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Abstract 

A Quantum Field Theory simulator and a codebase of utilities were developed for use as an 

educational tool. The simulator models a single real, massive, self-interacting scalar field in a 

discretised one-dimensional space. The Leapfrog integration method was used to model time 

development. The variable limits of the simulator were determined through investigating the 

conservation of energy and probability. The simulations conserved these quantities to better than 

one part in 1010 for an optimised set of system variables. The Power Iteration method was used 

to determine the lowest eigenvalues of the calculated Hamiltonian matrix and their 

corresponding eigenstates. These were used to partially validate the simulations by verifying the 

equivalence of a second-order self-interacting term in the system Lagrangian with a change in 

mass. This equivalence was established to better than one part in 109 for the eigenstates with the 

second and third lowest eigenvalues. 
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1 – Introduction 

Quantum Field Theory (QFT) forms the theoretical framework of the Standard Model and many 

Grand Unified Theories. It is fundamental to modern physics. Consequently, it is important that it is 

taught to new generations of scientists effectively and reliably. A simple to use, distributable QFT 

Simulator which is appropriate for students does not currently exist. The motivation behind this project 

was to develop such a simulator and test its functionality. In addition, it was hoped that this 

development would pose many interesting physical questions. The Falstad Maths, Physics and 

Engineering Applets1 provided inspiration for the general simulator operation, as did Dr Chris Lester’s 

version of a QFT Simulator2. 

The simulator considers a single real, massive scalar field. Currently the only field in the standard model 

of this type is that which gives rise to the Higgs boson3 4. Furthermore, the only interactions modelled 

are self-interactions as only one field is considered. Despite these simplifications the simulator is still 

capable of demonstrating effects unique to QFT.  By comparing the simulator’s results with expected 

phenomena there is also the potential to analyse the numerical methods it utilises. 

In Section 2 we discuss the assumptions made by the simulator and in Section 3 we outline the theory it 

requires. Section 4 explores the details of how this theory was implemented and any code-related 

decisions made. In Section 5 we look at the testing performed to set the variable limits for the simulator 

and to verify its functionality.  

2 – Assumptions 

 2.1 Discretisation 

In order to compute a field’s development in time rather than computing scattering cross-sections it is 

necessary to limit the computation in some way. The discretisation of space into   points leads to a 

finite number of momentum modesA of the system, which are eigenstates of the free Hamiltonian. 

Once this basis has been established a further truncation is required as the number of particles in the 

system is not limited (scalar fields are bosonic5). How this truncation is implemented depends on the 

way in which the basis states are labelled (see Section 3.5). The discretisation of time is required for an 

integration method to be implemented using the Schrödinger equation. 

2.2 One-dimensional ring 

To simplify the simulator, it was decided that the system should consist of a single spatial dimension. 

This also enables larger numbers of states to be considered in a real-time simulation, potentially 

improving its accuracy. To avoid being forced to consider boundary conditions it was decided that the 

system should form a loop (see Figure 1).  

 2.3 Units 

We will use natural units (     ) to simplify the equations required by the simulator. From the 

dimensionality of the Lagrangian we can establish the dimensions of the field. The action is 

dimensionless in natural units and so the Lagrangian has units of energy and the Lagrangian density 

units of energy squared. By examining the form of the Lagrangian density shown later in Section 3.1 we 

find that the field must be dimensionless. This allows us to define the dimension scale of the mass 

(equivalent to that of inverse time and inverse space) without affecting the dynamics of the field. We 

arbitrarily set this scale to giga-electronvolts (GeV) as this is a scale familiar to particle physicists. 
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3 – Theory 

 3.1 Lagrangian 

The development of the equations used to code the simulator closely follows that of normal QFT6, 

with the major differences arising as a result of the discretisation of space. We begin with the 

Lagrangian ( ) for a real scalar field ( ) with mass   in one spatial dimension ( ) and no interactions: 

    ∫      
 

 
∫( ̇  (  )      )   (1) 

   

Where  ̇and   denote differentiation with respect to time and   respectively, and   is the Lagrangian 

density. Introducing the concept of discrete spatial points rather than a continuum has a direct effect 

on our concepts of fields, integration and differentiation (Equations 2, 3 and later, 16). We use these to 

rewrite the Lagrangian so that it is appropriate for our system: 

 
 
 

∫   ∑  

 

 (2) 

 
 
 

 ( )     (3) 

 
 
 

   ∑    

 

  
 

 
  ∑( ̇  

 
 (    )

 
      

 )

 

 (4) 

   

Here    is the equivalent of the Lagrangian density for the discretised system and    is the distance 

between the spatial points (Figure 1). The subscript on the fields replaces the label   used in the 

continuous case. The single field with infinitely many degrees of freedom has been replaced by   fields, 

each with one degree of freedom. 

The fields’ conjugate momenta (  , Equation 5) enable us to write the Hamiltonian ( ) for this 

system6, which we will call the Free Hamiltonian due to the absence of interactions (Equation 7). 

Figure 1: A two-dimensional visualisation of a discretised one-dimensional loop 
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Here    is the equivalent of the Hamiltonian density. 

Following normal QFT we undergo canonical quantisation5. The commutation relations required 

(Equation 10) are similar to the usual ones (Equation 9). The definition of the Dirac delta function 

must change in order to preserve its properties (Equation 8). 
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Still following the methods used in standard QFT, we would like to use a Fourier expansion of the 

fields and their conjugates in terms of some new operators  ̂  and  ̂ 
 
 in the hope that they can later 

be identified as creation and annihilation operators6. If we assume that the normal commutation 

relations for these operators transform as those shown above (Equations 11 and 12), we find that 

Equation 10 is recovered if we use the expansions shown in Equations 13 and 14B. 
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3.2 Energy-momentum relation 

In order to determine if the roles of  ̂  and  ̂ 
 
 are as expected we need to formulate the energy-

momentum relation for the system, which differs from the standard relation. The Euler-Lagrange 

equations enable us to write: 

  ̈    
      

    
    (15) 



7 

 

We now assume that the discrete spatial points are very close together (that    is small) so the 

derivative of the field can be approximated in two equivalent ways: 

 
 
 

     
         
  

 
         
  

 (16) 

   
This enables us to rewrite Equation 15 asC: 

 
 
 

 ̈   
 

   
(                )   

    
    (17) 

   
Trying a travelling wave solution (Equation 18) leads to the energy-momentum relation (Equation 19)C: 

 
 
 

     
 (         ) (18) 

 
 
 

   
     

 

   
(   (

  

 
))
 

 (19) 

   

This tends to the standard relation in the limit of      or, equivalently,    C. 

 3.3 Fock state basis 

We can now write the Hamiltonian in a much more succinct form; substituting Equations 13, 14 and 16 

into Equation 7 we obtainD: 

 
 
 

  ∑(
 ̂  
  ̂  
  

 
   
 
)

 

 ∑
 ̂  
  ̂  
  

 

 (20) 

   
In a process mirroring renormalisation, we subtract the large, constant “zero-point” energy from the 

Hamiltonian. The commutation relations between H and  ̂   and between H and  ̂ 
 
 confirm that they 

can be considered as creation and annihilation operators: 

 
 
 

[   ̂  ]       ̂   (21) 

 
 
 

[   ̂  
 ]       ̂  

 
 (22) 

   
Now all that remains is to determine how to label the eigenstates of the Free Hamiltonian, which form 

a Fock space7. With our interpretation of  ̂  and  ̂ 
 
 we can write a general state as: 
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These states are orthogonalE, and we can choose the normalisation constant so that they are 

orthonormal. The resulting states are shown in Equation 24 and have eigenvalues under the Free 

Hamiltonian given by Equation 25F:  

 
 
 
 

| ⟩  
( ̂  
 )
  
( ̂  
 )
  
 ( ̂    

 )
    

√(    )
  
(    )

  
 (      )

    
√            √(   )(   ) (     )

| ⟩ (24) 

 
 
 

   ∑     
 

 (25) 

   
This completes the necessary theory required by the simulator for non-interacting systems. Before we 

investigate interacting systems it is useful to compute the effect of the creation and annihilation 

operators on general statesG (Equations 26 and 27). Here |    ⟩ denotes the original state with one 

more/less particle in mode  . 

 
 
 

 ̂  | ⟩  √       |    ⟩ (26) 

 
 
 

 ̂  
 | ⟩  √ (    )    |    ⟩ (27) 

   
3.4 Interactions 

The dynamics of a system with a Lagrangian that leads to the Free Hamiltonian are unremarkable5. It is 

possible to include additional terms in the Lagrangian of the form shown in Equation 28. Equation 29 

shows these terms after discretisation. 

 
 
 

    ∫
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These do not depend on the time derivative of the field and so do not affect the conjugate momenta. 

We can use our earlier expansion (Equation 13) to rewrite this interaction term. The change in sign 

occurs as we are now considering the change in the Hamiltonian: 
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Performing the sum over the spatial labels we find that momentum is conserved by the interaction 

termsD. For    , for example, we can write our Interaction Hamiltonian as: 
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Multiple interaction terms can be added to the Lagrangian, each with unique values of   and   . Their 

effects on the Full Hamiltonian are additive. 

 3.5 Time development 

The time dependence of states is determined by the Schrödinger equation. If we label a general state as 

a linear superposition of our basis states | ⟩ with time-dependent coefficients   ( ) this gives: 

 
 
 

 ̇ ( )  ∑  ( )⟨ | | ⟩ 

 

 (32) 

   
This is the point at which the simulator’s operation departs from the usual QFT process. We now have 

a basis for evaluating the Full Hamiltonian in matrix form and an equation describing the time 

dependence of a general state. We can, working in the Schrödinger picture, evaluate the time 

development of that general state using an integration method. The only remaining requirement is a 

method for truncating the number of eigenstates of the Free Hamiltonian that we will use as our basis. 

 3.6 Basis truncation 

A member of our Free Hamiltonian eigenstate basis can be represented by a list of numbers- [   

              ] - which correspond to the number of particles in each momentum mode that the 

state contains. Here, the subscript number refers to the size of the mode’s momentum and the sign 

refers to the direction of that momentumA. A simple way of arranging the states so that a truncation 

method emerges would be (the left column indicates this ordering with a number): 

 

| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 
|   ⟩ 
|   ⟩ 
|   ⟩ 
|    ⟩ 

  

  

  

  

  

  

  

  

[        ] 
[        ] 
[        ] 
[         ] 
[        ] 
[        ] 
[        ] 
[        ] 

(33) 

     
This corresponds to ordering the states primarily by number of particles and arbitrarily within each 

band of particle number.  Truncation at a certain number of particles arises, on which the number of 

states considered is highly dependentH. This method prioritises lower numbers of particles, a valid 

reason assuming their masses greatly exceed their momenta.  

An alternative method for labelling the states is: 

 

| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 
| ⟩ 

  

  

  

  

  

  

  

  

[        ] 
[        ] 
[        ] 
[        ] 
[        ] 
[        ] 
[        ] 
[        ] 

(34) 
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The ordering here favours a combination of low momentum and low particle number, and so may have 

greater general applicability. If lower mass particles are considered then it is necessary to consider many 

of them, as the energy cost associated with their production is low. For low masses, then, ordering the 

states according to particle number is definitely not appropriate. 

Equations 26 and 27 show us the effect of creation and annihilation operators on a general state. 

Combined with Equation 30 this gives an estimate of the size of terms in the Interaction Hamiltonian 

matrix. As we will consider initial states of low energy, such as zero particles or several low-momentum 

particles, the state ordering method should ideally prioritise the Fock states based upon the size of their 

interaction with these low energy-states. Considering the suppression of the interaction terms according 

to energy in Equation 30, this approximately corresponds to an ordering in terms of energy. It is 

suggested that this matches physically intuitive expectations.  

With the aim of investigating a broad variety of systems, this second labelling method was adopted.  

 3.7 Relativistic effects 

The normalisation of the basis states includes factors of energy (   ) which are required as a result of 

the Lorentz invariant commutation relations (Equation 12). To validate the necessity of considering 

relativistic effects we consider the maximum momentum of a single particle in our system. We find that 

the criterion on the system variables to satisfy a non-relativistic approximation is       I. We can 

see that, for fixed mass, there is a conflict between remaining non-relativistic and improving the validity 

of our expansion of the spatial derivative. To avoid this conflict, the Lorentz invariant commutation 

relation is used and its effects can be seen in the sections above. 

 3.8 Finding eigenstates 

The Power Iteration method can be used to find the eigenvector of a matrix corresponding to the 

largest eigenvalue8. This method is suitable for use within our framework as it only requires repeated 

matrix application. This algorithm can also be used to find the eigenvector (  ) corresponding to the 

smallest eigenvalue (Equations 35 and 36). The value of   is constrained by Equation 37, where      is 

the largest eigenvalue of the Full HamiltonianJ. 

 
 
 

     
(    )  
‖(    )  ‖

 (35) 

 
 
 

      
   
   (36) 

 
 
 

       (37) 

   
We use the fact that all the eigenvectors of a matrix are also eigenvectors of the identity matrix with 

eigenvalue 1. The constraint ensures the method converges as fast as possible for our system. We 

calculate      using the Power Iteration method on the Full Hamiltonian alone. 

Once the ground state has been found the eigenvector for the next lowest eigenvalue can also be found 

by projecting out the ground state component of the vector in the algorithm at each step. This whole 

process can be repeated to find more and more eigenvectors. The algorithm is less efficient for 

degenerate eigenstates9 (for example, one particle with some momentum either “forwards” or 
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“backwards”). The initial vectors can be chosen to aid convergence if approximations for the 

eigenvectors are known, but should be otherwise be randomised. 

4 – Implementation 

 4.1 Programming language 

Java was chosen as the language for the simulator and its framework owing to the ease of distributing 

Java web applets. Java is suited to collaborative efforts, the relevant details of which are described 

below. 

 4.2 Shared codebase 

This was project was undertaken in parallel with a fellow Part III student. While the physically relevant 

simulation is handled separately, a shared codebase was developed to facilitate later distribution of both 

programs. The codebase consists of a graphical user interface and plotting framework as well as general 

mathematical tools that would be needed by any simulator. It contains interfaces that ensure both 

students’ realisations of the simulator can function within the frameworkQ. After initial independent 

exploration of how a simulator might function the details of this shared codebase were established 

together. We decided to base this framework on the other student’s implementation. 

 4.3 Code structure 

The simulator operates according to a simple general process: 

1. Calculate the system Hamiltonian 

2. Use the Schrödinger equation and an integration method to calculate the system state after a 

small time step 

3. Plot the system state in momentum and position space 

4. Repeat steps 2 and 3 

The time taken to perform the first step is heavily dependent on a number of factors (see section 4.5), 

while the later steps scale straightforwardly. As the Fourier transform in step 3 can be slow for large  , 

and is not essential in every iteration, the simulation can be altered to repeat it only after a certain 

number of time steps. 

4.4 Fock state labelling 

Members of our basis are represented by a FockState classQ. To facilitate the Full Hamiltonian 

calculation it is useful to have a method for converting the unique list of numbers associated with a 

Fock state into a single number which we shall call its index. For this process to be useful it should be 

reversible, and the numbers generated should preferably be ordered as described in Section 3.5. 

Fortunately, it is possible to recursively implement Cantor’s Pairing Function10 to develop an  ( ) 

method for calculating this index, as well as a method for the reverse processK. It was hoped that this 

state ordering would correspond more closely to an increasing energy order than the alternative method 

described. The validity of this assumption is explored in Section 5.1. 

 4.5 Hamiltonian calculation 

The Full Hamiltonian is calculated in several parts. The Free Hamiltonian is sufficiently simple for it to 

not require a class (it is a diagonal matrix). The Interaction Hamiltonians, the number of which is 
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specified by the number of non-zero coupling strengths, are instances of the InteractionHamiltonian 

class. This class utilises the orthogonality of the Fock states to reduce the number of calculations it 

performs. For a given row of the Interaction Hamiltonian matrix (specified by a Fock state) there is 

only one Fock state or no Fock states for which each term in Equation 30 yields a number in a column. 

The potential column (represented by a Fock state) is calculated by inversely applying the creation and 

annihilation operators to the row Fock state. The calculated state may be rendered invalid by the 

application of an annihilation operator to the vacuum state. The methods for converting Fock states to 

indices and vice versa are essential for this calculation process. 

The number of terms in Equation 30 depends heavily on the power of the interaction,  . However, the 

code was written in a sufficiently abstract manner such that an arbitrary power can be used. The 

maximum number of values calculated per row can be deduced from this expansion as        , 

where   is the number of basis states considered. 

While this might appear to show that our matrix is not necessarily sparse, once momentum 

conservation is taken into account the number of non-zero values in the matrix is greatly reduced. That 

Fock states only interact with Fock states of equivalent momentum is a heavy restriction. 

 4.6 Implementing the basis truncation 

Using the labelling method described in Section 4.4, the number of Fock states considered can simply 

be set to any value desired. To try to remain consistent with state selection the size of the “triangle” of 

statesK produced by this method is selected instead of a specific number of states.  

 4.7 Integration 

Multiple integrators were considered for use in the simulator. After initial testing, the First Order Euler 

and Semi-Implicit Euler methods11 were consistently outperformed by the Leapfrog method11. This 

method appears to behave symplectically11 (Graph 1). It is known that the Leapfrog method is 

symplectic when used in conjunction with Hamiltonian systems that conserve the two-form      , 

where   and   are the momentum and position coordinates of the system11. This implies that the 

calculated Hamiltonian meets this same criterion, despite the fact that position and momentum 

coordinates have been demoted to labels. The details of this are beyond the scope of this report, the 

only relevant quality being the apparent symplectic behaviour. 

4.8 Plotting 

To display the dynamical behaviour of the system the simulator plots the coefficients of the zero, one 

and two particle components. There is only one possible zero particle component, the modulus of 

which determines the height of a bar and the phase of which determines the bar’s colour. The   one 

particle components are plotted in a similar way, corresponding to the   momentum modes. The two 

particle states are shown in a plot with axes for the mode of each particle. This plot is necessarily 

symmetrical about the line of equivalent modes as the particles are indistinguishable. In lieu of bar 

height the squares representing two particle components have a brightness determined by component 

modulus. 

To supplement the momentum-space plotting of the general state, Fourier transforms of the data 

described above show the probabilities associated with measuring zero, one or two particles at 

positions in the system.  
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5 – Testing the simulator 

 5.1 Basis state labelling tests 

To investigate the validity of the ordering method the difference between the energies of the state basis 

and the ground state energy were plotted against index number for a typical, interacting system 

([          ]  [       
              ]). We effectively analyse the relative contributions of 

particle number (through the mass) and momentum (through   ) to the basis state energy. We keep    

fixed to simplify the process. 

The effect of high mass can be seen in Graph 2. We expect the particle number to dominate the energy 

and indeed there appear to be bands whose energy roughly corresponds to an integer number of 

masses. With a mass equal to    there is little change in the energy spectrum as the momentum 

contributing term in Equation 19 is inversely proportional to   for low momentum modes. When the 

mass is lower than    we see a change in the spectrum (Graph 3). There are now no clear bands of 

particle number: the effects of momentum and mass are interwoven. An even lower mass (Graph 4) 

shows rough bands according to total momentum.  

It appears that the cutoff used (a vertical line on the graphs) does not correspond to the ideal energy 

cutoff (a horizontal line) as the points clearly do not lie on a straight line. Despite this, the method’s 

apparent consistency of energy ordering across a broad range of mass to    ratios is encouraging, as 

these encompass different energy dominance regimes. Importantly, the region of “ignored” basis states 

with low energies appears to grow sparser with increasing numbers of states considered across the same 

ratio range, visible in all the graphs. For a large enough number of states considered, there does arise an 

ever increasing energy for which no states exist with lower energy. For example, in Graph 2, the index 
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Graph 1 – the change in total probability over time for a system with 
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of the last single particle state (which would ensure no states below 20GeV in energy were omitted) is 

well above the maximum value for an integer type (~2 billion). In Graph 4, the first minimum of this 

type occurs when an integer number of masses exceeds the energy of one particle with the lowest 

allowed momentum. Here this corresponds to 386 masses, or a state with an index of 74,691. In both 

cases the maximum energy considered far exceeds the minimum. We find that there will always be 

states of relatively low energy that are not considered, but that it is not feasible in a runnable program 

to attempt to raise the minimum energy bar. 
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Graph 2 – the energy spectrum of basis states for [            ]  

[                           ]. The dotted red line shows a 

typical band of states with the same particle number. This line, at 50GeV, 
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Graph 3 – the energy spectrum of basis states for [            ]  

[                            ]. There are no clear horizontal 

bands of states for this particle mass. 

Graph 4 – the energy spectrum of basis states for [            ]  

[                             ]. The states now lie in bands according 

to total momentum (such as shown by the red dotted line). 
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5.2 Conservation of energy and probability 

It can be proven directly from the Schrödinger equation that we expect probability and energy to be 

conservedLM. While necessary, these do not prove the simulator is functioning correctly. However, we 

can use these expectations to test the simulators numerical limits and determine variable boundaries for 

further investigations. 

The effects of  ,  ,   ,  , and initial state index ( ) on energy and probability conservation for a 

typical interacting system were investigated. With the set of variables: [           ]   

[                          ], the effects of  ,  ,   and   on conservation of energy and 

probability were calculated by fixing the remaining variables to default values (see Graphs 5 and 6) and 

running the simulation for 1000 timesteps. The sets of values chosen for the variables can be found in 

the table below with the default values in bold (chosen to represent a typical simulator setup, but which 

we shall see is nearly optimal). 

 Variable indices 

Variable 0 1 2 3 4 5 6 7 8 9 10 11 

       0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 300 

  0 1 2 3 4 5 6 7 8 9 10 11 

  8 16 32 64 128        

  16 46 106 529 1036        
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Table 1 – the sets of values for the variables in Graphs 5, 6, 7 and 8. 

The default values used to give Graphs 5 and 6 are in bold. 

Graph 5 – the average fractional change in energy and total probability over 1000 timesteps for 

varying mass and initial state. The values corresponding to variable index can be found in Table 1. 
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Graph 5 shows a strong dependence of the simulator’s precision on mass, with the highest precision 

for a mass of the same size as   . As mentioned in Section 3.5, small masses increase interaction terms. 

Increasing these terms (they can be of order 103 for          ) while those in the Free 

Hamiltonian are small means the Full Hamiltonian matrix is more ill-conditioned8, and ill-conditioned 

matrices perform less well in numerical methods12. There is little difference in simulator precision for 

varying initial state, although it should be noted that the other variables are nearly optimal. Graph 6 

shows, unexpectedly, a slow decrease in precision for increasing  . This effect is not severe, and its 

cause is not known. Graph 6 also shows that the total number of states considered has no effect on 

system precision, although, yet again, the system is nearly optimal. 

We can also plot the maximum variation in fractional conservation for specific variables with the 

freedom to choose the others from Table 1, as shown in Graphs 7 and 8 below. The data for   

        has been omitted, as it was found to cause the simulator to break (produce infinities). It is 

possible to produce reasonable simulations for masses of this size, but a lower    is required. 

Graph 7 shows that the dominant factor affecting simulator precision is the mass. For a mass of the 

same order of magnitude as    we can achieve a maximum fractional energy error of one part in 108 

for any choice of the other variables from Table 1. As previously implied,  ( ) values for the masses 

produce the best conditioned matrices, and so conserve these quantities most precisely. The zigzag 

effect of   in Graph 7 implies that the precision depends on the number of particles, as each spike 

corresponds to the first time the number of particles considered increases by one. The mass 

corresponding to all these points is the lowest in Table 1, an unexpected effect as the labelling system 

was intended to be more suitable for lower masses (see Section 3.5). A possible explanation could lie in 

the generally lower precision for these masses, visible in both plots and discussed earlier. 
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Graph 6 – the average fractional change in energy and total probability over 1000 

timesteps for varying numbers of spatial points and states considered. The values 

corresponding to variable index can be found in Table 1. 
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Graph 7 – the maximum average fractional change in energy and total probability over 

1000 timesteps for varying mass and initial state. The values corresponding to variable 

index can be found in Table 1. 

Graph 8 – the maximum average fractional change in energy and total probability over 

1000 timesteps for varying numbers of spatial points and states considered. The values 

corresponding to variable index can be found in Table 1. 
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Graph 8 shows a slow increase in precision with increasing  , in contrast to Graph 6. As with Graph 6, 

this effect is not dominant and its cause is unknown. The effect of   on precision is once again 

minimal. For all of these plots, the variation in probability follows identical trends to that of energy, but 

it is conserved to a greater precision. It is suggested that this discrepancy may be a result of the 

increased norm of the Hamiltonian matrix for high or low masses13. The precise cause of this error 

difference is not known. 

The value of    was fixed because it effects the operation of the integrator. The value of    was fixed 

because the scalings of    and   are not independent, and changing both is redundant (see Section 

2.3). Using the data just obtained to choose the optimal set of [       ]  [                ] we 

can investigate the effect of changing    on the best expected simulation (Graph 9). We see that this 

precision is very close to linearly proportional to timestep size, with a gradient of ~2. This matches the 

expectation that the Leapfrog method is second order11, but more importantly partially validates the 

simulator’s Hamiltonian calculation. If the Hamiltonian matrix was incorrectly calculated in such a way 

that any assumed properties of the Schrödinger equation no longer applied then the integration method 

used might not correspond to the Leapfrog method, and so could not necessarily be expected to be 

second order. 
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are shown, corresponding to the lines’ colours.   
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 5.3 Changing the mass 

Adding a    interaction term of the form shown in Equation 38 is equivalent to a change in the 

particles mass as in Equation 39. 
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Ignoring the non-trivial shift in energies the simulator will produce as a result of the difference in 

definitions of   ,   ̂  and  ̂ 
 
, the energy difference between the first two eigenstates produced by the 

simulator should be equal to     . By setting a small value of    (forcing the momenta to be large) we 

can hope to see a spectrum of eigenstate energies differing only by integer ( ) numbers of     . Graph 

10 shows that the simulator produces an energy spectrum (  
   ) for a    system that is close to that 

predicted, with a fractional difference of better than one part in 109 for the second and third 

eigenvalues found. It should be noted that the eigenstate calculation algorithm becomes decreasingly 

convergent as the relevant eigenvalue grows larger. While not a direct proof of the validity of the 

simulations for higher order interactions, we note that the Interaction Hamiltonians are all calculated 

using the same algorithm. 
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We would expect any eigenstates produced by the simulator to have constant magnitudes in 

momentum space as time progresses; they should simply phase rotate. However, this stasis does not 

last long for interacting systems. The state typically changes substantially within a few thousand 

timesteps. This can be explained by noting the similarity between our integration method and the 

Power Iteration method. By considering the error in the found state in the eigenvector basis, we can see 

that its components that correspond to higher eigenvalues are “favoured” more than those in lower 

ones. This non-linear increase in error shows that the eigenstates decompose quickly in the simulator as 

a result of the same effect that is exploited by the method that found themO. 

5.4 Negative energies 

Including a    interaction, with no    term, and calculating the system’s ground state shows it has a 

negative energy. This might seem counter-intuitive – how can there be a lower energy than that of the 

vacuum? Even though we must acknowledge that our subtraction of the zero-point energy from 

Equation 20 has already limited our interpretation of energy to one of differences only, we also find 

that this zero-point energy is unaffected by the    interaction. We can, however, show that we expect 

the ground state energy of    interacting systems to be lower than that of non-interacting systems, 

which we define as zero.  

The    interaction produces no values between states differing by an even number of particles, so the 

upper-leftmost element of our Full Hamiltonian matrix remains zero. The ground state of the Free 

Hamiltonian then still has an energy of zero, but it is not the ground state of the Full Hamiltonian 

because the matrix has changedP. This leaves us with no option but to expect the actual ground state to 

have a lower energy, which must then be negative. The phase differences between the components of 

the new ground state enable this to occur. Figure 2 shows the simulator’s momentum plots immediately 

after a typical negative energy ground state has been found. The state still has zero momentum, and the 

phase difference between the zero, one and two-particle components is shown by their difference in 

colour. The one and two particle plots have adaptive scales.  Comparison of the bar heights between, 

for example, the zero particle and one particle plots must take this into account. 

 

 

 

Figure 2: Part of the simulator’s graphical output showing the momentum plots immediately 

after a negative energy ground state has been found. The system variables used to produce 

this plot were: [               ]   [              
                ]. The 

calculated ground state energy was -0.17GeV.  
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7 – Conclusions 

1. A Quantum Field Theory simulator was developed for use as a distributable Java web applet, 

runnable in real-time. A codebase was also produced, with support for this and future 

simulators including a Graphical User Interface and other utilities. 

2. The simulator was tested to determine the effects of the system variables on the precision to 

which it conserved energy and probability. These quantities were conserved to better than one 

part in 105 for a mass range of 10-2 to 102 GeV for an otherwise optimised system. 

3. The simulator produced eigenvalues for an interacting    system that matched expected values 

to better than one part in 109 for the second and third found. 

4. An artificial continuous symmetry of the system Lagrangian that would have implied the 

existence of a Noether current was not determined. Systems with more than one field provide a 

greater opportunity for such constructions, which could then be used to test a simulator’s 

accuracy. The codebase is sufficiently abstract for a future implementation to achieve this. 
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