0, 10), randint(0, 10), randint(0, 10)
91 a = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
92 b = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
93 c = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
94 d = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
95

96 # Type of non -chiral (checked) (ab)
97 if rdm == 1:
98 ma, mb , mc , md = 1, 1, 2, 3
99 a = e1

100 b = e2
101 c = e3
102 d = (-e3)
103

104 # Type of non -chiral (checked) (ab)(cd)
105 if rdm == 2:
106 ma, mb , mc , md = 1, 1, 2, 2
107 n = uniform(-10, 10)*e1 + uniform(-10, 10)*e2 + uniform (-10, 10)*e3
108 n = n.normal ()
109 a = uniform(-10, 10)*e1 + uniform(-10, 10)*e2 + uniform (-10, 10)*e3
110 b = -n*a*n
111 c = uniform(-10, 10)*e1 + uniform(-10, 10)*e2 + uniform (-10, 10)*e3
112 d = -n*c*n
113

114 # Type of non -chiral (checked) (abc)

46

115 if rdm == 3:
116 ma, mb , mc , md = 1, 1, 1, 3
117 mag = uniform(-10, 10)
118 a = mag*e1 + mag*e2
119 b = mag*e1 - mag*e2
120 c = -mag*e1 + mag*e2
121 d = mag*e1 - mag*e2
122

123 # Type of non -chiral (checked) (abcd)
124 if rdm == 4:
125 ma, mb , mc , md = 1, 1, 1, 1
126 a = R*(-e1 + e3)*~R
127 b = R*(e1 + e2)*~R
128 c = R*(-e1 - e3)*~R
129 d = R*(e1 - e2)*~R
130

131 Ea, Eb , Ec , Ed = energy(ma, a), energy(mb, b), energy(mc, c), energy(md, d)
132

133 M = [ma, mb, mc , md]
134 E = [Ea, Eb, Ec , Ed]
135 S = [a, b, c, d]
136

137 print(rdm)
138

139 return S, E, M
140

141 def permute_with_idx(M, E, idx_to_permute):
142

143 same_mass_with_idx = [idx for idx in range(len(M)) if M[idx] == M[idx_to_permute] and idx !=
idx_to_permute]

144 same_energy_with_idx = [idx for idx in range(len(E)) if E[idx] == approx(E[idx_to_permute])
and idx != idx_to_permute]

145

146 return list(set(same_mass_with_idx) and set(same_energy_with_idx))
147

148 def permutation_boolean(M, E, idx_1 , idx_2):
149

150 if (M[idx_1] == M[idx_2]) and (E[idx_1] == E[idx_2]):
151 return True
152 else:
153 return False
154

155 def chirality_test ():
156

157 chiral_states = []
158 non_chiral_states = []
159

160 S, E, M = construct_state ()
161 a, b, c, d = S[0], S[1], S[2], S[3] # p and q are 0 so we do not carry them around in the S

list
162

163 # These lists hold indices (as they appear in S) of the particles that can be permuted with
a,b,c and d respectively

164 permute_with_a = permute_with_idx(M, E, 0)
165 permute_with_b = permute_with_idx(M, E, 1)
166 permute_with_c = permute_with_idx(M, E, 2)
167 permute_with_d = permute_with_idx(M, E, 3)
168

169 S_parity = parity(S) # Perform parity on the set of momenta
170

171 flag = False # The flag is set to true if the state is non -chiral
172

173 for idx in permute_with_a +[0]: # For every x that can be permuted with a, map x to a and
perform (ax)

174

175 x = S_parity[idx]
176 n = a+x
177 if n == 0: # If a and x are collinear we construct any v perpendicular to a and do a pi

rotation in the plane av

47

178 if a[2] != 0 or a[3] != 0:
179 v = -I*(a^e1) # Cross product a x e1 in geometric algebra , I is the pseudoscalar

I = e1e2e3
180 else:
181 v = -I*(a^e2)
182 R1 = (a^v).normal ()
183 else:
184 R1 = a.normal ()*n.normal ()
185

186 S1 = rotate(S_parity , R1)
187 S2 = swap(S1 , 0, idx) # Performs (ax) where the index 0 corresponds to a in the S list
188

189 # At this point a is fixed to its original state
190

191 # Now we need to fix b in the plane perpendicular to a, if b has no component (a^b==0)
there then we try c

192

193 if a^b != 0: # If b is not collinear to a then it has components in the plane
perpendicular to a

194

195 for idx_plane in permute_with_b + [1]:
196

197 if idx_plane == 0: # Since a is already fixed
198 continue
199

200 # If we have a plane P with its perpendicular being a and we have a vector y,
then the component of y

201 # in the plane P is given in geometric algebra by the rejection y_plane = a*(a^y
)

202

203 b_plane = a*(a^b)
204 y = S2[idx_plane]
205 y_plane = a*(a^y)
206

207 # If y is collinear with a then it has no component in the plane perpendicular
to a, so even if it can

208 # be permuted with b, we cannot map y_plane to b_plane and then swap because
y_plane is 0

209

210 if y_plane == 0:
211 continue
212 else: # Here we map y_plane to b_plane and perform (yb)
213 m = y_plane + b_plane
214 if m == 0: # In this case we need a pi rotation in this plane we are working

in
215 # We construct another vector in this plane with the cross product a x

b_plane
216 w_plane = -I*(a^b_plane)
217 R2 = (w_plane^b_plane).normal ()
218 else:
219 R2 = b_plane.normal ()*m.normal ()
220

221 S3 = rotate(S2, R2) # Map y_plane to b_plane
222 S4 = swap(S3, 1, idx_plane) # Perform (yb)
223

224 if S == S4:
225 flag = True
226

227 if permutation_boolean(M, E, 2, 3): # If we can perform (cd)
228 S5 = swap(S4, 2, 3)
229 if S == S5:
230 flag = True
231

232

233 elif a^c != 0:
234

235 for idx_plane in permute_with_c + [2]:
236

237 # Since a and b are already fixed , b is fixed because we fixed a and to get into

48

this elif we need
238 # b to be collinear with a and hence when we fixed a we automatically fixed b
239 if idx_plane == 0 or idx_plane == 1:
240 continue
241

242 # If we have a plane P with its perpendicular being a and we have a vector y,
then the component of y

243 # in the plane P is given in geometric algebra by the rejection y_plane = a*(a^y
)

244

245 c_plane = a * (a ^ c)
246 y = S2[idx_plane]
247 y_plane = a * (a ^ y)
248

249 # If y is collinear with a then it has no component in the plane perpendicular
to a, so even if it can

250 # be permuted with c, we cannot map y_plane to c_plane and then swap because
y_plane is 0

251

252 if y_plane == 0:
253 continue
254 else: # Here we map y_plane to c_plane and perform (yc)
255 m = y_plane + c_plane
256 if m == 0: # In this case we need a pi rotation in this plane we are

working in
257 # We construct another vector in this plane with the cross product a x

c_plane
258 w_plane = -I * (a ^ c_plane)
259 R2 = (w_plane ^ c_plane).normal ()
260 else:
261 R2 = c_plane.normal () * m.normal ()
262

263 S6 = rotate(S2, R2) # Map y_plane to c_plane
264 S7 = swap(S6, 2, idx_plane) # Perform (yc)
265

266 if S == S7:
267 flag = True
268

269 if permutation_boolean(M, E, 1, 3): # If we can perform (bd)
270 S8 = swap(S7, 1, 3)
271 if S == S8:
272 flag = True
273

274 else:
275 flag = True # If a,b,c are collinear then the state is non -chiral
276

277 if flag:
278 non_chiral_states.append ([S, E])
279 else:
280 chiral_states.append ([S, E])
281

282 return non_chiral_states , chiral_states
283

284 # non_chiral_states_list = []
285 # chiral_states_list = []
286 # for iterations in range (1000):
287 # S, E, M = construct_state ()
288 # non_chiral_states , chiral_states = chirality_test ()
289 # non_chiral_states_list += non_chiral_states
290 # chiral_states_list += chiral_states
291 #
292 # print(len(non_chiral_states_list), len(chiral_states_list))
293 #
294 # non_chiral_evaluation_on_logic_statement = [0, 0]
295 # for non_chiral_state in non_chiral_states_list:
296 # mp, mq = uniform(1, 10), uniform(1, 10)
297 # flag = logic_statement_true_for_non_chiral(non_chiral_state [0], non_chiral_state [1], mp,

mq)
298 # if flag:

49

299 # non_chiral_evaluation_on_logic_statement [0] += 1
300 # else:
301 # non_chiral_evaluation_on_logic_statement [1] += 1
302 #
303 # chiral_evaluation_on_logic_statement = [0, 0]
304 # for chiral_state in chiral_states_list:
305 # mp, mq = uniform(1, 10), uniform(1, 10)
306 # flag = logic_statement_true_for_non_chiral(chiral_state [0], chiral_state [1], mp, mq)
307 # if flag:
308 # chiral_evaluation_on_logic_statement [0] += 1
309 # else:
310 # chiral_evaluation_on_logic_statement [1] += 1
311 #
312 # x = [’True ’, ’False ’]
313 # height_non_chiral = [non_chiral_evaluation_on_logic_statement [0],

non_chiral_evaluation_on_logic_statement [1]]
314 # height_chiral = [chiral_evaluation_on_logic_statement [0], chiral_evaluation_on_logic_statement

[1]]
315 #
316 # plt.bar(x, height_non_chiral , color = ’k’, width = 0.1)
317 # plt.title(’Non -chiral states evaluated on the logic statement\nwhich is true iff the input is

non -chiral ’)
318 # plt.ylabel(’Frequency ’)
319 # #plt.show()
320 # #plt.savefig(’non_chiral_non_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)
321 #
322 # plt.bar(x, height_chiral , color = ’k’, width = 0.1)
323 # plt.title(’Chiral states evaluated on the logic statement\nwhich is true iff the input is non -

chiral ’)
324 # plt.ylabel(’Frequency ’)
325 # #plt.show()
326 # plt.savefig(’chiral_non_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)

Code file: non collision massless algorithm.py

1 import time
2 from numpy import pi, cos , sin , e, tan , arctan
3 from clifford.g3 import blades
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import numpy as np
7 from random import uniform , seed , randint
8 from sympy import LeviCivita as eps
9 from main import parity , rotate , energy , epsilon , Gram_det_2

10 from pytest import approx
11

12 e1, e2 , e3 = blades[’e1’], blades[’e2’], blades[’e3’]
13 I = e1^e2^e3
14

15 def dot(a,b):
16 dot = a[1]*b[1] + a[2]*b[2] + a[3]*b[3]
17 return dot
18

19 def multivec_to_vec(a):
20 return np.array([a[1], a[2], a[3]])
21

22 def swap(S,idx_1 ,idx_2):
23

24 tmp = S[idx_1]
25 S[idx_1] = S[idx_2]
26 S[idx_2] = tmp
27

28 return S
29

30 def sym_2_Gram_det(a,b):
31 return Gram_det_2(a,b,a,b)
32

33 def logic_statement_true_for_non_chiral(S, E):
34

50

35 p = multivec_to_vec(S[0])
36 p = np.insert(p, 0, E[0])
37 q = multivec_to_vec(S[1])
38 q = np.insert(q, 0, E[1])
39 a = multivec_to_vec(S[2])
40 a = np.insert(a, 0, E[2])
41 b = multivec_to_vec(S[3])
42 b = np.insert(b, 0, E[3])
43 c = multivec_to_vec(S[4])
44 c = np.insert(c, 0, E[4])
45 d = multivec_to_vec(S[5])
46 d = np.insert(d, 0, E[5])
47 RF = a + b + c + d
48

49 case_1 = (epsilon(a,b,p+q,RF) == epsilon(a,c,p+q,RF) == epsilon(a,d,p+q,RF) == epsilon(b,c,p
+q,RF) == epsilon(b,d,p+q,RF) == epsilon(c,d,p+q,RF) == 0)

50

51 case_2 = ((dot(a,a) == approx(dot(b,b))) and (Gram_det_2(a-b,RF ,p+q,RF) == approx (0)) and (
sym_2_Gram_det(a,RF) == approx(sym_2_Gram_det(b,RF))))

52

53 def case_2_symmetry(a,b,c,d):
54 return ((dot(a,a) == dot(b,b)) and (Gram_det_2(a-b,RF,p+q,RF) == 0) and (sym_2_Gram_det(

a,RF) == sym_2_Gram_det(b,RF)))
55

56 case_3 = case_2_symmetry(a, c, b, d)
57 case_4 = case_2_symmetry(a, d, c, b)
58 case_5 = case_2_symmetry(b, c, a, d)
59 case_6 = case_2_symmetry(b, d, a, c)
60 case_7 = case_2_symmetry(c, d, a, b)
61

62 case_8 = ((dot(a,a) == approx(dot(b,b))) and (Gram_det_2(a-b,RF ,p+q,RF) == approx (0)) and (
sym_2_Gram_det(a,RF) == approx(sym_2_Gram_det(b,RF))) and (dot(c,c) == approx(dot(d,d)))
and (Gram_det_2(c-d,RF ,p+q,RF) == approx (0)) and (sym_2_Gram_det(c,RF) == approx(
sym_2_Gram_det(d,RF))) and (Gram_det_2(a-b,RF,c+d,RF) == approx (0)))

63

64 def case_8_symmetry(a,b,c,d):
65 return ((dot(a,a) == approx(dot(b,b))) and (Gram_det_2(a-b,RF,p+q,RF) == approx (0)) and

(sym_2_Gram_det(a,RF) == approx(sym_2_Gram_det(b,RF))) and (dot(c,c) == approx(dot(d,d)))
and (Gram_det_2(c-d,RF ,p+q,RF) == approx (0)) and (sym_2_Gram_det(c,RF) == approx(
sym_2_Gram_det(d,RF))) and (Gram_det_2(a-b,RF,c+d,RF) == approx (0)))

66

67 case_9 = case_8_symmetry(a,c,b,d)
68 case_10 = case_8_symmetry(a,d,b,c)
69

70 return (case_1 or case_2 or case_3 or case_4 or case_5 or case_6 or case_7 or case_8 or
case_9 or case_10)

71

72 def permute_with_idx(M, E, idx_to_permute):
73

74 same_mass_with_idx = [idx for idx in range(len(M)) if M[idx] == M[idx_to_permute] and idx !=
idx_to_permute and idx != 0 and idx != 1]

75 same_energy_with_idx = [idx for idx in range(len(E)) if E[idx] == approx(E[idx_to_permute])
and idx != idx_to_permute]

76

77 return list(set(same_mass_with_idx) and set(same_energy_with_idx))
78

79 def permutation_boolean(M, E, idx_1 , idx_2):
80

81 if (M[idx_1] == M[idx_2]) and (E[idx_1] == E[idx_2]):
82 return True
83 else:
84 return False
85

86 def construct_state ():
87

88 rdm = randint(0, 0)
89

90 if rdm == 0:
91 mp, mq , ma , mb, mc, md = 0, 0, randint(0, 10), randint(0, 10), randint(0, 10), randint

51

(0, 10)
92 p = uniform(-10, 10)*e3
93 q = uniform(-10, 10)*e3
94 a = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
95 b = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
96 c = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
97 d = - a - b - c
98

99 if rdm == 1:
100 # non chiral
101 mp, mq , ma , mb, mc, md = 0, 0, randint(0, 10), randint(0, 10), randint(0, 10), randint

(0, 10)
102 p = uniform(-10, 10)*e3
103 q = uniform(-10, 10)*e3
104 a = uniform(-10, 10) * e1 + uniform(-10, 10) * e3
105 b = uniform(-10, 10) * e1 + uniform(-10, 10) * e3
106 c = uniform(-10, 10) * e1 + uniform(-10, 10) * e3
107 d = - a - b - c
108

109 if rdm == 2:
110 # (ab) non chiral
111 mp, mq , ma , mb, mc, md = 0, 0, 1, 1, randint(0, 10), randint(0, 10)
112 p = uniform(-10, 10)*e3
113 q = uniform(-10, 10)*e3
114 a = 4 * e1 + 5 * e2 + 3 * e3
115 B = (uniform(-10, 10) * (e1 ^ e2) + uniform(-10, 10) * (e1 ^ e3) + uniform(-10, 10) * (

e2 ^ e3)).normal ()
116 R = e ^ (uniform(0, 2 * pi) * B)
117 b = -5 * e1 + 4 * e2 + 3 * e3
118 c = a+b
119 d = -c
120

121 if rdm == 3:
122 # (ab)(cd) non chiral
123 mp, mq , ma , mb, mc, md = 0, 0, 1, 1, 2, 2
124 p = uniform(-10, 10)*e3
125 q = uniform(-10, 10)*e3
126 angle_a = uniform(0,pi/5)
127 angle_c = uniform(0, pi / 5)
128 a = cos(angle_a)*e1 + sin(angle_a)*e2 + uniform(-10, 10)*e3
129 b = sin(angle_a)*e1 + cos(angle_a)*e2 + a[3]*e3
130 c = -cos(angle_c)*e1 - sin(angle_c)*e2 - uniform (-10, 10)*e3
131 d = -sin(angle_c)*e1 - cos(angle_c)*e2 + c[3]*e3
132

133 Ep, Eq , Ea , Eb, Ec, Ed = energy(mp , p), energy(mq, q), energy(ma, a), energy(mb, b), energy(
mc, c), energy(md, d)

134

135 M = [mp, mq, ma , mb , mc, md]
136 E = [Ep, Eq, Ea , Eb , Ec, Ed]
137 S = [p, q, a, b, c, d]
138

139 return S, E, M
140

141 def chirality_test ():
142

143 chiral_states = []
144 non_chiral_states = []
145

146 S, E, M = construct_state ()
147 p, q, a, b, c, d = S[0], S[1], S[2], S[3], S[4], S[5]
148

149 # These lists hold indices (as they appear in S) of the particles that can be permuted with
a,b,c and d respectively

150 permute_with_a = permute_with_idx(M, E, 2)
151 permute_with_b = permute_with_idx(M, E, 3)
152 permute_with_c = permute_with_idx(M, E, 4)
153 permute_with_d = permute_with_idx(M, E, 5)
154

155 S_parity = parity(S) # Perform parity on the set of momenta

52

156

157 flag = False # The flag is set to true if the state is non -chiral
158

159 R1 = e1*e3
160 S1 = rotate(S_parity , R1) # Now p and q are fixed back to their original state
161

162 if (a[1] != 0) or (a[2] != 0): # If a has components in the 1-2 plane
163

164 for idx in permute_with_a + [2]: # For every x that can be permuted with a, map x to a
and perform (ax)

165

166 x = S1[idx]
167 x_12 = x - x[3]*e3
168 a_12 = a - a[3]*e3
169

170 n = a_12 + x_12
171

172 if n == 0:
173

174 R2 = e1*e2
175

176 else:
177

178 R2 = a_12.normal ()*n.normal ()
179

180 S2 = rotate(S1, R2)
181 S3 = swap(S2 , 2, idx)
182

183 if S == S3:
184 flag = True
185

186 # The degrees of freedom left now that a is fixed to its original state are
permutations between b,c,d

187

188 flag_tmp_1 = permutation_boolean(M, E, 3, 4) # This checks if (bc) is available
189

190 if flag_tmp_1:
191 S4 = swap(S3, 3, 4)
192 if S == S4:
193 flag = True
194

195 flag_tmp_2 = permutation_boolean(M, E, 3, 5) # This checks if (bd) is available
196

197 if flag_tmp_2:
198 S5 = swap(S3, 3, 5)
199 if S == S5:
200 flag = True
201

202 flag_tmp_3 = permutation_boolean(M, E, 4, 5) # If we have (cd)
203

204 if flag_tmp_3:
205 S6 = swap(S3, 4, 5)
206 if S == S6:
207 flag = True
208

209 if flag_tmp_1 and flag_tmp_2: # If we have (bc) and (bd) then we have (bcd)
210 # The following achieves b->c->d->b
211 S7 = swap(S3, 3, 4) # (bc)
212 S8 = swap(S7, 3, 5) # (bd), here in the 3 index lies c but we name it b still ,

notice we use S6
213 if S == S8:
214 flag = True
215

216 # The following achieves b->d->c->b
217 S9 = swap(S3, 3, 5) # (bd)
218 S10 = swap(S9 , 3, 4) # (bc), here in the 3 index lies d but we name it b still ,

notice we use S7
219 if S == S10:
220 flag = True

53

221

222 elif (b[1] != 0) or (b[2] != 0): # To get here we asserted that a is collinear with e3 so
fixed by R1

223

224 for idx in permute_with_b + [3]: # For every x that can be permuted with b, map x to b
and perform (bx)

225

226 if idx == 2: # We do not want permutations with a since a is fixed by R1 when
collinear with e3

227 continue
228

229 x = S1[idx]
230 x_12 = x - x[3] * e3
231 b_12 = b - b[3] * e3
232

233 n = b_12 + x_12
234

235 if n == 0:
236

237 R2 = e1 * e2
238

239 else:
240

241 R2 = b_12.normal () * n.normal ()
242

243 S2 = rotate(S1, R2)
244 S3 = swap(S2 , 3, idx)
245

246 if S == S3:
247 flag = True
248

249 # The degrees of freedom left now that b is fixed to its original state are
permutations between c,d

250

251 flag_tmp_1 = permutation_boolean(M, E, 4, 5) # This checks if (cd) is available
252

253 if flag_tmp_1:
254 S4 = swap(S3, 4, 5)
255 if S == S4:
256 flag = True
257

258 elif (c[1] != 0) or (c[2] != 0): # To get here we asserted that a,b are collinear with e3 so
fixed by R1

259

260 for idx in permute_with_c + [4]: # For every x that can be permuted with c, map x to c
and perform (cx)

261

262 if (idx == 2) or (idx == 3): # We do not want permutations with a,b since a,b are
fixed by R1

263 continue
264

265 x = S1[idx]
266 x_12 = x - x[3] * e3
267 c_12 = c - c[3] * e3
268

269 n = c_12 + x_12
270

271 if n == 0:
272

273 R2 = e1 * e2
274

275 else:
276

277 R2 = c_12.normal () * n.normal ()
278

279 S2 = rotate(S1, R2)
280 S3 = swap(S2 , 4, idx)
281

282 if S == S3:

54

283 flag = True
284

285 if flag:
286 non_chiral_states.append ([S, E])
287 else:
288 chiral_states.append ([S, E])
289

290 return non_chiral_states , chiral_states
291

292 # non_chiral_states_list = []
293 # chiral_states_list = []
294 # for iterations in range (1000):
295 # S, E, M = construct_state ()
296 # non_chiral_states , chiral_states = chirality_test ()
297 # non_chiral_states_list += non_chiral_states
298 # chiral_states_list += chiral_states
299 #
300 # print(len(non_chiral_states_list), len(chiral_states_list))
301 #
302 # non_chiral_evaluation_on_logic_statement = [0, 0]
303 # for non_chiral_state in non_chiral_states_list:
304 # flag = logic_statement_true_for_non_chiral(non_chiral_state [0], non_chiral_state [1])
305 # if flag:
306 # non_chiral_evaluation_on_logic_statement [0] += 1
307 # else:
308 # non_chiral_evaluation_on_logic_statement [1] += 1
309 #
310 # chiral_evaluation_on_logic_statement = [0, 0]
311 # for chiral_state in chiral_states_list:
312 # flag = logic_statement_true_for_non_chiral(chiral_state [0], chiral_state [1])
313 # if flag:
314 # chiral_evaluation_on_logic_statement [0] += 1
315 # else:
316 # chiral_evaluation_on_logic_statement [1] += 1
317 #
318 # x = [’True ’, ’False ’]
319 # height_non_chiral = [non_chiral_evaluation_on_logic_statement [0],

non_chiral_evaluation_on_logic_statement [1]]
320 # height_chiral = [chiral_evaluation_on_logic_statement [0], chiral_evaluation_on_logic_statement

[1]]
321 #
322 # plt.bar(x, height_non_chiral , color = ’k’, width = 0.1)
323 # plt.title(’Non -chiral states evaluated on the logic statement\nwhich is true iff the input is

non -chiral ’)
324 # plt.ylabel(’Frequency ’)
325 # #plt.show()
326 # plt.savefig(’non_chiral_non_collision_massless_logic_statement_test.pdf ’, bbox_inches=’tight ’)
327 #
328 # plt.bar(x, height_chiral , color = ’k’, width = 0.1)
329 # plt.title(’Chiral states evaluated on the logic statement\nwhich is true iff the input is non -

chiral ’)
330 # plt.ylabel(’Frequency ’)
331 # plt.show()
332 # plt.savefig(’chiral_non_collision_massless_logic_statement_test.pdf ’, bbox_inches=’tight ’)
333

334 print(chirality_test ())

Code file: non collision zeros algorithm.py

1 import time
2 from numpy import pi, cos , sin , e, tan , arctan
3 from clifford.g3 import blades
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import numpy as np
7 from random import uniform , seed , randint
8 from sympy import LeviCivita as eps
9 from main import parity , rotate , energy , epsilon , Gram_det_2

10 from pytest import approx

55

11

12 # Works only for a,b,c,d != 0 (it is very unlikely that any one will be randomly generated in
momentum 0)

13

14 e1, e2 , e3 = blades[’e1’], blades[’e2’], blades[’e3’]
15 I = e1^e2^e3
16

17 def dot(a,b):
18 dot = a[1]*b[1] + a[2]*b[2] + a[3]*b[3]
19 return dot
20

21 def multivec_to_vec(a):
22 return np.array([a[1], a[2], a[3]])
23

24 def swap(S,idx_1 ,idx_2):
25

26 tmp = S[idx_1]
27 S[idx_1] = S[idx_2]
28 S[idx_2] = tmp
29

30 return S
31

32 def sym_2_Gram_det(a,b):
33 return Gram_det_2(a,b,a,b)
34

35 def logic_statement_true_for_non_chiral(S, E):
36

37 a = multivec_to_vec(S[0])
38 a = np.insert(a, 0, E[0])
39 b = multivec_to_vec(S[1])
40 b = np.insert(b, 0, E[1])
41 c = multivec_to_vec(S[2])
42 c = np.insert(c, 0, E[2])
43 d = multivec_to_vec(S[3])
44 d = np.insert(d, 0, E[3])
45 RF = a+b+c+d
46

47 case_1 = (Gram_det_2(a,RF,a,RF) == approx (0))
48

49 case_2 = (dot(a+b+c+d, a+b+c+d) == approx (0))
50

51 case_3 = (epsilon(b,c,d,RF) == approx (0))
52

53 case_4 = ((dot(b,b) == dot(c,c)) and (Gram_det_2(b-c,RF,a,RF) == 0) and (sym_2_Gram_det(b,RF
) == sym_2_Gram_det(c,RF)))

54

55 case_5 = ((dot(c,c) == dot(d,d)) and (Gram_det_2(c-d,RF,a,RF) == 0) and (sym_2_Gram_det(c,RF
) == sym_2_Gram_det(d,RF)))

56

57 case_6 = ((dot(d,d) == dot(b,b)) and (Gram_det_2(d-b,RF,a,RF) == 0) and (sym_2_Gram_det(d,RF
) == sym_2_Gram_det(b,RF)))

58

59 return (case_1 or case_2 or case_3 or case_4 or case_5 or case_6)
60

61 def permute_with_idx(M, E, idx_to_permute):
62

63 same_mass_with_idx = [idx for idx in range(len(M)) if M[idx] == M[idx_to_permute] and idx !=
idx_to_permute and idx != 0 and idx != 1]

64 same_energy_with_idx = [idx for idx in range(len(E)) if E[idx] == approx(E[idx_to_permute])
and idx != idx_to_permute]

65

66 return list(set(same_mass_with_idx) and set(same_energy_with_idx))
67

68 def permutation_boolean(M, E, idx_1 , idx_2):
69

70 if (M[idx_1] == M[idx_2]) and (E[idx_1] == E[idx_2]):
71 return True
72 else:
73 return False

56

74

75 def construct_state ():
76

77 rdm = randint(0, 2)
78

79 if rdm == 0:
80 ma, mb , mc , md = randint(0, 10), randint(0, 10), randint(0, 10), randint(0, 10)
81 a = uniform(-10, 10) * e3
82 b = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
83 c = uniform(-10, 10) * e1 + uniform(-10, 10) * e2 + uniform (-10, 10) * e3
84 d = -a-b-c
85

86 if rdm == 1:
87 # This is the no permutation non -chiral case
88 ma, mb , mc , md = randint(0, 10), randint(0, 10), randint(0, 10), randint(0, 10)
89 a = uniform(-10, 10) * e3
90 b = e1 + e2 + uniform (-10, 10)*e3
91 c = -e1 - e2 + uniform(-10, 10)*e3
92 d = -a-b-c
93

94 if rdm == 2:
95 # Permute 2 non chiral case
96 ma, mb , mc , md = 1, 1, 1, 1
97 a = uniform(-10, 10) * e3
98 angle = uniform(0, pi / 5)
99 b = sin(angle)*e1 + cos(angle)*e2 + uniform(-10, 10)*e3

100 c = cos(angle)*e1 + sin(angle)*e2 + b[3]*e3
101 d = -a-b-c
102

103 Ea, Eb , Ec , Ed = energy(ma, a), energy(mb, b), energy(mc, c), energy(md, d)
104

105 M = [ma, mb, mc , md]
106 E = [Ea, Eb, Ec , Ed]
107 S = [a, b, c, d]
108

109 return S, E, M
110

111 def chirality_test ():
112

113 chiral_states = []
114 non_chiral_states = []
115

116 S, E, M = construct_state ()
117 a, b, c, d = S[0], S[1], S[2], S[3]
118

119 permute_with_b = permute_with_idx(M, E, 1)
120 permute_with_c = permute_with_idx(M, E, 2)
121

122 S_parity = parity(S) # Perform parity on the set of momenta
123

124 flag = False # The flag is set to true if the state is non -chiral
125

126 R1 = e1 * e3
127 S1 = rotate(S_parity , R1) # Now a is fixed back to their original state
128

129 if (b[1] != 0) or (b[2] != 0): # if b has components in the 1-2 plane
130

131 for idx in permute_with_b + [1]:
132

133 if idx == 0:
134 continue
135

136 x = S1[idx]
137 x_12 = x - x[3]*e3
138 b_12 = b - b[3]*e3
139

140 n = b_12 + x_12
141

142 if n == 0:

57

143

144 R2 = e1*e2
145

146 else:
147

148 R2 = b_12.normal ()*n.normal ()
149

150 S2 = rotate(S1, R2)
151 S3 = swap(S2 , 1, idx) # Index 1 corresponds to b
152

153 if S == S3:
154 flag = True
155

156 if permutation_boolean(M, E, 2, 3): # If we can permute (cd)
157 S4 = swap(S3, 2, 3)
158 if S == S4:
159 flag = True
160

161 elif (c[1] != 0) or (c[2] != 0):
162

163 for idx in permute_with_c + [2]:
164

165 if idx == 0 or idx == 1:
166 continue
167

168 x = S1[idx]
169 x_12 = x - x[3] * e3
170 c_12 = c - c[3] * e3
171

172 n = c_12 + x_12
173

174 if n == 0:
175

176 R2 = e1 * e2
177

178 else:
179

180 R2 = c_12.normal () * n.normal ()
181

182 S2 = rotate(S1, R2)
183 S3 = swap(S2 , 2, idx) # Index 2 corresponds to c
184

185 if S == S3:
186 flag = True
187

188 if flag:
189 non_chiral_states.append ([S, E])
190 else:
191 chiral_states.append ([S, E])
192

193 return non_chiral_states , chiral_states
194

195 # non_chiral_states_list = []
196 # chiral_states_list = []
197 # for iterations in range (1000):
198 # S, E, M = construct_state ()
199 # non_chiral_states , chiral_states = chirality_test ()
200 # non_chiral_states_list += non_chiral_states
201 # chiral_states_list += chiral_states
202 #
203 # print(len(non_chiral_states_list), len(chiral_states_list))
204 #
205 # non_chiral_evaluation_on_logic_statement = [0, 0]
206 # for non_chiral_state in non_chiral_states_list:
207 # mp, mq = uniform(1, 10), uniform(1, 10)
208 # flag = logic_statement_true_for_non_chiral(non_chiral_state [0], non_chiral_state [1])
209 # if flag:
210 # non_chiral_evaluation_on_logic_statement [0] += 1
211 # else:

58

212 # non_chiral_evaluation_on_logic_statement [1] += 1
213 #
214 # chiral_evaluation_on_logic_statement = [0, 0]
215 # for chiral_state in chiral_states_list:
216 # mp, mq = uniform(1, 10), uniform(1, 10)
217 # flag = logic_statement_true_for_non_chiral(chiral_state [0], chiral_state [1])
218 # if flag:
219 # chiral_evaluation_on_logic_statement [0] += 1
220 # else:
221 # chiral_evaluation_on_logic_statement [1] += 1
222 #
223 # x = [’True ’, ’False ’]
224 # height_non_chiral = [non_chiral_evaluation_on_logic_statement [0],

non_chiral_evaluation_on_logic_statement [1]]
225 # height_chiral = [chiral_evaluation_on_logic_statement [0], chiral_evaluation_on_logic_statement

[1]]
226 #
227 # plt.bar(x, height_non_chiral , color = ’k’, width = 0.1)
228 # plt.title(’Non -chiral states evaluated on the logic statement\nwhich is true iff the input is

non -chiral ’)
229 # plt.ylabel(’Frequency ’)
230 # #plt.show()
231 # plt.savefig(’non_chiral_non_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)
232 #
233 # plt.bar(x, height_chiral , color = ’k’, width = 0.1)
234 # plt.title(’Chiral states evaluated on the logic statement\nwhich is true iff the input is non -

chiral ’)
235 # plt.ylabel(’Frequency ’)
236 # plt.show()
237 # plt.savefig(’chiral_non_collision_logic_statement_test.pdf ’, bbox_inches=’tight ’)
238

239 print(chirality_test ())

59

	Introduction
	Theory
	Method
	Results
	Computational test of results using Geometric Algebra
	Geometric perspective
	Conclusion
	Acknowledgements
	From events to event variables
	Proofs for algorithms
	Notation
	Case 2 calculation for collision events
	Code

