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Abstract

The detection of insects via acoustic means has long been a field of interest, since the early 1990’s. The presence
of insects in soil, grains and plant bodies has successfully been detected using various techniques including the
use of sensitive accelerometers, electret microphones and laser doppler vibrometers. However, little attempt has
been made to precisely locate the insects owing to limited understanding of how wave propagates through soil
and due to the nature of soil as a highly dispersive medium. In this work, we highlight the major hurdles in
detecting insects in soil by conducting an experiment on a model system consisting of a piezoelectric speaker and
an electret microphone. It was found that for measurements in air using the model system, the speed of sound
was (344± 1)m s−1, in agreement with known values, though the attenuation coefficient could not be determined
in a striaghtforward manner. In the latter half of the work, the range of detection was quantified and mapped
out for different values of soil saturation and wave frequencies. For frequencies corresponding to the range present
in the spectral analysis of chafer beetle recordings, the range of detection was of order 50 cm for all values of
soil saturation. This limited range confirms the difficulty in detecting the weak signals produced by soil dwelling
insects.
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1 Introduction

Lawns require regular attention and are often suscep-
tible to damage caused by pests residing beneath the
turf. Among the most common lawn pests in the UK
are the chafer beetle grubs [2]. The adult stage of the
beetle is not a threat to the lawn but their root-feeding
larvae eat away at the roots of the grass, resulting in
dead patches which can be peeled away from the soil
surface [24]. These grubs often escape detection until
significant visible damage had occurred.
Since the early 1990’s, it has been shown that insects

produce vibrations in the infested medium through feed-
ing and burrowing processes which can be picked up us-
ing acoustic detection methods. Previous work included
the use of sensitive accelerometers, electret microphones

or laser doppler vibrometers to detect insects in various
media such as grains, wood and plant bodies [18, 20,
13]. In soil, notable work involved using a steel stake
inserted into the sampling site with an accelerometer
magnetically attached to the free end [11]. Though these
previous efforts have established techniques of mapping
out infestation sites and even estimating the population
density [3, 15] precisely locating the grubs has proved to
be a challenge.

One major obstacle is the detection of weak insect
signals in noisy environments [26, 18, 17]. To better un-
derstand the factors limiting the localisation of chafer
beetle larvae in lawns, I built and studied a model sys-
tem consisting of a piezoelectric speaker and a series of
electret microphone buried in soil. The speaker acts as
the noisy sound source while the microphones record the
signal. The aim of the experiment was to determine the
characteristics of the insect signal that allow it to be
distinguished from noise and to investigate whether the
location of the source could be triangulated using mul-
tiple detectors.

Owing to the Covid-19 situation, exceptional circum-
stances prompted a decision to be made to halt the ex-
perimental aspect of the work before the system could
be tested in the soil sample. Though diverting from the
original aim, an important aspect of the detection device
is the range of detection. Postulating that the range of
detection depends on the frequency of the sound wave
being transmitted as well as the microstructural proper-
ties of soil such as saturation and porosity, I conducted
a numerical investigation of sound propagation through
porous media. Using supporting data obtained from the
model system built, I mapped out the conditions under
which a practical range of detection can be achieved.

In this paper, I outline the experimental methods for
measuring acoustic signals in soil and discuss results
from the numerical simulation of wave propagation in
porous media, as applied to a frequency range matching
that of insect-produced vibrations. The paper is organ-
ised into eight sections. The first two sections define the
signal of interest and the soil properties affecting wave
propagation. The next two sections are dedicated to the
construction and calibration of an acoustic measurement
device. Three sections detail a theoretical model for soil
and the numerical results for the wave speed, attenua-
tion and detection range for different signal frequencies
and soil saturation values. In the final section, I consider
the implications of the findings on acoustic methods as
a means for pest detection.

2 Characteristic Signal of Chafer

Grubs

Work by Mankin et al. lays the foundation for the acous-
tic detection of soil-dwelling insects such as the chafer
grubs by providing spectral comparisons between the
sounds produced by different species of insects. These
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Figure 1: Comparison of chafer beetle acoustic spectrum
and quiet background. Adapted from Mankin et al. [17]

acoustic profiles were also shown to be distinguishable
from that of other sources of background noise in the
field such as wind and traffic noise, both in the time and
frequency domain [17].

2.1 Insect and Background Noise

Subterranean insects produce brief broadband vibra-
tional impulses as a result of their movement and feed-
ing. It was shown that these bursts of impulses have a
distinct spectral profile from wind and traffic noise [22].
Figure 1 shows the power of the field recording of quiet
seismic background noise decreasing with frequency.
The quiet background noise is contrasted with two spec-
tral profiles of insect (D. abbreviatus) recordings sam-
pled at two different dates. The background noise has a
much lower amplitude than the signal of interest at high
frequencies.
A comparison of louder background noises due to wind

and vehicles with that of the white grubs is shown in
Figure 2. Here, the spectral profile of the background
noise is broadband and therefore has significant con-
tributions even in the higher frequency region. It can
be noted, however, that while the signal level remains
roughly the same across the entire frequency range for
the beetles, there is a significant drop in power going
from the low frequency to high frequency region in the
wind and truck spectra. By comparing the ratio of the
power below 400Hz and that above for each spectrum,
the background noise can be distinguished from the in-
sect noise.

2.2 Comparing Different Insect Species

In Figure 3, the Fourier spectra of different species of
insects were compared. Each of these spectra are broad-
band between 0.1 kHz to 3.16kHz and therefore the
sound of chafer grubs cannot be reliably distinguished

Figure 2: Comparison of chafer beetle acoustic spec-
trum, vehicle noise and wind noise. Adapted from
Mankin et al. [17]

from other species. The broadband feature suggests that
the detected sounds are not species-specific communica-
tion signals, known as stridulation [8], but rather are
produced through burrowing and feeding activities [17].

These findings show that while the quiet background
noise does not present a problem for detection, louder
noises due to passing vehicles and wind are more chal-
lenging to exclude. Detection can however be conducted
during quieter hours with less vehicles. Though it is not
possible to distinguish between different insect species
using their frequency spectra, once located, more accu-
rate recordings can be made at the site of infestation to
listen for the quieter stridulations.

3 Microstructural Parameters of

Soil

The signal produced by the chafer grub travels through
soil to reach the detector. In the model system used in
the experiment, the property of the soil can be varied in
two different ways, by varying how wet and compact the
soil sample is. Here, we discuss how these microstruc-
tural properties are quantified.

Soil is a porous medium through which water, gas and
solutes can move. The solid skeleton of soil is typically
composed of sedimentary materials such as sandstone,
peat soil, granular soil, clay or limestone depending on
the soil type. In Cambridge, the soil composition is a
mixture of freely draining lime-rich loamy soil and lime-
rich clayey soil with impeded draining [1, 25]. The soil
selected for this study is loamy clay soil representative
of that found in the area.
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Figure 3: Comparison of insect spectra. While the quiet
background noise does not present a problem for detec-
tion, louder noises due to passing vehicles and wind are
more challenging to exclude. Adapted from Mankin et
al. [17]

3.1 Porosity

Porosity is a measure of how much space there is be-
tween the soil grains. It is defined as the ratio of volume
of void, either filled by a single pore fluid or a mixture
of immiscible fluids, to the entire representative volume
element (RVE). The RVE is a concept in continuum me-
chanics that allows heterogeneous materials to be mod-
elled as a continuous body [10]. The RVE is defined as
the volume that effectively includes a sampling of all mi-
croscopic heterogeneity and yet remains small enough to
be considered a volume element.

n =
V∅
VRV E

where n is the porosity, V∅ is the volume of void within
the RVE and VRV E is the volume of the RVE.

3.2 Saturation

In naturally occurring soil samples, the pore space be-
tween the solid grains is in general filled with at least
two immiscible fluids, namely air and water, unless the
soil is saturated in which case the entire pore space is
occupied by water. Saturation is defined as the ratio of
the volume of a single phase of pore fluid over the entire
volume of void within an RVE. The sum of the degree
of saturations over all fluid types is by definition equal
to one.

Sθ =
V θ

VRV E

where θ ∈ {F,G}

where S is the saturation, V is the volume and the
subscript indices F and G denote variables relating to
water and air respectively. From this point onwards, as
we are dealing only with water and air as our two pore
fluids, we shall drop the θ suffix and define the degree

Table 1: caption

n Rn (kΩ) Cn (F)

L 2.2 1× 10−7

1 0.64 47× 10−6

2 1.5 3.30× 10−7

3 1.5 5× 10−9

4 2.2
5 680

of saturation for water as S and therefore it follows that
the degree of saturation for air is 1− S.

4 Material and Methods

In this section, I outline the method used to build a de-
vice that would detect signal from a source buried in a
medium. Though the experiment had not reached the
stage of triangulating a buried sound source, useful tech-
niques to measure wave properties in the medium were
developed. Firstly, the technical specifications for each
major component of the device are discussed followed by
details of the signal processing circuit. I then propose a
method to measure the speed and attenuation of waves
in soil.
The speed and attenuation of sound were measured us-

ing a piezoelectric speaker (Sonitron Blue Line SPS-29-

T00 ) and an electret condenser microphone (Kingstate

KECG2738PBJ-A) connected to a signal processing cir-
cuit. Circuit components were selected to bandpass filter
and amplify the signal received by the microphone. The
full circuit diagram is shown in Figure 4. The values of
the components used are summarised in Table 1. For
investigating the method for measuring attenuation and
speed of sound, a pure sinusoidal wave with variable fre-
quency is used.

4.1 Signal Output

The signal is output through the SPS-20-T00 speaker.
Figure 5 shows the sound pressure level against fre-
quency. The speaker is designed to operate in the con-
stant output region between 1 kHz to 20 kHz. The input
to the speaker is connected directly to a function gener-
ator.

4.2 Function Generator Frequency

Sweep

Black Star Jupiter 2000 was used as function generator
powering the speaker. The peak-to-peak voltage output
was held constant for maximum sound pressure output.
The function generator permits a constant D.C. control
voltage input that varies the output frequency. This
provides a means for a data acquisition technique us-
ing LabVIEW software together with an Arduino UNO
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Figure 4: Circuit diagram showing the circuits used for
signal processing.

Figure 5: Response behaviour of the speaker component
against frequency. Adapted from SPS-20-T00 Datasheet

Figure 6: Sensitivity of the electret microphone against
frequency. Adapted from Kingstate KECG2738PBJ-A
Data Sheet.

to electronically control the frequency setting and auto-
matically record data (see Section 4.6).
The control voltage was set using an Arduino UNO to

vary between 0V to 5V. As illustrated by the speaker
circuit in Figure 4, the Arduino UNO output is a pulse-
width modulated (PWM) D.C. signal. This was con-
verted to a constant D.C. voltage by passing through
a low-pass RC filter. The filter was chosen to have a
cut-off frequency of 5Hz. We note that the function
generator has a finite input impedance Zin = 9kΩ and
therefore the combined behaviour of the filter-generator
circuit is not that of an ideal low-pass filter. The volt-
age measured across the capacitor C1 will be propor-
tional to the combined impedance of the capacitor and
the function generator in parallel. The resulting con-
trol voltage is given by the potential divider equation
VC = VmeanZC,in/(ZC,in + R1) where ZC,in ≤ 9 kΩ is
the combined impedance, Vmean is the mean voltage of
the PWM signal passed to the filter and R1 is the re-
sistance of the fixed resistor. To utilise the full range of
the signal, we see that it must be the case that R1 is
chosen to be much less than 9 kΩ.
Settings on the function generator were selected to

allow the frequency to vary between the range 1 kHz to
10 kHz corresponding to the linear response region of the
speaker and microphone system.

4.3 Sound and Vibration Sensor

An electret condenser microphone (Kingstate

KECG2738PBJ-A) was used as a transducer to
convert the sound pressure to measurable signal.
Sensors of this type have been shown by Mankin et
al. (2000) [16] to be a suitable low-cost alternative to
highly sensitive accelerometers, for the application of
insect detection. The voltage output of the microphone
is proportional to the sound pressure. Figure 6 shows
the sensitivity against frequency.

4.4 Filtering and Minimising Noise

The detected signal is band-limited and therefore a
bandpass filter was designed by passing the micro-
phone output through a high-pass and low-pass RC fil-
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ter (Fig. 4) with cut-off frequencies equal to 0.3 kHz and
21.2kHz. The filter heavily suppresses components that
do not lie in between these cut-off frequencies.

It is possible that the sound emitted by the speaker
would bounce off walls and nearby objects so care was
taken to conduct the experiment away from obstacles.
The effects of noise due to magnetic fields in the envi-
ronment were minimised by twisting long wires connect-
ing the speaker and microphone to the signal processing
circuit. Any noise introduced in one wire equally affects
the other wire tracing approximately the same path in
space and therefore measurement of potential difference
across the terminals of the microphone is unaffected by
such noise.

4.5 Differential Amplifier

It is necessary to amplify the weak output from the mi-
crophone before digitising and recording the signal. A
differential operational amplifier circuit (Fig. 4) was cho-
sen for this task. The amplifier compares the signal at
its two inputs and amplifies the difference between them.
The differential measurement has an advantage over a
simple inverting amplifying circuit where the positive
input is connected to ground and the negative input is
amplified. Any noise common to the both inputs are
ideally cancelled out in the process.

The differential amplifier has an output given by:

Vout =
R5

R4
(V+ − V−)

where Vout is the output from the amplifier, V+ and
V− are the voltage inputs at the non-inverting (+) and
inverting (-) input terminals respectively and the ratio
R5/R4 is defined as the differential gain.

The output from the microphone was amplified with a
differential gain of 310 to produce an appreciable signal
while avoiding clipping when measured using an oscillo-
scope. It is worth noting that an ideal differential am-
plifier features two sets of two identical resistors which
necessarily have exactly the same value. In practice,
this is not the case and the amplifier will have a finite,
non-zero gain for the quantity (1/2)V+ + V− defined as
the common mode in addition to the desired differential
gain. Ideally, this gain is much less than the differential
gain.

4.6 Taking Measurements

Due to time constraints, the measurement techniques
that will be discussed below were developed and con-
ducted in air, omitting the need for soil preparation.
The aim of conducting these measurements was to de-
termine the attenuation coefficient and the speed of the
wave in the medium. For waves travelling through a
dispersive medium such as soil, these quantities are fre-
quency dependent.

The signal generating system was set up such that
the speaker was powered by a function generator as dis-
cussed in Section 4.2. The frequency of the function gen-
erator was electronically varied using an Arduino UNO.
A program was developed on LabVIEW to send com-
mands to the Arduino and automatically record the fil-
tered and amplified signal from the microphone.
The procedure used for conducting the measurement

generated data to determine both the speed and atten-
uation for different wave frequencies. The speaker and
microphone were initially clamped at a relative sepa-
ration of 60 cm apart. The peak-to-peak voltage VPP

and phase shift ∆φ was recorded for different frequencies
using the LabVIEW program. The relative separation
∆x was incrementally reduced. The new value of ∆x
was recorded and the measurements repeated until the
speaker and microphone meet.
For each frequency, two plots were created. The plot

of ln(VPP ) against ∆x and ∆φ against ∆x have gradi-
ents equal to minus the attenuation coefficient α and the
wavenumber k respectively. The speed v of the wave is
then v = ω/k where ω is the angular frequency. By plot-
ting the different values of v and α against frequency, the
frequency dependence can be determined.

5 Results and Discussion

In this section, I present the results obtained from the
experiment. The calibration of the function generator
and the LabVIEW controls are first discussed followed
an assessment of the signal-to-noise ratio. Examples of
the plots used to determine the wave speed and attenua-
tion coefficient is examined below for a single frequency.
It was found that while the wave speed is straightforward
to obtain from Figure 10, the plot of ln(VPP ) against ∆x
in Figure 11 displays unexpected behaviour.

5.1 Calibration

The function generator was set up to have a frequency
range of 3 kHz to 12 kHz as the control voltage was varied
between 0V to 5V. Figure 7 shows a linear relationship
between the output frequency of the function genera-
tor and the control voltage. As the LabVIEW program
was used to vary the control voltage, it is also useful to
consider the relationship between the voltage command
issued by the user to the program versus the actual con-
trol voltage. This is shown in Figure 8. We see that the
gradient deviates slightly from unity and the intercept
is non-zero. This however has no observable effects on
quantities derived from the experiment as the frequency
of the wave generated by the speaker is directly mea-
sured.

5.2 Signal-to-noise Ratio

Efforts were made to reduce noise in the experiment.
The signal-to-noise power ratio calculated from the

6



5.3 Speed Measurement 5 RESULTS AND DISCUSSION

0 1 2 3 4 5

d.c. control voltage (V)

4000

6000

8000

10000

12000

fr
eq
u
en
cy

(H
z
)

y=-1877.185x+12222.712
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Figure 9: Fourier spectrum of signal recording from elec-
tret microphone for (5645± 1)Hz signal
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Figure 10: Plot of phase shift against relative separation
between input signal to the speaker and detected signal
from the electret microphone.

Fourier transform of a (5645± 1)Hz signal (Fig. 9) is
∼ 1× 10−4.

5.3 Speed Measurement

The wave speed was calculated from Figure 10. Data
was obtained for a (1515± 1)Hz wave in air. The speed
of sound in air is known to be approximately 343m s−1.
The calculated speed using the method discussed in
Section 4.6 was (344± 1)m s−1 which agrees with the
known value.

5.4 Attenuation Measurement

The amplitude A of the wave is expected to exhibit the
usual exponential decay of the form A = A0exp (−αx)
where A0 is the initial amplitude of the wave and α
is the attenuation coefficient. It is shown in Figure 11
that this naive assumption does not apply in this case.
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Figure 11: Plot of signal amplitude against relative sep-
aration for the on-axis measurement.
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Figure 12: Plot of signal amplitude against relative sep-
aration for the off-axis measurement.

The amplitude decreases in a non-exponential fashion up
until a relative separation of approximately 40 cm when
the amplitude begins to recover.

This unexpected behaviour is suspected to be due to
the fact that the wave emitted from the speaker, which
is an extended object with finite dimensions, is not a
plane wave. Therefore the simple plane wave ansatz
A = A0exp (ik · x) where k is the complex wavevec-
tor and x is the direction of propagation, does not ap-
ply. In hope to grasp the effects of the geometry of the
speaker, the experiment was repeated but with the mi-
crophone varying along a direction 30◦ to the normal of
the speaker surface. The result is shown in Figure 12.
In this off-axis case, the form of the decay is not simply
a scaled version of the on-axis one pointing to the pos-
sibility that the wavefront is neither planar nor circular
but rather has a more complex geometry. The results in
Figure 11 and 12 show that the attenuation coefficient
cannot be calculated from the current experimental set-

up. It became clear that if one were to attempt to fit an
exponential decay to the data and exclude outliers, this
would be neglecting the interesting physics that should
instead be explored in more detail. At this stage, the
experimental aspect of the work had to be paused and
we turn our attention instead to a numerical simulation
of the wave propagation in soil.

6 Soil as an Unsaturated Porous

Medium

We now shift our focus to the secondary aim of the pa-
per, that is, to map out conditions under which a suit-
able range of detection can be achieved by an acoustic
detection device. The detection range depends on how
heavily the signal is attenuated as it travels through a
medium. The relevant attenuation coefficient is a func-
tion of parameters of both the medium and the wave.
Here I chose to focus on how the attenuation coefficient
depends on the frequency of the wave and the saturation
of the soil.
The aim is to build towards a description of unsatu-

rated soil as a three-component poroelastic medium [6].
Saturated porous media consist of two components, soil
and water. They are shown to support three types of
waves—one shear wave S and two compressional waves,
P1 and P2. The S and P1 waves are attributed to the
solid skeleton while the P2 wave is attributed to the
pore fluid. The three-component model for unsaturated
porous media extends these by allowing for the existence
of a second fluid immiscible with the first. It was shown
that a third type of wave, P3, emerges due to the cap-
illary pressure between the two fluids [5]. In practice,
both P2 and P3 waves are difficult to measure experi-
mentally as they are heavily attenuated.
In this section, we begin by introducing the important

material parameters relating to the composition of the
soil. We will see that the dependence of the attenua-
tion coefficient on soil saturation enters through these
parameters. Later, the balance laws [12] for the three-
component model, presented in the Eulerian picture are
introduced.

6.1 Capillary Pressure

Capillary pressure is the pressure that exists at the in-
terface between two immiscible fluids in a thin tube,
or in this case the narrow pore spaces between the solid
skeleton. The fluid with the higher wettability—the ten-
dency to be adsorbed by the capillary walls—is defined
as the wetting phase while the other is defined as the
non-wetting phase. In the case of a water-air mixture in
sandstone, water is the wetting phase. We define capil-
lary pressure as the pressure difference at the interface
of the fluids

pc = pnon−wetting − pwetting. (1)
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Figure 13: Plot of Santos’ capillary pressure.

where pc is the capillary pressure, pnon−wetting and
pwetting are the pressures of the two fluid phases.
The dependence of capillary pressure on soil satura-

tion can be obtained empirically through experiments
or via closed-form equations such as those proposed by
Santos et al. or van Genuchten [7]. The former is chosen
for this simulation and is shown in Figure 13.

pc = pcre
−ASor

(

e−ASo − 1
)

where A = 6.029 158, Sor = 0.519, pcr =
0.000 002 650 910 9× 109.

6.1.1 Permeability

The permeability parameter k measures how well a
porous medium can transmit fluid. It is related to the
hydraulic conductivity K which is a parameter used to
describe how easily a certain fluid flows through a par-
ticular porous media by

k =
Kη

ρg
, (2)

where η and ρ are the viscosity and density of the
fluid, and g is the acceleration of free fall [27]. While
K is dependent on the properties of the fluid, k is a
property of the porous material only. K is defined by
Darcy’s law [14], the porous media analogue to Ohm’s
law for electrical circuits.

Q

A
= −K

dh

dl
,

where Q is the volumetric flow rate, A is the cross-
sectional area through which the fluid flows and dh/dl is
the hydraulic gradient. In defining the hydraulic gradi-
ent, the concept of hydraulic head must be introduced.
The hydraulic head h has units of length and represents
the energy per unit weight of the pore fluid due to its
elevation and pore pressure [9]. The hydraulic gradi-
ent dh/dl is the change in head per unit distance along
the direction of greatest change in head. That is to say
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Figure 14: Relative permeabilities against saturation.

that fluid flows in the direction of maximum decrease in
hydraulic head.
Wave propagation depends on the resistance parame-

ters π. These are related to the permeability parameter
by π = η/k where η is the viscosity of the fluid and k is
the permeability parameter for the soil. This describes
the resistance of the porous material against the flow of
the fluid. It is assumed that the resistance parameter
for the fluid mixture can be separated into the effective
resistance for the water and gas

πFS =
πF

kF
and πGS =

πG

kG

where πFS and πGS are the effective resistances, πF

and πG are the experimentally determined resistance pa-
rameters of each fluid. kF and kG are the relative per-
meabilities which depend on saturation. The theoretical
relationship as proposed by van Genuchten [7] that fits
with experimentally determined behaviour [29] are given
by

kF = S
1

2

[

1−
(

1− S
1

m

)m]2

and

kG = (1− S)
1

3

(

1− S
1

m

)2m

where m = 0.85, a fitting parameter. Figure 14 shows
the relative permeabilities plot.

6.2 Material Parameters

The final set of parameters are the material parame-
ters {λS + (2/3)µS, F,G,QF , QG, QFG}. Following the
approach used by Detmann [4], these macroscopic ma-
terial parameters can be derived from a set of mi-
croscopic parameters that are dependent on the mi-
crostructure of the bulk material. This is done by bor-
rowing the relations from Santos, Corbero and Dou-
glas [23]. In Santos et al.’s approach, the set of mate-
rial parameters K∗

c , B1, B2,M1,M2,M3 that were used

9



6.3 Three-Component Model 6 SOIL AS AN UNSATURATED POROUS MEDIUM

Table 2: Summary of material properties chosen for
modelling.

water gas

ρθR0 (kgm−3) 1000 100
Kθ (Pa) 2.25× 109 2.2× 107

µθ(mPa s), 20◦C 1 0.015

are different from those appearing in the dispersion re-
lations. Detmann shows, however, that these have a
simple relationship with the set of parameters {λS +
(2/3)µS, F,G,QF , QG, QFG} that we wish to evaluate.
Calculating Santos et al.’s parameters with the capil-

lary relation above and mapping the results to the Det-
mann material parameters yield a relationship between
the material parameters and soil saturation. Figure 15
shows the parameters for the case of a sandstone-water-
gas mixture. The sandstone skeleton and the pore fluids
have the following properties:

n0 = 0.25, ρSR
0 = 2650kgm−3, KS = 48 109Pa, (3)

Kd =
KS

1 + gn0

, g = 50, k = 1× 10−7m2 (4)

where n0 is the initial porosity, ρSR
0 is the true den-

sity of the material with zero porosity, KS is the bulk
modulus of the grains and Kd is the drained modulus
which represents the bulk modulus of the empty matrix.
The constant g is a fitting constant that is found by
fitting the expression with experimental data obtained
from different soil types [28].
Figure 15 shows the behaviour of the material parame-

ters as saturation is varied. The parameter λS+(2/3)µS

is roughly independent of saturation which is expected
as this is a property of the solid skeleton and therefore is
not influenced by the composition of the pore fluids. The
parameters relating to each pore fluid also behave as ex-
pected with the sandstone-water coupling constant and
the compressibility factor of the water reaching a max-
imum but finite value when the soil is saturated with
water (S = 1) and going to zero when there is no wa-
ter in the pores (S = 0). The analogue is true for the
parameters relating to the existence of the gas. The
coupling constant QFG between the fluids is zero when
either one of the fluids disappears and is maximum near
intermediate saturation values.

6.3 Three-Component Model

We now look at the three-component model which in-
corporates the parameters mentioned above. We begin
with the balance laws which arise from continuum me-
chanics. Continuum mechanics allows us to view the
material as a continuous mass rather than as discrete
particles [21] through the use of a representative vol-
ume element (RVE) defined in Section 3.1. The balance

0.0 0.2 0.4 0.6 0.8 1.0
initial saturation S0

10
2

10
4

10
6

10
8

10
10

p
ar
am

et
er

va
lu
es

(P
a)

λS

ρF0 κ
F

ρG0 κ
G

QF

QG

QFG

Figure 15: Plot of Detmann’s material parameters.

laws capture the idea that the rate of change of a quan-
tity within a volume must be due to one or more of the
following—the flow of the quantity through the surface
that bounds the volume, a source that is on the bound-
ary and a source that is within the volume itself [12].

To distinguish between the two fluids, let us denote
the parameters corresponding to the wetting phase and
non-wetting phase with superscripts F and G respec-
tively.

• conservation of mass

∂ρθ

∂t
+ ρθ0 div v

θ = 0 where θ ∈ {S, F,G} (5)

• balance of linear momentum

ρθ0
∂vθ

∂t
= divTθ + p̂

θ where θ ∈ {S, F,G} (6)

• porosity balance equation

∂∆n

∂t
+ φdiv J = n̂, ∆n = n− neqm (7)

Solving the balance equations using appropriate con-
stitutive relations and representing the partial densities
instead by volume changes of the components, we end up
with the following field equations for the set of essential
fields {vθ, eS , ǫF , ǫG, n} where θ ∈ {S, F,G} [5]:

10



7 WAVE PROPAGATION

ρS0
∂vS

∂t
= div {λSe1+ 2µSeS +QF ǫF1+QGǫG1}

+ πFS(vF − vS) + πGS(vF − vS),

ρF0
∂vF

∂t
= grad {ρF0 κ

F ǫF +QF e +QFGǫG

− πFS(vF − vS)},

ρG0
∂vG

∂t
= grad {ρG0 κ

GǫG +QGe+QFGǫF

− πGS(vG − vS)},

∂eS

∂t
= symgradvS ,

∂ǫF

∂t
= divvF ,

∂ǫG

∂t
= divvG, e ≡ tr eS

n = n0

[

1 + δe+
φF

n0

(e− ǫF ) +
φG

n0

(e− ǫG)

]

7 Wave Propagation

Wave analysis is done by assuming the following wave
ansatz for the essential fields [4]:

eS = ESψ, ǫF = EFψ, ǫG = EGψ,

vθ = Vθψ where θ ∈ {S, F,G},

n− n0 = Dψ, ψ ≡ exp i(k · x− ωt)

where ES , E{F,G}, V{S,F,G} and D have constant am-
plitudes, ω is a given frequency and k = kn is a wave
vector with n being the unit vector in the direction of
propagation.

7.1 Dispersion Relations

The dispersion relations that follow from substituting
the wave ansatz into the balance equations [5] are split
into the transverse case and the longitudinal case.

Transverse:

ω2
[

1−
µS

ρS0

( k

w

)2]

− πFSπGS ρ
S
0 + ρF0 + ρG0
ρS0 ρ

F
0 ρ

G
0

×
[

1−
µS

ρS0 + ρF0 + ρG0

( k

w

)2]

+ iω
{πFS + πGS

ρS0

+
(πFS

ρF0
+
πGS

ρG0

)[

1−
µS

ρS0

( k

w

)2]}

= 0

Longitudinal:

2
∑

m=0

Am(ω)

(

k

ω

)2m

= 0

where the complex coefficients Am(ω) are given by:

A0(ω) = ω2 − πFSπGS ρ
S
0 + ρF0 + ρG0
ρS0 ρ

F
0 ρ

G
0

+ iω
(πFS + πGS

ρS0
+
πFS

ρF0
+
πGS

ρG0

)

A1(ω) = ω2
(λS + 2µS

ρS0
+ κF + κG

)

+
λS + 2µS

ρS0

πFSπGS

ρF0 ρ
G
0

+
πFSπGS

ρS0 ρ
F
0 ρ

G
0

[ρF0 κ
F + ρG0 κ

G

+ 2(QF +QG +QFG)]

− iω
[λS + 2µS

ρS0

(κF

ρF0
+
κG

ρG0

)

+
(πFS + πGS)(κF + κG)

ρS0

+
πFSκG + πGSκF

ρF0
+ 2

πFSQF

ρS0 ρ
F
0

+ 2
πGSQG

ρS0 ρ
G
0

]

A2(ω) = ω2
[λS + 2µS

ρS0
(κF + κG) + κFκG

−
ρS0Q

FG2

+ ρF0 Q
G2

+ ρG0 Q
F 2

ρS0 ρ
F
0 ρ

G
0

]

+ iω
[λS + 2µS

ρS0

(πFSκG

ρF0
+
πGSκF

ρG0

)

+
(πFS + πGS)κFκG

ρS0

−
πFS

ρS0 ρ
F
0 ρ

G
0

(QG +QFG)2 −
πGS

ρS0 ρ
F
0 ρ

G
0

(QF +QFG)2

+ 2
πGSκFQG

ρS0 ρ
G
0

+ 2
πFSκGQF

ρS0 ρ
F
0

]

A3(ω) = ω2
[λS + 2µS

ρS0

(QFG2

ρF0 ρ
G
0

− κFκG
)

+
QF 2

κG

ρS0 ρ
F
0

+
QG2

κF

ρS0 ρ
G
0

]

− 2
QFQGQFG

ρS0 ρ
F
0 ρ

G
0

where λS and µS are the first and second Lamé con-
stants for the solid grains respectively. The latter is
also equivalent to the shear modulus. F and G are
the compressibility factor of the two fluids defined as
κ = PVm/RT where P is the pressure, Vm is the mo-
lar volume, R is the universal gas constant and T is
the temperature [19]. By definition, the compressibil-
ity factor of an ideal gas is unity. Finally QF , QG

and QFG are the solid-wetting, solid-non-wetting and
wetting-non-wetting coupling constants respectively.

The partial densities are simply related to the real
densities of the pure material by:

ρS = nρSR, ρF = nSρFR, ρG = n(1− S)ρGR

11



10 CONCLUSION

8 Simulation of Detection Range

The dispersion relations obtained in the previous sec-
tion can be solved for the complex wavenumber. The
wave velocity and attenuation coefficient can be calcu-
lated from the complex wavenumber k as follows:

v =
ω

|real(k)|

α = |im(k)|

where v is the phase speed and α is the attenuation
coefficient.
In this section, numerical results for a particular

sandstone-water-gas mixture are presented. The disper-
sion relations had been solved for the complex wavenum-
ber k as a function of angular frequency of the wave
and soil saturation in the sandstone-water-gas case. The
phase speed and attenuation coefficient of the acoustic
waves were plotted against soil saturation and against
frequency.

8.1 Frequency Dependence

In Figure 18 and 19, the phase speed and attenuation
coefficient were plotted against frequency for saturation
values S = [0.2, 0.4, 0.6, 0.8, 0.99999] and for each wave
mode. The frequency range chosen was the audible range
between 20Hz to 20× 103Hz. It can be seen that the
values of the attenuation coefficients for the S and P1
waves are several orders of magnitude lower than that
the P2 and P3 waves within the frequency range of
interest. The P1 wave is the fastest of all the wave
modes which supports earlier findings that the P1 wave
is a compressional wave transmitted mainly through the
solid skeleton. P3 is the slowest wave and is most heav-
ily attenuated as it is due to weak interactions between
the pore fluids. The speed of the P2 wave when satura-
tion is high roughly corresponds to the speed of sound
in water as this wave is primarily transmitted through
the water phase.

8.2 Saturation Dependence

In Figure 18 and 20, the phase speed and attenuation
coefficient were plotted against saturation for frequency
values S = [20, 100, 1000, 5000, 20000] and for each wave
mode.

9 Detection Range Map

The detection range for different combinations of sat-
uration and frequency was calculated. The detection
range is inversely proportional to the attenuation coeffi-
cient. The contour plots of saturation against frequency
in Figure 16 and 17 show the detection range for the S
and P1 waves respectively. As these waves are much less
heavily attenuated than the P2 and P3 waves, they are
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Figure 16: Contour plot of detection range for a matrix
of frequency and saturation in the S wave case.
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Figure 17: Contour plot of detection range for a matrix
of frequency and saturation in the P1 wave case.

the most likely waves to be detected in the fields. For
frequencies around 3 kHz which are the frequencies of in-
terest for the detection of chafer grubs, we see that the
detection range is of order 100m for the S wave. This
behaviour is not observed in practice as the typical de-
tection range was determined in previous work [16] to be
approximately 50 cm. The plot for the P2 wave, which
is the compressional wave transmitted through the soil
skeleton, more closely reflects this observation.

10 Conclusion

In this work, we set out to build a device to detect and
model the weak signal produced by chafer beetles. It
became apparent from the measurement of amplitude
decay against relative separation from the source that
the model system displays more complex behaviour than
originally assumed. A first glance at the form of these
amplitude decays, both along the axis normal to the
speaker and at an angle, appears to point towards geo-

12



10 CONCLUSION

metric factors that have not been taken into account by
the simple plane wave model. Future work may look at
whether superposition of effects such as diffraction and
reflection off surfaces would be able to predict such an
amplitude decay.
Numerical simulation of wave propagation in soil was

able to predict detection ranges for different values of
soil saturation and wave frequency. For frequencies cor-
responding to the range present in the spectral analysis
of chafer beetle recordings, the range of detection was of
order 50 cm for all values of soil saturation.
The findings of this work overall confirms the difficulty

in detecting weak signals produced by soil-dwelling in-
sects. Even without loud background noise from wind
or vehicles, the fact that soil itself is a composite ma-
terial with complex microstructures means that more
work is needed to understand the different wave modes
supported by the medium.

Acknowledgements

I would like to thank Dr Christopher Lester for his
thoughtful guidance throughout my entire project and
Richard King for his advice on building electrical cir-
cuits and his understanding support during the Covid-
19 lockdown. I would also like to thank John Flynn and
his wife for interesting insights on preparing soil sam-
ples and Andy Irvine for lending me several Arduino
UNO units for the experiment. Finally, I thank Richard
Mankin and Bettina Detmann for providing helpful clar-
ifications in their respective fields of expertise.

Source Code

The source code for this project is available at
https://github.com/tigeryst/ALCBL.

13



10 CONCLUSION

Figure 18: Plot of attenuation and speed against frequency and against saturation for S wave.
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