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Abstract
A key part of experimental particle physics is the simulation of a detector’s response to an event.

Current simulators are polarised between those that are fast and approximate and those that are accurate
and slow. Generative Adversarial Networks (GANs) are a class of generative machine learning model
which have demonstrated promise in producing artificial photo-realistic images. This study employs
GANs for detector response simulation. Building on the work of Oliveira et al., data generated by the
hadronisation system Pythia and the detector simulator Delphes are used to produce jet-images,
converting jet energy deposits in calorimeter cells to pixel intensities in a 2D image. A Locally Aware
GAN (LAGAN) is trained to generate counterfeits of two classes of such images: boosted W from W ′

decay, and QCD background. Generated images are seen to distinguish between the classes accurately,
and match physical properties (transverse momentum, n-subjettiness) to a reasonable extent. Significant
performance gains compared to current fast simulation is demonstrated.
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1 Introduction

1.1 Motivation

Particle physics experiments involve colliding
particles and measuring the properties of the objects
produced. However, a given event could not only res-
ult in a variety of particle showers, but the response
of the detector is also stochastic in nature. It is from
this determination of track properties and object
momenta that a physicist must infer the original
event. Detector simulations are widely used to help
with this inference by calculating what a response
and output for a given event would be, and as such
can be used as predictive tools for models.

Full, accurate simulations (AS) of the progress of
particles through detectors, such as the commonly
used Geant 4 [1], can produce extremely accur-
ate predictions of the measurements. However,
they are computationally expensive. Approximate,
fast simulators (FS), such as Delphes [2], perform
cruder calculations with a significant speed gain (AS
∼10-1000s/event and FS ∼0.01-1s/event [3]). The
accuracy-performance imbalance between these two
solutions leaves room for other potential avenues.
One such route is the use of Machine Learning (ML)
tools.

Generative models in ML attempt to learn a given
probability distribution via exposure to samples,
and thus accurately generate new elements of that
distribution. Their capability has recently been
significantly boosted by the burgeoning fields of
neural networks and associated deep learning. Once
the learning process is complete, such networks are
demonstrably fast for appropriate usage. As such,
a generative model capable of learning to simulate
detector responses may strike a better performance-
accuracy balance than current FS. The ultimate
goal of further work would be a generative model
which approaches an AS in terms of accuracy, at
significantly lower computational costs.

1.2 Existing Research

Machine Learning (ML) and associated fields have
received significant research attention in computer
science, technology and engineering due to increases
in computing power and demonstrations of the
power and versatility of such techniques. We are
now beginning to see efforts towards bringing these
new tools to bear in HEP.

Generative Adversarial Networks (GANs) [4] are a

subset of generative models which have recently
come to the forefront of active research. This
method trains two neural networks simultaneously, a
generative model G and discriminative model D. As
the names suggest, G generates “fake” data which
D attempts to distinguish from the “real” train-
ing data. As each network is trained to improve at
their task, they compete such that ultimately G pro-
duces new data which is indistinguishable in theory
from the original distribution. GANs have shown
strong performance in generating and manipulating
photo-realistic images [5–9].

Also under active research are jets from boosted
particles [10], and also where many ML tools are
used. This project focusses on work done using jet-
images produced by mapping jet energy deposits to
an image [11, 12], particularly boosted jet identific-
ation [13–15]. Recent work has also demonstrated
classification of jets using ML techniques from nat-
ural language processing [18]. Earlier this year,
GANs were trained on jet-images generated from
Pythia output (hadronisation and parton showers
[16]) and showed promise in replicating physical
distributions [17]. This represents an initial foray
in to using GANs for HEP.

1.3 Report Outline

This report details an application of GAN based
learning to jet-images from Delphes (FS) output,
building on the work of Oliveira et al. [17] who
demonstrated the principle for Pythia data. Jet-
images were produced and pre-processed from Del-
phes output files, then used as training data for a
GAN architecture. The trained network was then
used to generate “fake” images. The quality of this
output was assessed by comparison to the training
set.

The following section outlines the theoretical back-
ground of GANs and the boosted jet process con-
sidered. Section 3 describes the methods employed,
and Section 4 presents and discusses the outcomes of
the training process. Final conclusions are presented
in Section 5.

2



Figure 1: Cutaway diagram showing components of ATLAS detector. Source: [19].

2 Background & Theory

2.1 Detectors & Simulations

Modern particle detectors are a complex set of meas-
urement systems working in unison. Taking as an
example the ATLAS experiment, we can see in Fig. 1
a cutaway of the detector set up. Simplistically, the
energy and momentum of particles travelling out
from the collision are measured by the calorimeters.
The solenoids create a controlled magnetic field, the
direction of travel in the field and the curvature of
the particles give measurements of charge and mass
respectively. A detailed description of the detector
can be found in Ref. [20].

The response of a detector to a particular particle
event is therefore non-trivial to predict, particu-
larly due to the high degree of stochastic variation
between any two measurements. A significant diffi-
culty faced by LHC experiments is the jets of had-
ronisation produced by quarks or gluons, as only the
final branches of the jets are measured by the calori-
meters. Without an understanding of this response,
however, a physicist cannot infer the event that took
place, or indeed make predictions about measure-
ments that will be made. It is in this arena that
simulations of detector behaviour are crucial.

Fig. 2 outlines a typical simulation sequence. The

first step in the process involves a matrix element cal-
culator, such as the commonly used MadGraph5
[21]. This piece of software loads a given model
(particles and interactions), and calculates all the
tree-level diagrams which take the given initial
particles to the final particles. Using this inform-
ation, Monte-Carlo methods are used to calculate
the matrix element using a given number of events.
Next, an event generator, such as Pythia, calcu-
lates the subsequent interactions, decays parton
showers and performs hadronisation [22].

The results of this are the “truth events”, which
for our purposes are the inputs, x, to any simu-
lator under consideration. The simulator performs
two key tasks, that of calculating the response of
the detector as the particles travel through it, and
reconstructing the underlying events from such in-
formation. The reconstruction step is performed in
much the same way as actual experiments, so is a
useful representation of the simulated results.

An AS then propagates the input through a detailed
model of the detectors to calculate the response.
Delphes, the FS under consideration, takes a mod-
ular approach by separating the various components
of the detector and performing approximate calcu-
lation and addition of stochasticity at each stage.
Details of this can be found in [2], a summary is
shown in Fig. 3.
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Figure 2: Summary of simulation process, from matrix element generation to final reconstruction from
detector response.

Figure 3: Summary of Delphes modules and func-
tion. Source: [23].

2.2 Generative Adversarial
Networks

Traditional and well developed machine learning
can be understood very much in parallel with the
Bayesian methods of experimental physics. We at-
tempt to determine the most likely parameters, θ,
for a given model, M, for measurements y. This
probability, p(θ|y,M), is the posterior. The usual
technique is maximisation of the likelihood (prob-
ability of data given parameters) [24]:

p(y|θ,M) =
p(θ|y,M)p(y|M)

p(θ|M)

In machine learning, computers perform this task us-
ing training data to learn the parameters, then sub-
sequently make predictions on new data. Typically
these actions are classification (labelling), regression
(common in physics) and clustering (similarity of
data points).

More recent developments have made significant
inroads into generative models, wherein learning is
done in order to produce new samples of data. In
particular neural networks and deep learning have
played a large role, as neural networks scale well with
dimensions, are end-to-end differentiable (crucial for
gradient based training) and can represent complex
functions [25].

In the simplest case GANs consist of two competing
networks G and D. G takes a latent noise variable
z as input and outputs artificial data y = G(z; θg),
where θg are the parameters of the network. D takes
either real or artificial data as input and outputs
a scalar, D(y), corresponding to the probability
that y is real. G is trained to improve at fooling
D and D is trained to improve at distinguishing
real data from generated. This can be described
by a min-max game with value function V (D,G):

min
G

max
D

V (D,G) = Ey∼pdata(y)[log(D(y)]

+ Ez∼pz [log(1−D(G(z)))],
(1)

where Ey∼pdata(y) expresses expectation over the
data probability distribution. The system is sum-
marised in Fig. 4.

It can be shown that there exists a unique solution
to this, a saddle point, strictly when pdata = pG,
where pG is the distribution produced by G [4]. This
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theoretical guarantee is a key advantage of GANs,
along with the ability to train them using standard
back propagation algorithms and the lack of Markov
Chains which are often needed in other generative
models. By modifying the parameters to bring the
system closer to this optimum (training, e.g. by a
gradient descent method such as ADAM [26]), we
achieve a successful data generation scheme.

Figure 4: Generative Adversarial Nets process. Ad-
apted from Ref. [9].

2.3 Boosted Jets

The LHC has been able to probe unprecedented
energy scales, especially with the upgrade to 13TeV
operation. For the first time, large numbers of
massive particles (i.e. W , Z, top quark, Higgs bo-
son) are being produced with transverse momenta
pT considerably larger than their rest mass m. Tra-
ditional reconstruction techniques identify all the
decay products of such objects as a single jet, making
distinguishing such jets from the large background
of QCD jets a prominent problem [10]. As these
boosted objects may also include contributing effects
from physics beyond the standard model, there is
considerable active study in this area.

Modern methods probe individual jets and their
detailed substructure for identification and tagging.
A key property is the number of hard ‘prongs’ of
radiation in a jet. Electroweak boosted objects
(W/Z/H) produce two prongs, while a boosted top
quark produces three [27]. Background QCD pro-
cesses only lead to a single hard prong [28].

The process considered in this investigation is the de-
cay of aW ′ boson. TheW ′ and Z ′ are massive gauge
bosons which arise in extensions to electroweak the-
ory. The simplest example of which is an additional
SU(2) gauge symmetry, i.e. SU(2)1×SU(2)2×U(1),

W’

f

f̄

W

Z

W

q′

q

Z

ν̄

ν

Figure 5: Feynman diagram for process under con-
sideration. Fermion annihilation produces W ′ de-
caying to boosted W and Z.

which is spontaneously broken to produce the stand-
ard electroweak SU(2) [29]. These particles are pre-
dicted to have masses on the order of TeV.

The decay sequence imposed in this project is given
by the Feynman diagrams in Fig. 5. The large
mass of the decaying W ′ means the W is highly
boosted, and decays to quarks producing a boosted
jet. By forcing the Z boson to decay to neutrinos,
we ensure it does not complicate our signal; it decays
“silently”. The boosted W is expected to produce
a two-pronged pattern. This study contrasts this
process with background QCD jets.

3 Methods

3.1 Jet-Images

3.1.1 Calorimeter to Image

The jet-image generation largely follows the scheme
described in Ref. [12], adapted for extraction from
Delphes output ROOT files. Training data gen-
eration begins by running Delphes 3 (with in-
ternal Pythia) using the DelphesPythia8 command
[30]. Pythia is configured for collisions at

√
s =

13TeV, and a W ′ boson mass of 800GeV. Del-
phes is configured to use the FastJet [31] pack-
age for jet-clustering (assigning particles to jets)
using the anti-kt algorithm [32], with a radius para-
meter of R = 1.0. The jet in each event with the
highest transverse momentum is selected for the
image. Trimming is also performed in this step, see
Section 3.1.2 for details.
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The output ROOT file (see Fig. 3) is processed
to extract information about jet constituents. Jet-
image axes correspond to the orthogonal directions
of azimuthal angle φ and pseudorapidity η; pseu-
dorapidity is defined by the polar angle θ as η ≡
− ln(tan(θ/2)). Pixels of size 0.1× 0.1 span a grid
of angle values η × φ ∈ [−1.25, 1.25]× [−1.25, 1.25],
forming a 25×25 pixel image. The intensity of pixel
i, denoted Ii, is given by the sum of transverse en-
ergies (assuming clusters are massless, as shown in
Appendix A) over all the calorimeter cells, indexed
by c, that fall within the pixel1,

Ii =
∑
c

p
(c)
T,i =

∑
c

E
(c)
i

cosh η
(c)
i

, (2)

where E(c) and η(c) are the energy and pseudorapid-
ity of cell c. Figure 6 shows a particle hitting an
idealised cylindrical calorimeter tower configuration
with a superimposed pixel grid.

η

φ

z

i

Figure 6: Idealised cylindrical calorimeter tower ar-
rangement, with particles colliding along the z axis.
A scattered particle hits a calorimeter cell within
pixel i at polar angle and pseudorapidity values φ
and η. Pixel division sizes are not representative;
pseudorapidity diverges when approaching the ±z
axis.

1The longitudinal segmentation of calorimeter towers is
collapsed to a flat cylinder in our idealised picture

3.1.2 Pre-Processing

Pre-processing the images to exploit the inherent
physical symmetries and remove obfuscating vari-
ations significantly improves performance. The
steps employed are as follows:

1. Trimming [33]: The anti-kt algorithm is ap-
plied to the jet to cluster it in to sub-jets with
R = 0.3kt, and those with less than 5% of
the transverse momentum of the overall jet are
dropped. This helps to highlight the hard event
under consideration, and reduces the effect of
pileup (multiple proton-proton collisions in the
same event). The trimming step is carried out
in the initial Delphes run, via FastJet.

2. Translation: Using the sub-jet information
from the trimming step, the jet is translated
so that the sub-jet with highest transverse mo-
mentum is at the centre of the image. This is
performed when initially pixelising the calor-
imeter measurements. Translations in φ are
rotations about the collision axis, so pixel in-
tensities are invariant. However, translations in
η are Lorentz boosts. With the pixel intensity
as defined in Eq. (2), the pixel intensity also
remains invariant under such translations (see
Appendix A).

3. Rotation: Once the image has been read in,
it is rotated such that the sub-leading jet is
directly below the leading, i.e. at an angle of
−π/2 with the origin at the centre of the image.
If the angle of rotation is not a multiple of π/2,
which in general it is not, the rotated pixel grid
will not align with the original. Thus for a gen-
eral affine rotation pixel intensity redistribution
via interpolation is required, this is performed
using a cubic spline interpolation. If no second
sub-jet is present, the image is rotated such
that the principle component axis is vertically
downwards. To counter the effects of interpola-
tion, the sum of intensities is renormalised to
be equal to the value before rotation in order
to minimise the information lost.

4. Flip: The image is reflected about the central
vertical axis if required such that the right is
always the half with the higher total intensity.
This further helps make sure the hardest fea-
tures (the ones of physical interest) appear in
similar positions, aiding the training procedure.

The final three steps are demonstrated in Fig. 7
using a simplified image. Figure 8 shows a random
sample image generated from Pythia + Delphes
(PD) with all pre-processing steps applied, more

6



samples are given in Appendix B. In order to mar-
ginalise the effect of variations in transverse mo-
mentum for this study, pT of jets used for training
is restricted to 250GeV ≤ pT ≤ 300GeV. Simil-
arly, a further cut on jet mass is imposed by re-
quiring 60GeV ≤ m ≤ 100GeV. Both cuts are
performed using the value provided by the cluster-
ing algorithm for each jet. All jet-image generation
was performed2 using Python v2.7, using PyROOT
(the Python interaction module for ROOT [34]) to
read in Delphes objects. Numpy [35] was used for
image processing, alongside Scikit-image [36] for
the rotation. Matplotlib [37] was used to produce
all plots in this report.
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Figure 8: Sample jet-image from Pythia + Del-
phes data after pre-processing. High intensity
centre (leading sub-jet) and sub-leading sub-jet dir-
ectly beneath are seen. Pixel values are plotted on
a log scale.

3.2 GAN

The GAN architecture and training used are fully
discussed in [17], and are summarised here.

3.2.1 Architecture

The Locally Aware GAN (LAGAN) architecture
used builds upon the Deep Convolutional formula-
tion [5], which essentially consists of several convolu-
tional filter layers before the fully connected neural
network. This helps identify and generate specific
features in an image. Whereas in the convolutional

2Code available at github.com/ss2165/delphes-gans. Also
submitted on USB drive with report.

case a filter patch is slid across the entire image, in
the Locally Aware case patches are assigned to a
given part of the image. Therefore rather than N fil-
ters being convolved with the whole image, there are
N distinct filters applied per patch of image, which
are trained independently. This is key to breaking
translational invariance and producing well defined
local features as required.

Further deviations from traditional GANs are re-
quired to compensate for differences between natural
images and jet-images. Jet-image pixel intensities
are not confined to a fixed range (such as 0 - 255 in
an 8-bit grayscale image), but rather need to cover
several orders of magnitude. Furthermore, in a given
jet-image the majority of pixels have a null value,
leading to sparsity. The final non-linear activation
layer in G is chosen to be a Rectified Linear Unit
(ReLU) [38], which performs the operation

f(x) = max(0, x)

on an input x. This helps produce a large number
of null cells, and an unbounded maximum.

A common disadvantage of GANs is a proclivity
for G to overwhelmingly produce a single sample
which D struggles to classify, this is known as
mode-collapse [4]. Minibatch discrimination [39],
used here, allows D to exploit batch-level fea-
tures, making collapse unfavourable for G. It also
proved key for achieving high dynamic range and
sparsity.

An auxiliary classification task for the discriminator,
as described in the ACGAN system [6] is also em-
ployed. The Discriminator, as well as determining
whether an image is real or fake, also assigns it a
label corresponding to whether it is a ‘signal’ (W ′

jet) or ‘noise’ (QCD jet). Similarly, the Generator is
tasked with producing an image conditioned on an
input label corresponding to the process. Both mod-
els are thus minimising a second loss function LC

which can be expressed in terms of log-likelihoods
as

LC =− E[logP (C = c |Xreal)]

− E[logP (C = c |Xfake)],
(3)

where P (C = c |Xreal) indicates the probability of
the assigned class being correct given the sample
X is real. This has not only been shown to aid
the training process, but also demonstrates that a
GAN could simulate a variety of physical processes,
by conditioning on the input [40]. Figure 9 shows
the total architecture used in this LAGAN system.
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Figure 7: Demonstration of final three pre-processing steps applied to jet-images produced from PD
output, with a simplified toy image. Details of the steps are in the text.

Figure 9: LAGAN architecture used for training. Source: [17].

8



3.2.2 Training

Training was performed with gradient descent using
the ADAM optimiser [26]. The noise variable input
to the discriminator was a normally distributed
vector of length 200, with 0 mean and standard
deviation 1. Training was performed on batches
of 100 images at a time, for 50 epochs (total runs
of training over the whole dataset). Models were
built and trained using Keras v1.2 [41] with a
Tensorflow v0.11 [42] backend.

Training was performed for two training image data-
sets of size ∼6k and ∼25k, each set containing ap-
proximately equal numbers of the two classes of jet-
image (W ′ and QCD). A single training sequence on
the larger dataset took approximately 35 h to run on
the computational resources available (CPU), and
so was determined to be a reasonable maximum size.
The original Pythia only investigation was able to
use GPUs, which significantly reduce training time,
thus the authors could make use of a 800k image
dataset.

4 Results and Discussion

This section presents and examines the outcomes of
the investigation. Section 4.1 evaluates the effect of
Delphes on the produced training dataset of jet-
images. The GAN generated images are presented
in Section 4.2, and distributions they produce in
associated jet variables are considered in Section 4.3.
Section 4.4 outlines the computational advantage of
the scheme presented.

4.1 Delphes Jet-Images

As jet-images have not previously been produced
from Delphes output, we first characterise them.
Superficially, as the general FS function is smear-
ing of particle tracks and measurements, we
would expect hard centres of radiation to be
broadened and spread over the images from Py-
thia+Delphes (PD) output, compared to purely
Pythia (P). Average images3 generated from
∼12.5k images for both W ′ (signal) and QCD (noise)
decays are compared for P (data from the original
investigation [17]) and PD.

Figure 10 shows the sets of average images on a
log scale for pixel intensity. A plot of the difference
between the images on a pixel by pixel basis (P - PD)

3Average images correspond to an array of the average
value of each pixel over the set.

is also shown, on a linear scale. The P images show
circular symmetry in the low intensity regions away
from the centre. The expected two hard prongs are
seen in the W ′ average, while the QCD prongs are
broader, with the lower lobe at a smaller intensity.
The PD images do not display the circular symmetry,
likely because the low intensity region (10−4 GeV
and below) is not captured by the dimensions of the
image; it has been smeared out of frame. Further
investigations should increase the dimensions to
investigate this area.

As expected, the lobes of high intensity have been
spread in the PD images. The image of differences
shows that in both cases the central, primary lobe,
has a lower core intensity as compared to the P im-
ages, and it is spread mainly downwards in the −η
direction by Delphes. We may infer then that the
smearing of the leading sub-jet is largely towards
the sub-leading. The secondary lobe (which is not
distinguishable in the QCD difference) is spread in
to something akin to an arrowhead pointing down-
wards, though it is not well distinguished from the
primary lobe in some areas. This suggests that
again the smearing is biased towards the primary
lobe, but now with a large tangential component.
This effect may also be caused by lower efficacy of
the jet-finding algorithm after detector response has
been factored in. Thus the sub-jets may not be as ac-
curately translated/rotated over all images.

The blurring of high intensity cores can be better
understood by comparing the pixel intensities along
the central vertical axis of the image, i.e. η = 0,
as shown in Fig. 11. Central peaks broaden in
the −η direction, raising the intensity of the inter-
lobe region significantly in both cases. While the
distinctive W ′ secondary peak broadens but remains
visible, the previously small QCD secondary peak
is now no longer separable from the decaying tail
of the primary. Strict numerical conclusions are
difficult to draw from so few points, further studies
could use a higher resolution.

4.2 Generated Images

This section first examines the results of the training
performed on the larger 25k dataset, i.e. the more
fully trained Generator (G). Figure 12 is a random
W ′ sample from G (c.f. Fig. 8), more samples are
given in Appendix B. The generated images display
the two key expected properties of sparsity (majority
of the pixels are not activated), and the two high
intensity regions at the centre and directly below
the centre.
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Figure 10: Comparison of average jet-images between those generated from just Pythia (P, left) and
those also generated with Delphes (PD, right) on a log scale. The difference between the two images (P
- PD on a pixel by pixel basis) is shown in the middle on a linear scale, with the colour map clipped to
±20GeV to aid visibility. Images for the W ′ signal (top) and QCD noise (bottom) are shown. Pythia
only images from Ref. [17].
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Figure 11: Pixel values for η = 0 axis from average jet-images (over 12.5k images) for W ′ signal (left)
and QCD noise (right). Each plot compares tracks for P and PD images.
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Figure 12: Sample jet-image produced by a LAGAN
Generator after being trained on a 25k PD image
dataset. Pixel values are plotted on a log scale.

4.2.1 Average Image Comparison

In order to assess the quality of the generated image
distribution, a sample set was produced of the same
size as the training PD set (12.5k images for each
class). Average images are compared to the training
data in Fig. 13, as in Fig. 10. In the central and
mid-range regions of the image the magnitude of
intensities match training data, with a high intensity
central region. Moreover, the W ′ high intensity
region also includes a secondary lobe, while QCD
does not.

However, deficiencies in G images are readily ap-
parent. The most clear is the empty outer regions
of the averages, where negligibly few images have
non-zero pixel values. This is largely due to the diffi-
culties in achieving such large range in the output of
the Generator. Training to achieve accuracy in the
high intensity region comes at the price of a crude
low intensity region. The ReLU activation layer, if
insufficiently or incorrectly trained could have lead
to too many pixels which are never activated.

Examining the difference images shows training im-
ages have higher intensity cores, but the generated
images match here to within 20%. Notably, the G av-
erage image contains certain high intensity pixels in
low intensity regions (especially for W ′). Similarly,
there are also certain pixels in high intensity regions
which are never activated. This can be explained
by some degree of mode-collapse, wherein G is dis-
proportionately activating some pixels and never
activating others. This can likely be overcome to an
extent with a larger training set, the effect of dataset
size is discussed further in Section 4.3.

4.2.2 Interim Images

Some insight in to the training procedure and eval-
uation of the hyper parameters can be achieved by
looking at intermediate results. For standard ma-
chine learning applications we could track training
quality using the loss function. The GAN loss func-
tion (Eq. (1)), however, is notoriously not a useful
measure of training, an issue recent reformulations
are attempting to resolve [43].

We may instead examine the loss function for the
auxiliary classification task (Eq. (3)). Figure 14
shows the loss varying over the epochs of training
(for the 25k dataset), evaluated on training sets
of images and a separate test set, for both G and
D (the equivalent plot for GAN loss is included
in Appendix C for completeness). Also shown are
average images from G at intermediate epochs for
both classes. The loss variation suggests gains made
beyond 20 epochs are marginal. This is somewhat
supported by the images, which superficially vary
little from this point onwards. The key difference
between the two classes, two lobes for signal and
one for noise, is seen to develop at around epoch
30.

The value in further training may be seen in the
sparsity. After beginning as random noise, initial
learning produces a highly sparse average image
with compact central cores. Subsequent images
show more and pixels in the low-intensity regions
being activated. While training up to or beyond 50
epochs may be useful in this regard, it is clear that
more training data would be far more potent.

4.3 Physical Distributions

Characterising a distribution of images, a 625 di-
mension distribution in the case of 25× 25 pixels, is
difficult to achieve numerically. Mapping images to
a single variable, ideally a physically motivated one,
gives a one dimensional distribution which could
provide insight. Here we calculate two such dis-
tributions, the first is the ‘discretised’ transverse
momentum pT [17], calculated from the pixel values
Ii of an image I as

p2T (I) =

(∑
i

Ii cos(φi)

)2

+

(∑
i

Ii sin(φi)

)2

where ηi and φi are the pseudorapidity and azi-
muthal angle, respectively. The second is n-
subjettiness τn [27], a measure of the extent to which
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Figure 13: Comparison of average jet-images (over 12 500 images) between training data (PD, left) and
those from the trained Generator (G), on a log scale. The difference between the two images (PD - G) is
shown in the middle on a linear scale. Images for the W ′ signal (top) and QCD noise (bottom) are shown.

Si
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N
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se

Figure 14: Variation in loss function for auxiliary task with training epoch, evaluated on training and
testing data sets for Generator (G) and Discriminator (D) (top). Average images from G at intermediate
epochs for W ′ signal and QCD noise (bottom). The scale for pixel intensities is the same as previous
figures, for example Fig. 13.
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a jet can be clustered in to n sub-jets (more likely
to be n sub-jets for smaller τn). We can calculate
the ratio τ21 using

τn(I) ∝
∑
i

Ii min
a

(√
(ηi − ηa)2 + (φi − φa)2

)
,

τ21(I) = τ2(I)/τ1(I)

where ηa and φa are axis values determined with
the one-pass kt axis selection using the winner-take-
all combination scheme [44]. The ratio τ21 when
measured for traditional jet data proves to be a
useful distribution for discriminating two-pronged
jets such as boosted W from QCD background, as
shown in Fig. 15.

Figure 15: Distribution of τ21 for boosted W and
QCD jets, from Ref. [27]. An invariant mass window
of 65GeV < mjet < 95GeV was imposed on jets of
R=0.6, pT > 300GeV and |η| < 1.3.

The two distributions are calculated for the PD data-
sets of size 6k and 25k, and the Generators trained
on the respective set. Figure 16 shows the results.
The generated transverse momentum distributions
are broad compared to the PD distributions in the
6k case, but in the 25k case show a defined peak at
approximately the same location as PD. Similarly,
in the 6k case generated τ21 distributions both peak
at approximately 0.6, while the PD W ′ distribution
peaks noticeably lower than QCD (c.f. Fig. 15).
However, in the 25k case the peaks show a clear
distinction in the correct direction, though the peak
locations do not match those of PD.

These observations show the value of more training
data, and suggest the same scheme repeated with a
training set of order 106 images (as in the original
investigation) could lead to significantly more accur-
ate generated images. The well defined separation
in τ21 also shows G is producing output conditioned
on the process (the difference in average images
seen in Fig. 10 also supports this argument). We
may also conclude that the Discriminator is showing
some effectiveness in distinguishing W ′ and QCD
images.

4.4 Computational Performance

As the initial motivation for using machine learning
was computing performance gains, run times were
compared for DelphesPythia8 calls and the Gener-
ator producing the same number of jet-images. Both
tasks were performed on the same Intel R© Core

TM

i5-3570 @ 3.40GHz machine.

A logarithmic plot of runtime t against number of
events N is shown in Fig. 17. Linear relationships
between logarithms of the variables of the form
log(t/s) = a log(N) + b were fit to the data, the
resulting coefficients are given in Table 1. The PD
system functions linearly, calculating results for one
event after another, so we would expect the runtime
to grow as O(N). The fitted gradient is close to
unity, corroborating this prediction. The Gener-
ator, however, is highly non-linear in operation thus
the relationship is not well modelled by a straight
line.

At large event numbers, N ≥ 103, G provides an
order of magnitude speed advantage. These results
are for a CPU, a GPU would likely facilitate another
order of magnitude. As many HEP applications
may not have a GPU available for simulation, it is
still instructive to consider the CPU only case. Of
course, the direct comparison of rates is not entirely
justified as a jet-image does not contain all the
information generated by Pythia and Delphes, so
these numbers are merely indicative.
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Figure 16: Distribution of discretised image pT (top) and n-subjettiness τ21 (bottom) for 6k (left) and
25k (right) training set size.
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Figure 17: Plot of runtime t against number of
events N for the Pythia+Delphes (PD) system
and trained LAGAN Generator (G). Linear fits
to logarithms of the variables are also shown, see
Table 1 for coefficients of the fit.

Method Gradient, a Constant, b

Pythia+Delphes 0.32± 0.07 0.3± 0.2

Generator 0.93± 0.03 −1.2± 0.1

Table 1: Coefficients for linear fits of the form
log(t/s) = a log(N) + b fit to data of runtime t
against number of events N . Fitted lines are shown
in Fig. 17

5 Conclusions

This study aimed to explore the use of machine learn-
ing tools to mimic the function of fast, approximate
detector simulations. Based on recent work and
promise, Generative Adversarial Networks (GANs)
were chosen as the generative model. The processes
under consideration were jets caused by a boosted
W produced from the decay of a hypothetical W ′

gauge boson, and QCD background jets.

Calorimeter tower energy data from Pythia and
Delphes simulations were cast in to 2D images in
the form of jet-images. Pre-processing steps of trim-
ming, translation, rotation, and flip were applied to
the images to produce training data sets. Compared
to images generated without Delphes, they were
observed to have more smeared or broadened regions
of high intensity radiation as predicted. A Locally

Aware GAN, optimised for generating distinctive
local features in the images, was trained using this
data.

Generated images were superficially well matched
with training data and were seen to reproduce
the key features of radiation prongs and sparsity
in average image comparisons. Inactive and erro-
neous pixels were evidence for some degree of mode-
collapse, alongside a sub-optimally trained rectified
activation final layer. Comparing distributions of
the physically motivated variables transverse mo-
mentum and n-subjettiness showed the benefits of
larger training datasets as well as capability to pro-
duce two distinguishable classes of output. The
predicted increase in computational efficiency for
event generation was also measured.

The results of this investigation demonstrate that
GAN based emulation of detector simulator beha-
viour is indeed a viable and productive goal. The
presented scheme agrees reasonably well in kin-
etic distributions, and is computationally more ef-
ficient than the original simulation. Future work
should aim to explore whether more aspects of Del-
phes output could be encoded and generated in
image format, whilst also improving the accuracy
of images to match existing simulators.
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Appendix A Pixel Intensities

Pixel intensities are given in terms of calorimeter cell energy E and pseudorapidity η by

I =
E

cosh η

treating clusters as massless. Using the definition of pseudorapidity in terms of polar angle θ, η ≡
− ln(tan θ/2) we calculate

cosh η =
eη + e−η

2
=

(tan θ/2)
−1

+ tan θ/2

2
=

1

sin θ
.

Thus I = E sin θ and we have shown pixel intensities are equal to the transverse energy. To further show
I is invariant under a translation in η of the form η → η′ = η + δ we note that such a translation is a
Lorentz boost. Further noting that in the massless limit pseudorapidity is equivalent to rapidity, we see
that E transforms as:

E → E′ = E(cosh δ + cos θ sin δ)

Where E cos θ is the component of the four-momentum in the direction of the boost. Rewriting cos θ
as

cos θ =
√

1− sin2 θ =

√
1− cosh−2 η = tanh η

We can manipulate the transformed energy according to

E′ =
E

cosh η
(cosh δ cosh η + sinh δ sinh η) =

E

cosh η
cosh(η + δ)

Thus the overall intensity transformation,

I → I ′ =
E′

cosh η′
=

E

cosh η
cosh(η + δ)

(
1

cosh(η + δ)

)
= I,

is invariant under translations in η.
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Appendix B Sample Images

(a) PD W ′ signal

(b) PD QCD noise

(c) G W ′ signal

(d) G QCD noise

Figure 18: Radnomly samples jet-images. (a) Pythia+Delphes W ′ signal, (b) Pythia+Delphes QCD
noise, (c) Generator W ′ signal, (d) Generator QCD noise. Pixel intensities correspond to the same school
used in previous figures, see Fig. 8 for example.
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Appendix C GAN Loss Function
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Figure 19: Variation in loss function (as given in Eq. (1)) with training epoch, evaluated on training and
testing data sets for Generator (G) and Discriminator (D).
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