Reconstruction irregularities in the ATLAS experiment

Tim Lawson

University of Cambridge

tsl29@cam.ac.uk

May 16, 2016

Overview

- Background
 - Motivation
 - Parity-violating observables
 - ATLAS
- 2 Method
 - Coefficients of asymmetry
 - Toy model
 - Screw model
- 3 Twist
 - Weak modes of alignment
 - Implementation
- 4 Conclusions

Motivation

- Excess parity-violation could indicate new physics...
- ... or imperfections in the experiment
- Should be apparent in parity-odd observables as an asymmetry
- How to quantify 'asymmetry'?
- How to figure out its cause?

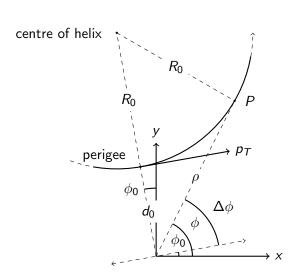
Parity-violating observables

- Spatial inversion through the origin reverses momenta
- ullet Parity is violated in a process if cross-section changes under \hat{P}

$$|M|^2 = \text{even} + \text{odd} \quad \xrightarrow{P} \quad |M|^2 = \text{even} - \text{odd}$$

Parity-violating observables

- Initial state must be symmetric
- Can only depend on momenta
- ullet Involves alternating tensor $\epsilon_{\mu
 u
 ho\sigma}$
- Asymmetry should not cancel between different processes


The variable D

$$((\vec{p}_{\mathsf{a}} imes \vec{p}_{\mathsf{b}}) \cdot \hat{z})\operatorname{sgn}((\vec{p}_{\mathsf{a}} - \vec{p}_{\mathsf{b}}) \cdot \hat{z})$$

Avoid cancelling:

- label by energy
- label by charge (e.g. twist)
- CP-conjugate (CP violation)

Particle tracking

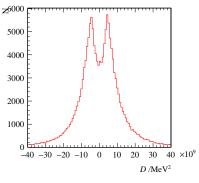
Parameters:

- d_0 and z_0
- ϕ_0 and θ_0 (η_0)
- q/p

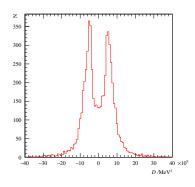
Coefficients of asymmetry

'Forward-backward'

$$A = \frac{|N_{D>0} - N_{D<0}|}{N_{D>0} + N_{D<0}}$$


Mean

$$\bar{D} = \sum_{i=1}^{N} \frac{1}{N} D_i, \quad \mathsf{SE}_{\bar{D}} = \frac{\sigma}{\sqrt{N}}$$


Skewness

$$G_1 = rac{\sqrt{N(N-1)}}{N-2}rac{1}{\sigma^3}\sum_{i=1}^Nrac{1}{N}(D_i-ar{D})^3, \quad \mathsf{var}(G_1)pprox rac{6}{N}$$

ATLAS data

$$n = 1.567 \times 10^5$$

 $n = 6.07 \times 10^3$

Figure: D distributions of dijet and dilepton events.

ATLAS data

	n	Α	$ar{\mathcal{D}}/MeV^2$	G_1
dijet	1.567×10^{5}	$(2\pm5)\times10^{-3}$	$(0.5 \pm 1.9) \times 10^8$	4 ± 11
e $^\pm$, μ^\pm	6.07×10^{3}	$(0\pm3) imes10^{-2}$	$(0\pm3) imes10^8$	1 ± 2

Table: Values of coefficients for 1 fb⁻¹ of ATLAS data, divided into 10 sub-samples.

- Errors are too large!
- \bullet Especially if we want to see variation with ϕ,η
- Need lots more data to see if method works

Toy model

- Monte Carlo generator
- 'Dilepton' events (can label by charge)
- Make parity symmetric
- Looks symmetric (just as well!) ...

Toy model

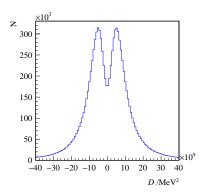


Figure: Overall *D* distribution for 'dimuon' events.

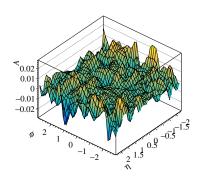


Figure: Variation of A over 20 bins in ϕ and η .

Screw model

- ... but does anything look asymmetric?
- Look at model that violates parity
- Screw model has $\Delta\phi \propto \Delta\eta$

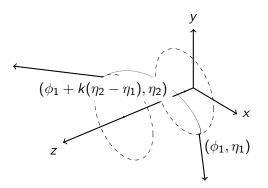


Figure: Illustration of the screw model geometry.

Screw model

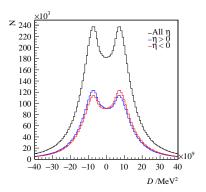


Figure: D distribution for 1×10^7 screw model events.

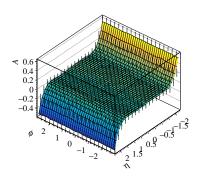
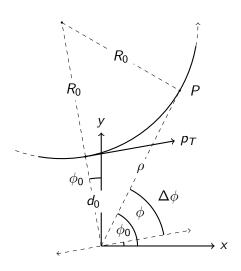


Figure: Variation of *A*, divided into 100 sub-samples and 20 bins.

Screw model

- Need to look at variation to see asymmetry
- ullet A, $ar{D}$ have smaller errors than G_1
- Theoretically, the method could spot parity violation
- What about a potential detector effect?


Weak modes of alignment

- Correlated distortion
- No effect on χ^2
- Bias track parameters
- ullet A twist, where $\Delta\phi=cz$, is parity-odd
- Potential source of excess parity violation

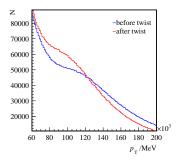
Weak modes of alignment

	ΔR	Δφ	ΔZ
	Radial Expansion (distance scale)	Curl (Charge asymmetry)	Telescope (COM boost)
R		, (S),	—
	Elliptical (vertex mass)	Clamshell (vertex displacement)	Skew (z momentum)
ф			
	Conical Warping (total momentum)	Twist (vertexing)	Z expansion (distance scale)
Z			00

Effect on parameters

- Neglect d_0
- Transformation

$$\Phi \to \Phi + \textit{cz}$$


• Only affects $p_T = seBR_0$

$$ightarrow p_{T} \left(1 + rac{2c}{seB}p_{T}\sinh\eta_{0}
ight)^{-1}$$

Need to label by charge

Twist

- Look at a twist we can already identify/correct
- Transform p_T (and D_{\pm}) for fake data

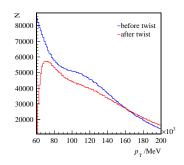


Figure: Effect on \pm -vely charged momentum distributions respectively, for 5×10^6 'dimuon' events in the forward region.

Does it look asymmetric?

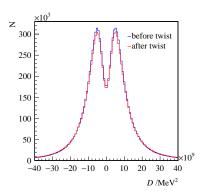


Figure: Effect of twist on D_{\pm} distribution for 1×10^7 'dimuon' events.

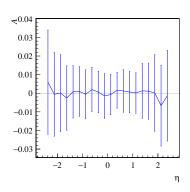


Figure: Variation of A for 1×10^7 'dimuon' events after twist, divided into 100 sub-samples.

Conclusions

- Need to choose coefficients wisely
- Coordinate variation of D distribution important
- Even for a large twist deformation, *D*-asymmetry is negligible
- Other detector effects responsible?
- Need more sophisticated analysis with proper detector response
- A way off from using parity-odd observables as a test for new physics