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Abstract

We explore data-driven methods of detecting parity violation at particle colliders, specifically for

LHC-like events where the initial states do not have a defined parity. We focus on the practical

use of a predefined set of parity variables, which are pseudoscalars calculated on a collision

event’s mother and daughter particle 4-momenta. These variables claim to determine whether

the physics in a given process is chiral, even if the underlying theory is not known. We first

evaluate the usefulness of the set of parity variables on a toy model of physics designed to violate

parity through a single parameter and find that the variables are indeed able to flag chirality.

We also attempt to use the parity variables to explore the feasibility of detecting BSM physics

in proton-proton collisions at the LHC. We introduce the Lorentz-violating minimal Standard

Model Extension (mSME) and show that it has the capabilities to violate parity in the quark

sector. We then test the parity variables on two mSME-motivated collider simulations, but do

not find a convincing link between the mSME couplings and an observable signal in the parity

variables.

2



Acknowledgments

The writer would particularly like to thank Dr. Christopher Lester for his mentorship over the

course of the year. The writer also thanks Olivier Mattelaer for his help with deciphering the

depths of the MadGraph codebase, as well as the Cambridge ATLAS group for their general

advice.

3



Contents

1 Symmetries, the Standard Model, and beyond 5

1.1 The Standard Model Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A brief overview of the parity variables 10

2.1 Explicit parity violation: The “Two spoons and a fork” model . . . . . . . . . . . 12

3 The mSME Quark Sector 14

3.1 The Standard Model Quark Sector . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The mSME Quark Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Quark-quark-gluon interactions in the mSME . . . . . . . . . . . . . . . . . . . . 17

3.3.1 The mSME as an effective momentum transformation . . . . . . . . . . . 18

4 Two mSME Simulations 19

4.1 Simulation I: The toy generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Event generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Simulation II: Single diagram mSME physics . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Reproducibility studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusions and Further Studies 34

A Deriving a manifestly parity-violating mSME Lagrangian 37

4



Chapter 1

Symmetries, the Standard Model,

and beyond

“Come on, let’s celebrate. We’ve discovered a great principle of nature: The

laws of physics are invariant across space and time. All the physical laws of

human history, from Archimedes’ principle to string theory, and all the

scientific discoveries and intellectual fruits of our species are the by-products

of this great law. Compared to us two theoreticians, Einstein and Hawking are

mere applied engineers.”

– Ding Yi, from The Three Body Problem (by Liu Cixin)

The elegance of science derives from symmetries. It is possible to write down the unique

equations of motion for a ball being thrown into the air, no matter what continent the ball is

being thrown on, whether it’s being aimed at Cambridge or Glasgow, or whether it’s thrown on

a Tuesday or a Friday – the laws of physics don’t depend on these things.1

Our best guesses at the laws of physics are encoded in the Standard Model Lagrangian.

From this Lagrangian, we can write down the equations of motion for any particle or process

in the quantum realm. The Standard Model encompasses all non-gravitational interactions

between the 17 fundamental particles that define the tangible universe. We are extraordinarily

lucky to have one such Lagrangian that is valid at all points in space and time. It is worth

emphasizing, for just a moment, that this didn’t have to be the case. Imagine a universe where

the physical laws of motion were dependent on where and when a given experiment was done!

To this day, all experiments have shown that the laws of the universe are invariant with

respect to displacements in direction and velocity. These continuous symmetries are known

as Lorentz symmetries; their articulation in 1905 revolutionized all domains of physics, and

1This analogy works better if the reader is kind enough to ignore the Coriolis force, air resistance, etc...
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Lorentz invariance was paramount to the construction the Standard Model.

However, important symmetries in physics do not have to be continuous. In the 1950’s, the

idea of CPT invariance came to prominence as a possible trait of the Standard Model. CPT

invariance refers to a more fundamental set of three discrete symmetries that may be conserved.

The charge conjugation operator (Ĉ) flips the sign of all quantum numbers, effectively replacing

particles with antiparticles; the parity operator (P̂ ) operator inverts the signs of all spatial

directions, exchanging between right- and left-handedness; and the time reversal operator (T̂ )

sends the flow of time in the reverse direction.

Given a physical process that is allowed in the framework of the Standard Model, CPT

invariance states that the physical process given by operating on the original one with Ĉ and

P̂ and T̂ will produce another physical process that is allowed in the Standard Model. As an

example, we can consider the allowed process of a pion π+ decaying to an antimuon µ+ and a

neutrino ν. To be allowed in the Standard Model, the spin of π+ must be zero, the spin of µ+

must be right-handed, and the spin of ν must be left-handed. We will write this decay as

π+0 → µ+R νL (1.1)

Applying Ĉ to this decay process gives us

π−0 → µ−R ν̄L (1.2)

as all particles flip to their antiparticle parallels (note that this process would be forbidden as

it produces a left-handed antineutrino); applying P̂ gives us

π−0 → µ−L ν̄R (1.3)

as particle handedness reverses (producing an allowed process of antipion decay); applying T̂

gives us

µ−L ν̄R → π−0 . (1.4)

We have derived the production of a pion!

But it would be too easy (and much less interesting) if the story ended there. CPT symmetry

is perhaps unsatisfying in that it is only the joint ĈP̂ T̂ operator that is guaranteed to preserve

allowability of a Standard Model process. There is no such requirement on the individual

operators: in fact, we know that parity is violated in weak interactions from experiments with
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Cobalt-60 (first documented in in Ref. [1]), and CP violation has been seen time and time again

in the Kaon sector (first in Ref. [2]).

But the problem is even worse than that. There is a slew of evidence that the Standard

Model is incomplete: neutrino oscillations imply that the particles are massive, dark matter

can not be explained within the Standard Model, and most recently, experimental results from

the LHCb called lepton flavour universality into question [3]. Perhaps our desire to craft an

all-encompassing theory of physics that was perfectly symmetric has set us on the wrong path!

We need a new theory of physics that can account for these experimental findings. And it is

not unreasonable to consider new theories that allow for CPT violation: recent studies have

searched for such experimental signatures in all sectors, such as in neutrino oscillations [4, 5],

muon magnetic moment measurements [6], positronium emissions [7, 8], quark-antiquark mass

differences [9], kaon decays [10, 11], and observations of high-redshift galaxies [12].

1.1 The Standard Model Extension

Before delving into BSM hypotheses, it is useful to briefly consider why the Standard Model

should conserve CPT in the first place. This property routes back to the CPT Theorem, proved

in 1954 by Luders and Pauli [13, 14]. Colloquially, the theorem states that “any Lorentz-

invariant field theory describing point particles must be CPT invariant” [15]. We know that

the Standard Model was constructed to be Lorentz-invariant, and Quantum Field Theory is

constructed to describe point particles, so CPT conservation follows.

A sort of converse to this theorem is demonstrated in one new class of theories of physics. The

Standard Model Extension (SME) was proposed in 1998 by Don Colladay and Alan Kostelecký

in Ref. [16] as the most general extension to the Standard Model with a mechanism for Lorentz

violation2; with that property comes the capacity to break CPT invariance. The mathematical

formulation of the SME itself is simple: the theory consists of a set of scalars that should be

added to the Standard Model Lagrangian of all orders, each term associated with a Lorentz-

violating coupling. We will focus on the minimal Standard Model Extension (mSME) which

includes only renormalizable terms (i.e. those with a mass dimension of four of less).

As an introduction to the mSME, we can consider the lepton sector. The Standard Model

Lagrangian for leptons contains the terms

2The mathematical framework behind spontaneous-CPT-violating models of physics was articulated two years
earlier by Colladay and Kostelecký in Ref. [17].

7



LSMlepton ⊃
1

2
iLAγ

µ
↔
DµLA +

1

2
iRAγ

µ
↔
DµRA. (1.5)

To add in mSME physics, we need to consider CPT-even and CPT-odd terms:

LmSME, CPT-even
lepton ⊃1

2
i(cL)µνABLAγ

µ
↔
DνLA +

1

2
i(cR)µνABRAγ

µ
↔
DµRA. (1.6)

and

LmSME, CPT-odd
lepton ⊃− (aL)µABLAγ

µLA − (aR)µνABRAγ
µRA. (1.7)

These mSME additions contain couplings with Lorentz indices (c(L,R))µνAB and (a(L,R))µAB,

which represent background tensors that permeate all of spacetime. Note that the full mSME

Lagrangian terms are scalars, meaning that the universe as a whole does not break Lorentz

symmetry: physical processes, when transformed with the background tensors, conserve this

symmetry. This condition is necessary to have the mSME be compatible with General Relativity.

However, when scientists on Earth run experiments, they do so with respect to the SME

background tensors. Any time, space, angle, or Lorentz transformation of an experimentalist

and his apparatus means a transformation into a new background tensor value, leading to new

apparent physics; to the experimentalist, Lorentz symmetry would appear to be violated3.

Current experimental limits on the values of these background tensors in all domains of the

Standard Model are documented in Ref. [18]. Searches for limits on these couplings span nearly

all domains of physics, from heavy-atom interferometry to torsion pendulums to observations

of binary pulsars.

For the remainder of this report, we will not make use of the full CPT violation afforded

by the mSME but instead narrow ourselves to searches for parity violation. This choice is

motivated by a desire to explore the utility of a set of parity variables (first presented in Ref. [19])

formulated for use on hadron collisions. This amounts to a search for nonstandard sources of

parity violation at the LHC4. In Chap. 2, we will describe how we might use this set of variables

3In the context of the SME, we would say that observer Lorentz symmetry is conserved, while particle Lorentz
symmetry is broken.

4It can be argued that a study of parity violation could be more easily done on lepton collisions (which have
cleaner initial-state parity), perhaps with LEP data. There are three reasons to not do so. The first is that one of
the motivations for constructing the parity variables was to gauge parity violation in “messy” hadron collisions
where the parity of the initial state is not known. This is reiterated in Chap. 2. The second is that the COM
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to flag for the parity violating signals at the LHC we would expect to see from mSME physics

effects. The variables’ utility is tested on the “Two spoons and a fork” (Sp2F) model. The

parity variables and the Sp2F model derives from former work of the project supervisor. The

coding of the Sp2F event generator and the creation of all plots in Chap. 2 are the work of the

student.

In Chap. 3, we will delve into the mathematics of the quark-sector mSME and derive Feyn-

man rules for new parity-violating processes. All mathematical derivations are the work of the

student.

In Chap. 4, we will use these Feynman rules to simulate proton-proton collisions with mSME

physics effects and gauge the types of BSM experimental signals we might expect to see in the

parity variables. The coding of the event generator used in Chap. 4.1 and the determination

of the structure of the associated matrix element (given in Eq. (4.1)) is the joint work of the

supervisor and student. The coding of the event generator used in Chap. 4.2 is the work of the

student. The determination of which areas of the cµν and (cQ,U,D)µν matrices coupling spaces

to scan, as well as all subsequent analysis, represents the ideas of the student. All plots in

Chap. 4 are done by the student.

In Chap. 5, we will discuss the limitations of these toy models and provide avenues for

further studies on the parity variables.

energy of the LHC is two orders of magnitude higher than that of the LEP (∼ 0.1 TeV, compared with ∼ 10
TeV), which allows for a search for parity violation at a previously untested energy scale. The third reason is
that the author is affiliated with the ATLAS group at Cambridge, which is a LHC experiment.
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Chapter 2

A brief overview of the parity

variables

We are interested in determining whether the physics given by the minimal Standard Model

Extension is chiral, or whether it is invariant under parity inversion. We are primarily interested

in collisions at the LHC (proton-proton collisions). Gauging the parity of hadron collisions is

more complex than doing so for fermion collisions (e.x. in electron-positron colliders) as the

initial parity of a hadron collision’s mother particles cannot be known (protons, being composite

particles, can not be in a spin eigenstate). It is therefore desirable to have an operational flag

for parity in hadron collisions, or an observable calculated on the collision products’ 4-momenta

that will alert us to a parity violating process.

The solution to this problem lies in a complete set of parity variables, denoted as Vi, defined

in Ref. [19]. The authors of this paper show that for a 2 → 2 collision process1, one can

construct a set of 3 pseudoscalars that covers the collision space. These variables are complex

algebraic functions of the 4-momenta of the mother and daughter particles for a given collision.

Concretely, the variables are given by

V1 = εabpqg
a−b
p−q

V2 = εabpq<[(∆m2
a,b + iu1g

a−b
a+b)(∆m

2
p,q + iu2g

a+b
p−q)]

V3 = εabpq=[(∆m2
a,b + iu1g

a−b
a+b)(∆m

2
p,q + iu2g

a+b
p−q)]

(2.1)

where p, q represent mother particle 4-momenta; a, b represent daughter particle 4-momenta; u1

1Technically defined as pq → abX, with two daughter particles “of interest” and other decay products X. The
presence of these decay products is necessary to have parity violation: a true 2→ 2 collision could never violate
parity as it takes place entirely in one plane.
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and u2 are arbitrary constants used to ensure “dimensional self-consistency” (and are typically

set to unity); εabpq is the determinant of a 4× 4 matrix with rows p, q, a, b; ∆m2
x,y = m2

x −m2
y is

the difference between the squared masses of the particles with 4-momenta given by x, y; and

gxy represents the 4× 4 Gram determinant G

x, p+ q

y, p+ q

 with

G

p1, ..., pn
q1, ..., qn

 =

∣∣∣∣∣∣∣∣∣
p1 · q1 ... p1 · qn

... ... ...

pn · q1 ... pn · qn

∣∣∣∣∣∣∣∣∣ (2.2)

as the n× n Gram determinant.

It is not easy to glean physical intuition from these parity variables (which the authors of

Ref. [19] acknowledge): we may note that for massless collisions, V3 goes to zero, but there

is not a clear geometric picture that can be drawn for all variables. Nevertheless, if these

three variables are calculated on a set of collision events and binned, at least one of the parity

variables’ histograms will be asymmetric if the underlying physics of the collision events is

chiral. Ref. [19] also shows that for a 2→ 3 collision process2, there exists an analogous set of

19 pseudoscalars (we will not present the explicit forms for this set of variables in this report).

Given a set of collision events obeying the same physics, we can quantify the asymmetry of

each of the parity variables’ histograms through the following observable:

∆Vi = (# counts for Vi < 0)− (# counts for Vi > 0). (2.3)

In essence, we are creating a 3-bin histogram: positive, negative, and zero.

For the remainder of this report, we will focus on the 2→ 3 collision case (more specifically,

pp → jjj). This allows us to discard variables V3, V10, and V11 which go to zero when the

parent particles have the same mass. As a further simplification, we assume that our daughter

particles are not jets, but rather hard process quarks and gluons before hadronisation. We also

assume that all particles involved in the collision are massless. This allows us to drop variables

V7, V12, V13, V16, V17, V18, and V19. Therefore, we consider only the nine variables V1, V2, V4,

V5, V6, V8, V9, V14, and V15 (defined explicitly in Ref. [19]).

2Technically pq → abcX.
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Figure 2-1: A schematic of the “Two spoons and a fork” model. The mother particles have
4-momenta bµ and b

µ
. Two daughter particles sµ and tµ are generated on a right-handed helix

about the beam axis, and a third daughter particle fµ conserves momentum.

2.1 Explicit parity violation: The “Two spoons and a fork”

model

As a first exploration of the usefulness of the parity variables, we will calculate the variables

on a system that has been engineered to violate parity: the “Two spoons and a fork” (Sp2F)

model. The Sp2F model is an especially clean one as the parity of the system is dependent on

a single parameter α.

We generate events that obey Sp2F physics by defining a right-handed helix with pitch α

centered around the beam axis, where pitch is a measure of the height of one full helix turn.

For each collision, we create two daughter particles a, b (the “spoons”) with spatial momenta

components that lie on the helix. We also generate a third daughter particle c (the “fork”) with

a 4-momentum that conserves total momentum of the system. The degree of parity violation

of this system is directly dependent on the helix parameter α, so if the parity variables are

working properly, they should reflect this dependence. We rotate the three daughter particles

about the beam axis by a random angle θ so as to avoid introducing a hard-coded anisotropy

into the system, then calculate the parity variables on the daughter particles. A schematic of a

Sp2F-generating collision is shown in Fig. 2-13.

We scan α within the range [0.0, 0.8] GeV with a step size of 0.2 GeV4, generating 3,000

events at each step. Each collision event is given a center-of-mass energy of 300 GeV; one

3Image source: C.G.Lester, private communication.
4The units of the pitch α are necessary so that all sinusoidal arguments in the helix equations of motion are

unitless.
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Figure 2-2: ∆Vi for the Sp2F model. Errorbars are 1σ. For α = 0, the helix disappears and the
system loses parity. The parity variables capture the simplicity of the system: six of the nine
plots have the same functional form.

“spoon” daughter is generated on a helix with radius 10 GeV, and the other is generated on a

helix with radius 8 GeV. We calculate the nine selected parity variables on each event, then bin

the variables for a given value of α. We then calculate ∆Vi and plot these values as a function

of α for each V i. Plots are shown in Fig. 2-2.

The complexity (or rather, simplicity) of the Sp2F model is reflected in the complexity of the

plots of ∆Vi . Six of the nine variables show the same dependence on the single parity parameter

α: the plots for V1, V2, V9, and V14 are identical, and the plots for V8 and V15 are identical to the

former plots when reflected about the horizontal axis. Only V6 shows a different dependence on

α; both V4 and V5 show no dependence.

We have shown that the set of parity variables introduced in Ref. [19] can qualify (and, to

some degree, quantify) the simple parity of the Sp2F model. Given a clearly chiral system, the

variables have flagged statistically significant parity violation, and done so in a clean manner,

as shown by the shapewise similarity of the plots in Fig. 2-2. This should instill confidence

in the usefulness of these parity variables for potentially more complex systems, which we will

tackle in the next section.
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Chapter 3

The mSME Quark Sector

Armed with a set of parity-flagging variables, we now focus on building a model of physics on

which to test them. For the remainder of this report, we will focus on quark-sector physics. Our

motivation for doing this is that the parity variables outlined in Chap. 2 were derived for use

at the LHC (i.e. to be used on initial states without a defined parity). In this section, we will

look at an alternative theory to the Standard Model that has the capability to violate parity:

the Lorentz-violating minimal Standard Model Extension (mSME).

3.1 The Standard Model Quark Sector

As a warm-up, we will familiarize ourselves with the mathematical structure of the Standard

Model Lagrangian. For QCD, the Lagrangian has the form

LSMquark =
1

2
iQAγ

µ
↔
DµQA +

1

2
iUAγ

µ
↔
DµUA +

1

2
iDAγ

µ
↔
DµDA. (3.1)

Several symbols should be defined: QA represents a left-handed quark doublet

uA
dA


L

, UA

and DA represent right-handed quark singlets
(
uA

)
R

and
(
dA

)
R

(respectively), capital Latin

subscripts represent flavor indices,
↔
Dµ represents the double-sided covariant derivative (where

A
↔
DµB = A(DµB)− (DµA)B), and γµ are the standard gamma matrices.

As our aim is to look for signatures of parity violation, it will be helpful to rewrite the

Standard Model Lagrangian in terms of its vector and axial interactions (a full derivation of

this is given in Chap. A):
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LSMquark =
1

2
i{(cV,u)uγµ

↔
Dµu+ (cA,u)uγµ

↔
Dµγ

5u+ (cV,d)dγ
µ
↔
Dµd+ (cA,d)dγ

µ
↔
Dµγ

5d}. (3.2)

For simplicity, we restrict ourselves to two-flavour QCD and consider only interactions between

up and down quarks. Here, we have replaced the chiral quark singlets and doublets with up

and down spinors u and d. We have also defined four new couplings cV,u, cV,d, cA,u, cA,d, as

(cV,u)µν = +(cQ)µν + (cU )µν

(cA,u)µν = −(cQ)µν + (cU )µν

(cV,d)µν = +(cQ)µν + (cD)µν

(cA,d)µν = −(cQ)µν + (cD)µν

(3.3)

The first two are couplings to the quark vector interactions, and the second two are couplings

to the quark axial interactions, which are also accompanied by the γ5 matrix. Recall that the

transformation properties for a vector require that the spatial components flip sign under a

parity transformation and the time component stays the same, while the reverse transformation

property holds for an axial vector.

In the Standard Model, the QCD vector couplings are turned on (cV,u = cV,d = 2) and

the axial couplings are turned off (cA,u = cA,d = 0). This is confirmed experimentally: no

quark-sector experiments have shown any degree of parity violation.

3.2 The mSME Quark Sector

The mSME modifies quark-quark interactions by adding a CPT-even and a CPT-odd term to

the Lagrangian, with

LCPT-even
quark =

1

2
i{(cQ)µνABQAγ

µ
↔
DνQB + (cU )µνABUAγ

µ
↔
DνUB + (cD)µνABDAγ

µ
↔
DνDB} (3.4)

and

LCPT-odd
quark = −{(aQ)µABQAγ

µQB + (aU )µABUAγ
µUB + (aD)µABDAγ

µDB}. (3.5)

For the mSME, these cµν and aµ couplings are not scalars but composite tensors that permeate
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all of spacetime. It is these background tensors that lead to Lorentz, and therefore CPT,

violation. We will consider parity violation that comes from combinations of parity-odd and

parity even cµνAB terms, and leave effects due to LCPT-odd
quark out of this analysis.

As before, it is helpful to rewrite the mSME Lagrangian in terms of its vector and axial

interactions, shown below:

LCPT-even
quark =

1

2
i{(cV,u)µνuγ

µ
↔
Dνu+ (cA,u)µνuγ

µ
↔
Dνγ5u+ (cV,d)µνdγ

µ
↔
Dνd+ (cA,d)µνdγ

µ
↔
Dνγ5d}.

(3.6)

Note that our mSME vector and axial couplings have spacetime indices, as opposed to our

Standard Model couplings. The origin of these SME terms comes from the tetrad, or vierbein,

formalism of general relativity. The tetrad, defined as

eaβ =
∂ξaX(x)

∂xβ

∣∣∣
x=X

, (3.7)

is a set of four vector fields that represent a spacetime coordinate change between global (xβ)

and locally inertial coordinates (ξa). Its usefulness is mainly computational, as it defines the

transformation laws into the inertial coordinate frame that the user deems to be the best-suited

for solving a given problem.

In its full expansion, the SME would contain the vector and axial couplings

LCPT-even
quark, vector =− 1

2
i(cV )λνee

µ
ae
νaeλbψγ

b
↔
Dνψ

LCPT-even
quark, axial =− 1

2
i(cA)λνee

µ
ae
νaeλbψγ5γ

b
↔
Dνψ

(3.8)

where the tetrad determinant e =
√
−g, where gµν is the global metric. In Minkowski space,

the vierbein collapses to eaβ → δaβ . This leads to the SME Lagrangian of the form in Eq. (3.6).

Based on the partial derivative structure of the tetrads, it can be shown that couplings of

the form (cV,A)00 and (cV,A)ij are even under the parity operator, and couplings of the form

(cV,A)0j and (cV,A)i0 are odd. Parity-violating signals require the interference of both parity-odd

and parity-even terms.
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q, i q, j

g, a

fµ

Figure 3-1: Feynman diagram for the quark-quark-gluon vertex. The diagram has a matrix

element contribution of −igs
λaij
2 f

µ. In the Standard Model, fµ = γµ; in the mSME, this term
is a more complex structure incorporating the background spacetime tensors.

3.3 Quark-quark-gluon interactions in the mSME

We would now like to derive a vertex that captures the mSME effects on quark-quark-gluon

interactions, illustrated in the vertex in Fig. 3-1. We can do this by reading off the Feynman

rules from Eq. (3.6), after a little more simplification. The covariant derivative should first

be expanded out, revealing the gauge couplings Dµ = ∂µ − igsGaµ λa2 . Here, λa represents the

Gell-Man matrices (where a sums over the set of eight), and Gaµ represents the gluons.

Considering only the gauge-coupling terms from the covariant derivative and replacing the

double-headed arrow in Eq. (3.6), we find

LCPT-even
quark ⊃

gs
λa
2
{(cV,u)µνuγ

µGaνu+ (cA,u)µνuγ
µGaνγ5u+ (cV,d)µνdγ

µGaνd+ (cA,d)µνdγ
µGaνγ5d}.

(3.9)

At this point, we can read off the Feynman rule. The mSME vertex should be equal to

−igsγµ
λaij
2

(cV,q)µν+(cA,q)µνγ
5)

2 . This can be compared with the Standard Model quark-quark-

gluon vertex, which is given by −igsγν
λaij
2

(cV,q+cA,qγ
5)

2 (with cV,q = 2; again, we are assuming no

flavor mixing).

In summary: the addition of the mSME to the quark sector provides us with a full vertex

fν = −igs
λaij
2

(γν + γµ
(cV,q)µν + (cA,q)µνγ

5)

2
). (3.10)

By switching on certain combinations of the (cV,A)µν matrix elements, we can create parity-

violating signals in the quark sector.
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3.3.1 The mSME as an effective momentum transformation

It was shown in Ref. [20] that the physics of photon-mediated quark scattering could be repro-

duced by changing the metric from ηµν to ηµν+cµν (see section 3.3, “Minimal c-type coefficients”,

[20]). In the modified Breit frame, the SME matrices can be absorbed into physical momenta

with the transformation pµ → (ηµν + cµν)pν .

This interpretation is somewhat intuitive: we essentially have a metric transformation from

flat spacetime to something more complex, governed by background tensors. Note that we

have the capability to transform the momenta of different particles in different ways, so not all

classes of particles experience the same local geometries. Indeed, the true mSME has different

couplings for different particle flavors.

We have outlined the basics of the parity-violating quark sector of mSME, as well as intro-

duced a more intuitive “effective transformation” version. Both of these models serve as the

basis for the parity-violating toy models of physics that we will test the parity variables on

in the next section. Our overall goal is to find a link between the (cV,A)µν couplings and any

qualitative or quantitative signal in the parity variables for proton-protom collisions. If we were

able to find such a link in simulation, then this could provide an avenue for a search for mSME

effects at the LHC.
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Chapter 4

Two mSME Simulations

Now that we have found a theory of physics with a mechanism for parity violation in proton-

proton collisions, we can ask about the ability of the parity variables defined in Ref. [19] to

catch this violation. In this chapter, we will consider two models of physics with the capacities

to violate parity: the first is a more simple simulation based on the presence of a single minimal

Standard Model Extension (mSME) background tensor cµν ; the second is a more faithful rep-

resentation of the full mSME with three background tensors (cQ)µν , (cU )µν , and (cD)µν from

Eq. (3.4).

4.1 Simulation I: The toy generator

We first consider the detectable parity violation from a toy version of the mSME inspired by

the effective momentum transformation outlined in Chap. 3.3.1.

We consider a massless 2 → 3 collision process, with mother particles p, q and daughter

particles a, b, c. We associate with this process a matrix element

M = codd
εµνσρp

µqνaσbρ

|p+ q|5|a+ b|3
×G

a− b, p+ q

p− q, p+ q

+ ceven
(p · q)(a · b)

(p+ q)2(a+ b)2
. (4.1)

where

G

p1, ..., pn
q1, ..., qn

 =

∣∣∣∣∣∣∣∣∣
p1 · q1 ... p1 · qn

... ... ...

pn · q1 ... pn · qn

∣∣∣∣∣∣∣∣∣ (4.2)

is a n× n Gram determinant.

This matrix element has been chosen as the sum of the simplest parity-odd and parity-
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even quantities that could be constructed from the mother and daughter 4-momenta that are

invariant with respect to exchanges of p and q, and of a and b1. Denominators are set to make

the matrix unitless.

To simulate mSME physics, we apply the effective momentum transformation kµ → cνµk
ν

to various parts of the matrix element given in Eq. (4.1). We consider two categories of trans-

formations:

1. sim: The momentum transformation is applied simultaneously to daughter momenta a

and b.

2. sum: The momentum transformation is applied separately to daughter particles a and

b, giving two matrix elements Mjust a and Mjust b. We then take the average of these

elements. Such a term might come from an interference term between the Standard Model

vertex being applied to one daughter particle and the mSME qqg vertex component being

applied to the other.

4.1.1 Event generation

Event generation for the “effective momentum transformation” model is a three part process.

1. Set the physics. Choose a value of the momentum transformation cµν matrix. In order

to make plots that can be visualized on a two-dimensional surface, it is necessary to use

sparse cµν matrices each with two degrees of freedom. In this analysis, we consider two

classes of matrices: (1) diagonal and (2) mixed, described in more detail in Chap. 4.1.2.

2. Generate the collision events. Generate 5,000 2→ 3 collisions. Set the 4-momenta of the

two mother particles to be pµ = (1, 0, 0, 1) and qµ = (1, 0, 0,−1), and generate 3 massless

daughter particles with random energies and angles uniformly distributed on a sphere.2

For each collision, numerically calculate the squared matrix element |M|2 as defined in

Eq. (4.1), after applying one of the predefined momentum transformations. Use this as

the event weight.

3. Evaluate the parity variables asymmetry. For each of the nine parity variables, calculate

the quantity ∆Vi , as defined in Eq. (2.3). (Note that the parity variables are calculated

on the untransformed daughter momenta.)

1For proton-proton collisions that produce three jets at the LHC, we would likely have no way of distinguishing
between the initial protons, or between any of the daughter jets.

2To circumvent collider singularities, we also ensure that the daughter particles are all separated from each
other and the beam axis by R = 0.1 radians.
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4.1.2 Results

Here we present the results of the two-dimensional scans for the diagonal and mixed cµν matrix

cases. In all cases, both variables are scanned over the interval [−1.05, 1.05] with a gradation

of 0.15.

(1) Diagonal scan

For this class of scans, we choose a diagonal transformation matrix cµν . For each setup, we

pick two of the diagonal elements to scan over. The other two diagonal elements are set to be

equal to each other and to make the full cµν matrix traceless. We consider every combination

of diagonal scans: (c00, c11), (c00, c22), (c00, c33), (c11, c22), (c11, c33), (c22, c33).

The resulting plots can be categorized into five types of trends, shown in Fig. 4-1 and

described below:

1. Flipper, shown in Fig. 4-1a. These plots show the most significant parity violation when

the two scan variables are equal in sign and largest in magnitude. There is a sharp change

in sign of the ∆Vi functions across the main diagonal.

• Relevant scans: sim c00, c11; sim c00, c22; sim c00, c33

2. Tight double headed arrow, shown in Fig. 4-1b. These plots show the most significant

parity violation when the two scan variables are equal in sign and largest in magnitude.

In contrast to the previous class, these plots show a change in sign of the ∆Vi functions

when the sign of both scan variables changes.

• Relevant scans: sim c11, c22; sim c11, c33; sim c22, c33

3. Single headed arrow, shown in Fig. 4-1c. These plots only show their chirality when both

scan variables are positive or negative.

• Relevant scans: sum c00, c33; sum c11, c22

4. Loose double headed arrow, shown in Fig. 4-1d. These plots are like the tight double headed

arrow ones, but are much more diffuse.

• Relevant scans: sum c00, c11; sum c00, c22

5. No trend, shown in Fig. 4-1e.

• Relevant scans: sum c11, c33; sum c22, c33
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(a) ∆Vi/σ for flipper trend, shown for sim with scan
variables c00 and c11

(b) ∆Vi/σ for tight double headed arrow trend, shown
for sim with scan variables c11 and c22

Figure 4-1: Diagonal scan results (1/3)
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(c) ∆Vi/σ for single headed arrow, shown for sum with
scan variables c11 and c22

(d) ∆Vi/σ for loose double headed arrow, shown for
sum with scan variables c00 and c11

Figure 4-1: Diagonal scan results (2/3)
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(e) ∆Vi
/σ for no trend, shown for sum with scan variables c22 and c33

Figure 4-1: Diagonal scan results (3/3)

In general, we do see trending in the parity variables as we scan over the diagonal matrix

elements of cµν . Variables V1, V2, V8, V9, V14, and V15 seem to be the most responsive, although

V4 and V9 do show some trending. There is redundancy in the variables as well: the plots for

V1 and V2 are identical, and the plots for V8 and V9, and V14 and V15, are additive inverses.

Comfortingly, the space directions x and y are treated on equal footing (e.x. plots of scans

over c00 and c11 closely resemble those of scans over c00 and c22). This is logical, considering

the symmetry in φ at the LHC.

For the vast majority of the plots (except the single headed arrow case), the strength of the

parity violation increases with the size of the cµν coefficients, which we would expect, as the

coefficients also change the magnitude of the transformed momenta and therefore the matrix

element. Plots generated with sim physics seem to be “tighter” than those generated with sum

plots (compare Fig. 4-1b and Fig. 4-1d for an example of this), which might also be expected:

the sum generations contain one term with two transformed momenta, while the sim generations

contain two terms each with one transformed momentum. It is likely that the no trend cases

are those where the cµν transformations lead to no change in the relative sizes of the parity-odd

and parity-even part of the matrix element given in Eq. (4.1).
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(2) Mixed scan

For each setup in our mixed scan case, we choose one c0i and one cij element to scan over, with

i 6= j. For each real scan value α, we set the matrix element to be α(1 + i). As the cµν matrices

are Hermitian, we must also turn on ci0 and cji. We consider every combination of diagonal

scans: (c01, c12), (c01, c13), (c02, c21), (c02, c23), (c03, c31), (c03, c32).

The mixed scan cases show some trending in the parity variables, but not nearly to the same

degree of tightness as was present in the diagonal scan cases – in fact, there is no observable

trending for any of the sim cases. We do see the same pairwise relations between V1 and V2, V8

and V9, and V14 and V15. In addition, the x and y directions are treated on equal footing.

The two types of trends are shown in Fig. 4-2, and are described below.

1. Overall trend, shown in Fig. 4-2a. These plots do not show parity violation within a

variable, but rather across: note the change in overall plot sign from V8 to V9, and V14 to

V15.

• Relevant scans: all sum cases

2. No trend, shown in Fig. 4-2b.

• Relevant scans: all sim cases

The results for the mixed scan generations are significantly less nuanced than those for

the diagonal scan generations. This could be due to there being fewer degrees of freedom in

the mixed scans. While both scans have two independent scan variables (necessary to make

two-dimensional plots), the diagonal scan cases contain a third “meaningful” number: recall

that the cµν matrices should be traceless, so the two non-scan diagonal elements were set to be

nonzero to fit this constraint. However, the mixed scan cases did not have this constraint, and

contained no information other than the two dependent scan variables.

As an overall conclusion to our first toy mSME model: if the toy model were not leading

to any parity-violating physics, we would expect our variables ∆Vi to increase in magnitude as

the cµν coefficients increased, simply due to both the parity-odd and parity-even components of

Eq. (4.1) increasing in tandem. In fact, we do see these results in the no trend plots. However,

all of the non no trend plots contain signals in the parity variables that are linked to certain

combinations of cµν coefficients being turned on, rather than their magnitude (perhaps the best

example of this is the single headed arrow trend). We can thus conclude with some confidence

that the mSME effective transformation is producing chiral physics, and that the parity variables

can detect it.
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(a) ∆Vi
/σ for overall trend, shown for sum with scan variables c01 and c12

(b) ∆Vi
/σ for no trend, shown for sim with scan variables c01 and c12

Figure 4-2: Mixed scan results (1/1)
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fµu

fνd

Figure 4-3: Feynman diagram for the process ud → udg. Vertices fµu and fνd are defined in
Eq. (4.3) and include SME couplings. For computational simplicity, we have assumed that the
rightmost ddg vertex contains no SME effects.

4.2 Simulation II: Single diagram mSME physics

For our final simulated physics model, we consider a single quark-sector SME matrix element

corresponding to a 2 → 3 collision ud → udg. The associated Feynman diagram is shown in

Fig. 4-3, and it has a matrix element of

|M|2 = u(p3)f
µ
uu(p1)

−iηµν
(p3 − p1)2

u(p4)γ
αε∗α

i(p4 + p5)βγ
β

(p4 + p5)2
fνd u(p2) (4.3)

where p1 and p3 are the 4-momenta of the incoming and outgoing up quarks, p2 and p4 are

the 4-momenta of the incoming and outgoing down quarks, and p5 is the 4-momentum of the

outgoing gluon. The two vertices fµu and fνd are the Standard Model + mSME vertices for the

up and down quarks, respectively; in long form, they are equal to

fµu = γµ +
1

2
γπ((cV,u)πµ + (cA,u)πµγ5)

fνd = γν +
1

2
γπ((cV,d)

πν + (cA,d)
πµγ5).

(4.4)

4.2.1 Event Generation

Event generation for this toy model is more complex than for the proceeding one, as the total

available coupling space is 45-dimensional. The couplings are derived from the three 4-by-

4 matrices (cQ)µν , (cU )µν , and (cD)µν from Eq. (3.4), each of which is a complex traceless

Hermitian matrix with 15 degrees of freedom. Our preliminary studies showed that lighting

up only two (cQ,U,D)µν matrix elements at a time would be unlikely to produce detectable

parity violation. We therefore probe this couplings space with a bogosearch. For each run, we

randomly generate the three couplings matrices, populating all 45 dimensions. We use these

matrices to calculate the vector and axial coupling matrices for the up and down quarks (cV,u)µν ,
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(cA,u)µν , (cV,d)µν , and (cA,d)µν .

Calculation of the matrix element is done numerically. The generation process is as follows:

1. Set the physics. Randomly generate the three Hermitian matrices (cQ)µν , (cU )µν , and

(cD)µν . Calculate the 4 Hermitian matrices (cV,u)µν , (cA,u)µν , (cV,d)µν , and (cA,d)µν using

Eq. (3.3).

2. Survey the phase space. Generate 5,000 2 → 3 collisions. Set the 4-momenta of the two

mother particles to be pµ = (1, 0, 0, 1) and qµ = (1, 0, 0,−1), and generate three massless

daughter particles with random energies and angles uniformly distributed on a sphere.

For each collision, numerically calculate the squared matrix element |M|2 as defined in

Eq. (4.3), and make a note of the maximum value |M|2max. This value, multiplied by 10,

will be treated as the theoretical maximum squared matrix element for the process.

3. Generate the collision events. Generate 10,000 2→ 3 collisions as before. For each colli-

sion, calculate and store the nine nonzero parity variables and an event weight |M|2
10×|M|2max

.

4. Evaluate the parity variables asymmetry. For each of the nine parity variables, calculate

the quantity ∆Vi , as defined in Eq. (2.3).

To summarize: for each random instantiation of the matrices (cQ)µν , (cU )µν , and (cD)µν ,

we can calculate nine numbers ∆Vi (and their error) which can be used to gauge the chirality

of the mSME physics. We repeat the aforementioned steps for a large number (n = 1,000) of

mSME matrix instantiations.

4.2.2 Results

Fig. 4-4 shows ∆Vi for each variable over all 1,000 mSME matrix instantiations. Most random

generations do not produce significantly chiral physics; however, there are some instantiations

that produce deviations from zero that are significant to over 3σ.

Assuming a Gaussian distribution, we expect 1% of the total instantiations to be significant

to over 3σ without coming from an underlying signal. We are therefore looking for an excess of

10 “hits” outside of the 3σ regions in Fig. 4-4. For most variables, this excess is present (though

not to a large degree – the excess is usually on the order of 10 as well). In Fig. 4-5, we histogram

the ∆Vi/σ data contained in Fig. 4-4 and fit a Gaussian curve to the distributions, finding again

an excess of hits on the tails of the Gaussian. This implies that some of the (cQ,U,D)µν matrix

instantiations are able to make statistically significant parity-violating physics.
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Figure 4-4: ∆Vi/σ for all 1,000 instantiations of the (cQ,U,D)µν matrices. Errorbars are for 1σ.
Instantiations outside of the 3σ line are shown in red. Bands representing anomalies between
(4-8)σ have been highlighted in green; these bands select mSME instantiations that will be used
in Chap. 4.2.3.

Figure 4-5: Histograms of ∆Vi/σ for all 1,000 random instantiations of the (cQ,U,D)µν matrices,
plotted with a Gaussian fit. The excess in hits on the tails of the Gaussian could be evidence
of parity-violating instantiations.
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4.2.3 Reproducibility studies

From Fig. 4-4, we can see that for a given parity variable, there are a few (cQ,U,D)µν matrix

instantiations that seem to produce significantly chiral physics (i.e. ∆Vi 6= 0 to greater than

3σ). To gauge whether this chirality is genuine (rather than a random fluke of the kinematic

event generation), we need to make sure that it is reproducible. In other words, (cQ,U,D)µν

setups that are truly parity violating in Vi should produce significantly nonchiral physics in Vi

when the kinematic simulation is rerun with different random seeds.

To test for parity reproducibility, we follow the steps below:

1. Set the physics. For a given variable Vi, average over all instantiations where ∆Vi is

significantly positive (or negative) to between than (4-8)σ. An example averaged matrix

setup for V1 anomalies is shown in Fig. 4-6.

2. Generate repeatedly. Generate 10,000 collision events 50 times, each time with the same

(cQ,U,D)µν matrices set and with a different random seed.

3. Evaluate the parity variables asymmetry. For each of the 50 trials, evaluate the quantity

∆Vi and its error.

Results are shown in Fig. 4-7 (averaging over all (cQ,U,D)µν setups with ∆Vi significantly

positive) and Fig. 4-7(with ∆Vi significantly negative). For 50 random seems runs, we would

expect 0 to 1 run to be statistically significant to over 3σ due to Gaussian fluctuations. Un-

fortunately, no plot showed convincing evidence of a continuously parity-violating signal (i.e. a

large number of statistically significant hits). The closest signal of parity violation is seen in

the positive ∆V14 plot, which has 5 hits that are just shy of being anomalous to 3σ. However,

this signal in isolation might easily be attributed to the look-elsewhere effect. Evidently, the

chirality found in the initial surveys of the (cQ,U,D)µν matrices space is not reproducible.

At this point, it is not known why the parity violation that appears to be present in Fig. 4-4 is

not reproducible. We posited that the average of the (cQ,U,D)µν was being done is over both the

Gaussian fluctuations and the true parity violating signals, minimizing the effects of the parity

violation. However, repeating our reproducibility studies taking all (cQ,U,D)µν instantiations

that were significantly positive or negative to between (5-8)σ, still resulted in no evidence of

chiral physics. Similarly, replacing the averaging process with simply taking the first (cQ,U,D)µν

matrices instantiation that was significant to 4σ made no difference.

In summary: we have considered two models of physics inspired by the mSME, both with the

ability to violate parity in the quark sector. In the first “effecitive momentum transformation”
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(a) Positive anomalies (b) Negative anomalies

Figure 4-6: (cQ,U,D)µν matrices averaged over the instantiations gauged to be anomalous in V1
(nonzero to between (4-8)σ). The number of instantiations of each case can be confirmed by
looking at Fig. 4-4.

model, we found that our transformation coefficients cµν were able to produce parity-violating

signatures for diagonal matrices, but not for certain off-diagonal ones. In our second single-

diagram model, we found certain combinations of (cQ,U,D)µν that appeared anomalous at first

pass, but did not continue to produce parity-violating physics for different kinematical setups.
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Figure 4-7: ∆Vi/σ for the reproducibility studies. Each variable’s subplot has been generated
from 50 runs (each with a different random seed) on the same (cQ,U,D)µν setup, which has been
chosen as the average of all matrix instantiations that are positively anomalous in that variable
to between (4-8)σ.
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Figure 4-8: Same as Fig. 4-8, but generated from negative anomalies.
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Chapter 5

Conclusions and Further Studies

In this report, we have evaluated the usefulness of the information provided by a set of parity

variables designed to flag parity-violating processes for proton-proton collisions. We first tested

the parity variables on the “Two spoons and a fork” model, a model designed to have parity

violation controlled by a single scan parameter. We then introduced the Lorentz-violating

minimal Standard Model Extension (mSME) and showed that such a model could violate parity

for quark-gluon collisions. We finally explored two toy models of physics motivated by the

mSME, finding only a lukewarm link between coefficients of the mSME background tensors and

a signal in the parity variables. Clearly, there is still some work to be done before the parity

variables could be used to search for new mSME physics at the LHC. At this point, it is not

known whether this failure lies in the coding of the physics simulation, the discerning power of

the parity variables, or in some other aspect.

Further studies should focus on targeting the source of this “parity leakage”. The number

of anomalies in Fig. 4-4 is greater than would be expected for a Gaussian distribution, implying

that at least a few of the (cQ,U,D)µν instantiations would be truly parity-violating. Perhaps

the problem could have been fixed with more computational time: 1,000 instantiations of the

(cQ,U,D)µν matrices to explore a 45-dimensional space might have been too few to hone in on

the most important couplings for parity violation. In addition, reproducibility studies run on

100 random seeds (rather than 50) may have provided more information. We would encourage

future studies to devote more computational resources to exploring the (cQ,U,D)µν coupling space

(potentially with a more methodical probe than the “bogoscan” method used in this report).

We also recommend that future studies explore 2 → 3 diagrams other than the ud → udg one

considered in this report.

If we take a moment to criticize the variables, rather than the simulation: perhaps the

meta-variable ∆Vi is not specific enough – if the shape of a histogram of parity variables were
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asymmetric about the vertical axis, this would also be a nonzero signal that our meta-variable

is insensitive to. Since the parity variables are proven in Ref. [19] to cover the complete 2 →

3 collision event space, it is more likely that the error lies on the side of the simulation, rather

than that of the variables.

Assuming the parity leakage could be found, it would be useful to conduct tests on a more

realistic version of the third model. But there are several barriers to making the computational

model described in Chap. 4.2 more realistic within the scope of the mSME. We considered a

single Feynman diagram for the process ud → udg. However, collisions at the LHC are much

more complex. A complete study would consider the sum of the hundreds of Feynman diagrams

for the process pp→ jjj.

The largest challenge encountered in this project relates to this issue of simulating realistic

mSME events. One might wonder why we used custom event generators in Chap. 4 instead of

commonly used particle generators. Indeed, in the early stages of this project, a good deal of

time was spent trying to implement the mSME Feynman rules into standard particle generators.

However, the vast majority of these generators (such as FeynCalc [21] and LanHEP [22])

did not allow for the implementation of the custom Lorentz structures inherent in the mSME

matrix elements. The only generator that did allow for user-defined vertices of this form was

MadGraph [23]; however, it was later found that in the actual event generation calculations,

MadGraph assumes Lorentz invariance and other fundamental symmetries in an attempt to

save computational time (despite being given a manifestly Lorentz-violating matrix element).

We therefore coded our own event generators, which are admittedly limited in scope.

Perhaps the most interesting finding is that the parity variables may be redundant. Indeed,

the authors of Ref. [19] state that while all 19 of their variables are necessary for a complete

cover of the 2→ 3 collision space, there may exist another complete cover with fewer variables.

In our own quark-sector mSME studies (as evidenced in every figure in Chap. 4), we found that

variables V1 and V2 provide the same information, as do the pairs V8 and V9, and V14 and V15.

As an explanation: the algebraic formulae for V1 and V2 are equivalent, barring a transformation

from sums of Lorentz products in V1 to products of those Lorentz products in V2
1. Similarly,

V8 and V9 are complex conjugates of each other (as are V14 and V15).

We encourage those working on experiments searching for parity violation at the LHC to

also perform analyses based on these 19 parity variables. In addition to gauging more insights

into the parity of certain proton-proton collisions, researchers will put the parity variables to

1V1 contains terms εabpq + εbcpq + εcapq; V2 contains terms εabpqε
bc
pqε

ca
pq where εabpq is a 4-dimensional determinant over

daughter momenta a, b (and sometimes c) and mother momenta p, q. Refer to Ref. [19] for the long forms of all
variables.
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practical use and therefore hone in on what parts of the 2→ 3 phase space have redundancies

in the parity variables. This could eventually lead to the determination of a more compact and

complete cover of the 2 → 3 collision space. The new compact parity variables set could be

calculated in tandem with every LHC search for new physics. The variables would be especially

well-suited for model-agnostic BSM searches, as they function as flag for parity violation of any

form with minimal computational overhead.
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Appendix A

Deriving a manifestly

parity-violating mSME Lagrangian

In this section, we will show that CPT-even quark sector minimal Standard Model Extension, as

postulated in Ref. [16], can be split into the manifestly “vector+axial” form given in Eq. (3.2).

The latter form is a more intuitive framework for conducting studies of parity violation, as

the scale of parity violation in a given process corresponds directly to the relative size of that

Lagrangian’s vector and axial terms.

Let us restrict ourselves to two-flavor QCD, considering just the up and the down quarks.

The relevant mSME Lagrangian is

LCPT-even
quark =

1

2
i{(cQ)µνABQAγ

µ
↔
DνQB + (cU )µνABUAγ

µ
↔
DνUB + (cD)µνABDAγ

µ
↔
DνDB} (A.1)

where QA =

uA
dA


L

, UA =
(
uA

)
R

, and DA =
(
dA

)
R

.

For simplicity, we will assume the SME coefficients do not allow for flavor mixing (so we can

neglect the A,B subscripts).

Expanding out the Lagrangian, we have
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LCPT-even
quark =

1

2
i{(cQ)µνQγ

µ
↔
DνQ+ (cU )µνUγ

µ
↔
DνU + (cD)µνDγ

µ
↔
DνD}

=
1

2
i{(cQ)µνuLγ

µ
↔
DνuL + (cQ)µνdLγ

µ
↔
DνdL

+ (cU )µνuRγ
µ
↔
DνuR + (cD)µνdRγ

µ
↔
DνdR}

=
1

2
i{(cQ)µν(PLu)γµ

↔
Dν(PLu) + (cQ)µν(PLd)γµ

↔
Dν(PLd)

+ (cU )µν(PRu)γµ
↔
Dν(PRu) + (cD)µν(PRd)γµ

↔
Dν(PRd)}

=
1

2
i{(cQ)µνuγ

µ
↔
Dν(1− γ5)u+ (cU )µνuγ

µ
↔
Dν(1 + γ5)u

+ (cQ)µνdγ
µ
↔
Dν(1− γ5)d+ (cD)µνdγ

µ
↔
Dν(1 + γ5)d

=
1

2
i{[(cQ)µν + (cU )µν ]uγµ

↔
Dνu+ [−(cQ)µν + (cU )µν ]uγµ

↔
Dνγ5u

+ [(cQ)µν + (cD)µν ]dγµ
↔
Dνd+ [−(cQ)µν + (cD)µν ]dγµ

↔
Dνγ5d

(A.2)

We now define some vector and axial couplings:

(cV,u)µν = +(cQ)µν + (cU )µν

(cA,u)µν = −(cQ)µν + (cU )µν

(cV,d)µν = +(cQ)µν + (cD)µν

(cA,d)µν = −(cQ)µν + (cD)µν

(A.3)

Then our Lagrangian can be re-written as

LCPT-even
quark =

1

2
i{(cV,u)µνuγ

µ
↔
Dνu+ (cA,u)µνuγ

µ
↔
Dνγ5u+ (cV,d)µνdγ

µ
↔
Dνd+ (cA,d)µνdγ

µ
↔
Dνγ5d}

(A.4)

Let’s compare this with the Standard Model Lagrangian, which is given by

The Standard Model Lagrangian for the quark sector is given by the following expression:

LSMquark =
1

2
iQAγ

µ
↔
DµQA +

1

2
iUAγ

µ
↔
DµUA +

1

2
iDAγ

µ
↔
DµDA

=
1

2
i{(cV,u)uγµ

↔
Dµu+ (cA,u)uγµ

↔
Dµγ

5u+ (cV,d)dγ
µ
↔
Dµd+ (cA,d)dγ

µ
↔
Dµγ

5d}
(A.5)

with (cV,u) = (cV,d) = 2, (cA,u) = (cA,d) = 0.
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