
23 

 

Appendices 

A – Momentum modes 

From the discretisation of position space we can determine, through a Fourier transform, that of momentum 

space: 

    
 

 
 

    
  

 
 

As position is periodical, so is momentum (note, for   
 

 
, momentum is in a negative direction): 

        
  

 
 

       
   

 
 

              

        
  

  
    

B – Verifying commutation relations 

Substituting our field expansions into the commutation relation gives: 
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The term in braces is: 
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Assuming the commutation relations for the creation and annihilation operators, this is just: 
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Using the identity: 
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We find, as required: 
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C – Energy-momentum relation 

Applying the definition of the derivative twice gives: 
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So the Euler-Lagrange equations become: 
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Now we substitute in the trial field solution: 
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Using our definition of momentum this becomes: 
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In the limit of     or      this becomes the standard energy-momentum relation: 
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D – Simplifying the Hamiltonian 

First find the derivative of the field: 

    
 

 

   
∑

 

    

( ̂  
           ̂  

           ̂  
         ̂  

       )

 

 

    
 

 

   
∑

 

    

((         ) ̂  
        (        ) ̂  

       )

 

 

Use the identity: 
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To obtain: 
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Substitute this into the Hamiltonian: 
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Now rewrite this using the following relation: 
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Finally, use the energy-momentum relation to simplify this to give: 
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E – Fock state orthogonality 

For a general commutation relation of the form: 

[ ̂   ̂ 
 ]          

We find: 
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So that the value of a normalisation constant can be determined: 
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Given the indifference of the operators to those in different modes, multiple values of   leads to equivalent 

normalisation constants that are just multiplied together. For our commutation relations this gives: 
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F – Eigenvalues of the Free Hamiltonian 

Repeated use of the commutators between the Free Hamiltonian and the creation operators yields: 
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Which, using the results in Appendix E and the enforced zero eigenvalue of the vacuum state, gives: 
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G - Operator effects on general states 

If we separate a general state into its normalisation factors and creation operators, then apply another creation 

operator: 
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Using the definition of our orthonormal states to calculate the prefactor we can rewrite this: 
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Repeating this process for an annihilation operator, using the commutation relation multiple times to move the 

annihilation operator to act on the vacuum state, we find: 
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We find the prefactor in the same way as before: 
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Which gives an equation very similar to that for creation operators: 
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We can confirm these equations by noting that they reproduce the commutation relation: 
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H – Number of basis states 

For a particle-biased labelling method, the total number of states for up to   particles is: 

    
      

 
 

           

 
   

              

  
 

Which is of the order   .  
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I – Relativistic Effects 

The maximum momentum of a particle in our system is given by: 

          
  

  
 

This can also be written as: 

               

We can solve for      (in natural units): 
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This is only much less than 1 (the speed of light in natural units) for: 

       

J - Power Iteration method convergence 

Expanding a state in terms of the Hamiltonian eigenbasis: 
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Applying the algorithm once (ignoring the renormalisation): 
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We see how the algorithm works and that for convergence we require: 

       

K – Cantor’s Pairing Function 

For any pair of numbers [   ] we can use Cantor’s Pairing Function to compute an unique associated index,  , 

and can also calculate the pair from that index. By applying the algorithm recursively, using   as the next  , we 

can associate any set of number lists of the same length with unique indices and vice versa. For example, with a 

list of 4 numbers we have: 
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By repeatedly applying this recursion to the grid produced by the pairing functions we go from: 
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To the following, where the triangular truncation mentioned is evident: 
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L – Conservation of probability 

We start with a general state and apply the Schrodinger equation: 
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Pre-multiplying by the original state gives: 
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From which we can deduce: 

 

  
〈 | 〉    

〈 | 〉  ∑|  |
 

 

   

M – Conservation of energy 

Working in the eigenbasis of the Hamiltonian, we can write a general state as: 
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Using the Heisenberg picture we can apply the Hamiltonian to this general state after some time has passed: 
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Pre-multiplying by the state at this time gives the expectation value of the state energy, assuming the state is 

normalised: 
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The coefficients have no time dependence, so we find the basis independent result: 
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O – Eigenstate decay 

We can write our calculated state as the actual state plus some error decomposed into the eigenstate basis: 
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where the    are small. Now we apply the Hamiltonian: 
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We can use this to write the error in the next calculated state for the Leapfrog method. First we must apply an 

Euler step: 

|         ⟩       |        ⟩  |        ⟩           | ⟩  ∑           | ⟩

 

 

Now we can apply a Leapfrog step: 
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Repeated application gives the state after a number of timesteps (to      ): 
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The first term matches the expected phase rotation of the eigenstate to      . We expect the Leapfrog method 

to be accurate to        and a full calculation of the above state would show that, for large  , the method here 

is accurate to this order. The moduli of the error components do not rise collinearly in time, as may have been 

expected. As a result the error components associated with larger eigenvalues dominate. As a rough 

approximation, for large    these moduli increase of the order: 

      
  

P – Negative energies 

In general, we cannot say that the Free Hamiltonian ground state is no longer the Full Hamiltonian ground state 

without explicitly checking it. However, for the matrix considered here it can be proven that the ground state 

does indeed change. We can write our Full Hamiltonian in a certain way, using the labelling system described in 

section 3.5, because a    interaction cannot change particle number by an even number. Calculating the energy 

of a normalised state of the particular type shown gives (for small  ): 
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We see that we can always find a negative energy state, as we have the freedom to choose  . So the ground state 

of the Free Hamiltonian, which still has energy zero, is not the ground state of the Full Hamiltonian. 

 

Q – Code structure 

 


