Sparticle mass measurements at ATLAS; calculating three-body

endpoints
Candidate Number: 8165T
Supervisor: Chris Lester

+
Abstract

The kinematic endpoint method for calculating supersymmetric particle masses is
extended in this work to find endpoint expressions for the gluino decay which
concludes with a three body decay, § — §g — 7,99 — 7'qqll . This decay creates
11 observable endpoints, which will be obtained at ATLAS from the edges of the
invariant mass distributions of the visible decay particles. The endpoint positions
depend only on the sparticle masses and together they provide enough constraints to
reconstruct the sparticle masses. A montecarlo event generator confirmed the
expressions in all but two cases. The fundamental assumption underlying the
derivations is that m, > m; >m 7 > My but within this hierarchy the method is

applied and tested for all regions of mass space. Therefore the derived endpoints can
be used for all models in which this decay chain is produced.

Introduction

Supersymmetry

After decades of planning, the Large Hadron Collider (LHC) at CERN will start
collecting data next year. By probing energies not yet achieved in another collider, it
is hoped that the ATLAS detector at the LHC will provide the much needed evidence
to support the most developed and accepted extension of the Standard Model (SM),
known as supersymmetry. The ATLAS detector is one of two general purpose
detectors at the LHC, with the primary aims of discovering the Higgs boson and
exploring the physics beyond the SM.

As the SM can explain almost all the experimental high energy physics data, it was
only relatively recently that work on neutrino oscillations showed the theory to be
incomplete. One of the main inadequacies of the SM is the so called hierarchy
problem. Corrections to the Higgs mass result from Yukawa couplings between the
fermions and Higgs field. These one loop contributions introduce a quadratic
sensitivity of the Higgs-mass-squared to the cut-off , Ayvy, which is introduced to
regulate the loop mtegra], (figure 1). If Ayv is placed at the Planck scale, the Higgs
mass becomes 10'*Gev rather than the order of 780GeV, which is the upper limit set
by unitarity in the SM. Tremendous fine-tuning is then required in the SM to keep the
masses low and this is an unsatisfactory solution.

Figure 1. Fermion loop correction to the higgs mass, with coupling strength As
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By introducing a symmetry between fermions and bosons, supersymmetry stabilises
the Higgs mass. It states that for every fermion (boson) degree of freedom, there
exists a boson (fermion) degree of freedom, with the same non-mass quantum
numbers. This introduces ‘superpartners’ with a spin differing by % a unit to all our
known SM particles. These partners, must also contribute to the Higgs mass, now
with scalar loop diagrams (figure 2) for which the quadratic dependence on Ayy has’
the opposite sign to the fermion corrections.

Figure 2. Scalar loop corrections to higgs mass with coupling strength As.
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Comparing [a] and [b], it is clear that if A = Iﬂ.f |2 and there are two scalar loops for

every fermion loop, the leading order corrections cancel. Therefore, if two scalar
partners, or sparticles, with appropriate coupling constants exist for every fermion,
only a logarithmic divergence remains. Conventionally sparticles are presented in
literature with a tilde and are named by adding an s to the corresponding SM particle
name.

According to the supersymmetric model, each of the fundamental SM particles are
either in a chiral or gauge supermultiplet together with their superparnter, which has
the same electric charge, weak isospin and colour degrees of freedom. Left and right
handed fermions each have a separate scalar partner, which shares the gauge
interactions of its fermion, although it does not possess a particular helicity state
itseif. The squarks and sleptons have spin 0 and reside in chiral supermultiplets with
the fermions. The third generations, the stop and bottom squarks and the stau leptons
can also mix to form the mass eigenstates.

The Higgs boson also belongs to a chiral supermultiplet, and in fact supersymmetry
requires two multiplets, one to give mass to the up-type quarks and one for the down-
type quarks. (Table 1)

The SM spin 1 vector bosons are in gauge supermultiplets with their spin %
superpartners, referred to as gauginos. There are eight gluinos, corresponding to the
gluons that mediate QCD interactions. Winos and binos are the massless partners of

the bosons, W*,W°, B®. (Table 2) After electroweak symmetry breaking, zino and
photino states are formed corresponding to the SM Z boson and photon,
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Table 1. Chiral Supermultiplets in the Minimal Supersymmetric Model
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Table 2. Gauge Supermultiplets in the Minimal Supersymmetric Model

As no sparticles have ever been detected, soft supersymmetry-breaking must occur to
make them heavier than their SM partners. ‘Soft” refers to the constraint that the
breaking mechanism must not ruin the perfect cancellation of the Higgs mass
contributions. n

¥ A
After both electroweak and supersymmetry breaking, further mifﬁ' g can occur
between all the gauginos and higgsinos, (not including the gluino). The mass

eigenstates are then 4 neutralinos 7° and 2 charginos 7", numbered according to
increasing mass, i.e. 7 is the heaviest neutralino.

Supersymmetry breaking introduces many more parameters, especially as the
breaking mechanism is unknown. In order to simplify the full Minimal
Supersymmetric Standard Model from having 124 parameters, assumptions are made
to reduce the number to about 5. Consequently there are many models to be
considered, each with different reduced parameter sets. Minimal supergravity models
(mSUGRA) use gravitational interactions as the basis of the breaking mechanism.
Various parameters are unified at the GUT scale resulting in the following set; the
scalar mass, m,, the gaugino mass, m; ., the Yukawa couplings, Ay, the ratio of Higgs
expectation values, tanf} and the sign of the SUSY Higgs mass parameter . In
contrast to this is the Non-Universal Higgs Mass (NUHM) model where the
degeneracy of the Higgs multiplets is broken.

There are two types of supersymmetric theories; R-parity conserving or R-parity
violating. All supersymmetric particles have R = -1 whereas SM particles have R =
+1. Therefore, in R-parity conserving theories, {which are used in this work),
sparticles must be produced in pairs and must decay to a lighter sparticle via SM
particle emission. Mixing between sparticle and particle states is forbidden. (They can
also be annihilated by an anti-sparticle but this is unlikely in the LHC.) At the end of
every supersymmetric (SUSY) event, there must be a stable, lightest supersymmetric
particle (LSP), which is a prime dark matter candidate. It must be electrically neutral
and weakly interacting for it to have escaped detection so far. The collider therefore
requires a minimum energy of twice the LSP mass. In order to ensure gauge
unification at high energy, sparticles must have a mass below one Tev. The LHC will
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collide two 7 Tev proton beams, so is predicted to have enough energy to produce a
wide range of sparticles.

A SUSY event at the LHC must be detected purely by the SM particles and missing
energy of the LSP. Methods to calculate sparticle masses must therefore require
knowiedge of only the visible decay products. One such method uses the kinematic
endpoints of invariant mass distributions, which depend on the sparticle masses. The
distributions of all combinations of SM particles in the decay can be generated from
the particles’ momenta, which will be detected by ATLAS. This study extends
previous work by increasing the length of decay chain and deriving expressions for
the extra endpoints it produces, thereby increasing the number of constraints on the
SUSY masses.

SUSY events

Depending on the particular model of supersymmetry, decay chains are predicted with
varying branching ratios to take place at the LHC. The mSUGRA model suggests that
the SUSY particles will mostly decay by sequential two-body decays. However, the
NUHM model predicts that chains involving both two and three-body decays will be
more common.

There are two main assumptions when considering the decays. The sparticles must
always decay to lighter sparticles, so there is always a definite mass hierarchy to the
sparticles in the chain. It is also assumed for the purposes of this study that the SM
particles have negligible mass. |

Previous work on a sequential decay chain within the mSUGRA framework in [1],
introduces the endpoint analysis used in this study, [1]. The chain considered involved

t "-'OI:F ES

Oﬂly tWO'bOdY decays; a,L = qu - ’i;itlngarq - Zl Jar nearq (ﬁgure 3)

In [3] a gluino was added to the head of this chain, although not all the observable
endpoint expressions were derived;

—~ ~ ~0 Tt ~01F 7%
g - qneaqu - V4 qnearqﬁr - IR nearQnem-qﬁ:r - Zl jhrlnearqnearQ_ﬁ;r -

Many different chains can result in the same SM particles and it is important that the
kinematic structure within the process is known in order to get reliable constraints on
the masses. For example, the chain involving a three-body decay

4. — F19 - 717 I*q has also been studied in [2], (figure 4).

Figure 3. Two-body decay Figure 4. Three-body decay
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This produces the same particles as in [1] but the mass distributions have different
shapes and consequently endpoints. Therefore, in order for this method to work it
must be possible to differentiate between three and two body decays. That is the basis
of further work, but, assuming it is possible, it is necessary to obtain expressions for
all event scenarios. It was concluded in [2] that there is not enough information from
the endpoints to constrain the sparticle masses. There are four endpoints, two of

which, the m,, high and low, have a ratio of /2. Also in one mass region the My
endpoint is coincident with the m,, high endpoint. It was found that the m , threshold

would be hard to position accurately and so there is not enough information to
evaluate the sparticle masses.

In this work, the chain is extended to include a gluino at the head, as shown in figure
5, £ > gdq - ¥,99 = 7 qqll [¢]. This results in seven further endpoints from
which to reconstruct the sparticle masses. All mass regions are considered, meaning
that the expressions derived are valid for any combination of sparticles masses, within
the constraint that m; > m;, > > m.). Therefore ck];:‘&se endpmg ezq;ressm can
used for all models in which th1s decay chaln occurs Funhermor the expressmns

can be applied, with appropriate re-labelling, to all chains with the same structure, no
matter what particles are produced.

Figure 5: Decay of a gluino, ending with a three-body decay

Method

Decay Simulation

A montecarlo event generator was used to test the theoretical endpoints derived in this
paper. (Appendix B) The decay must conserve 4-momentum and the sparticles must
decay isotropically to sample all space evenly. For each combination of visible
particles, the highest invariant mass found by the simulation is recorded as the
simulation endpoint. This can then be compared to the theoretical endpoint. The
simulation must not be able to find any event that produces an mvanant mass higher
than the predicted endpoint.
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If the simulation endpoint tends to the theoretical endpoint with increasing number of
events, then it can be assumed that with infinite statistics the simulation endpoint
would reach the theoretical endpoint.

The theoretical endpoints must cover all regions of parameter space. Therefore the
montecarlo program generates completely random sets of sparticle masses, whilst

ensuring thatm, > m; > m; > m; and compares the simulation endpoints to the

theoretical predictions for each mass set.

Endpoint Calculation

The endpoints are the maximum values of the invariant mass distributions, and
depend only on the sparticle masses. An invariant mass squared of a collection of
particles is the sum of their four-momentum squared. For the decay [c] there are

eleven invariant mass distributions; m,,, M., My, My > Mogon » My us My ys
My ithighy> Mo, itiowy > My icnigny A0 2, . The high and low correspond to the

leptons which can not be distinguished in any way, other than the fact that one
produces a higher mass than the other. The quarks can be labelled near and far as
shown in figure 5. However the ATLAS detector will also be unable to distinguish
between the quarks and so in erder for the mass distributions to be observable they
must be in a form that requires no knowledge of which quark is involved. This

replaces the last six distributions above With 7,0, Mouion) » Metiuge) »

M 0it g e) s Mhgiintie) » and R rimy)

When deriving the endpoints, it is necessary to evaluate the magnitude of particles’
momenta in a particular rest frame. For a general two-body decay as shown in figure
6, the momenta of the particles in the rest frame of b can be obtained from 4-
momentum conservation.

b4

Figure 6

The three momenta, represented throughout with a capital letter, depend on masses

M particte only, (particle masses are neglected). Consequently the energy Egarticte Can
be calculated.
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The invariant mass of particles p and q is given by

M,y = (p+4q)°
my, =m, +m; +2p"q, =m, +m; +2(E,E, ~|P|Q|cos8) [b]

This is maximised when cosf is -1, so p and g are back to back in the rest frame of b.

The above are the basic tools needed to be able to derive each endpoint. By
combining particles as effective particles and using Lorentz transforms, the successive
two-body method can be applied when deriving all the endpoints. See Appendix A for

full calculations. w M %:;{: . ){ I oyt

The endpoint expressions are summarised in Table 3.
TZe hose T dn e
The qq and 1 endpoints . "7“"}’{

The m, edge is the same whether the gluino is at the head of the chain or not, so is the

same as that found in [2]. It only depends on the ¥} and 7 masses as these sparticles
and the leptons can be isolated together in the chain.

For the same reason the m_, edge is the same as previously found in [3], despite the
end of the chain now having a three-body rather than a two-body decay.

The qqll endpoint — Glaﬂ\rdﬁ\m N \06 5% ow

This invariant mass combines all the SM particles and is therefore observable in its
current form. It has three possible positions, corresponding to different configurations
of the particles relative to one another. Which of these is larger depends on the
particular combination of sparticle masses.

The near, far, high and low qil endpoints

When deriving m, ”; in [2] the leptons are combined and treated as an effective

particle, so to maximise 7, ,, the far quark is back to back with m, inthe 7, rest
frame. This is independent of the position of the near quark.
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Similarly in order to maximise m, i » the near quark was found to be back to back |, v wnet jui«;j-
- - odeccle”
with m, in the squark rest frame. As tife far quark is an intermediate particle between ¢/

the leptons and near quark. the optingtim configuration also depends on the ’s;:\" o
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These endpoints must now be converted to observables in the form of 7,

fow

and jm,;’ .
L.lf
On an event by event basis Hes & wons>

high __
myy =max {mq,,ua m, fzz}

low

my =min{m, ,,m, fu}

It is not necessary to know which quark produced the edge, just that in each event one
of the quarks has a higher invariant mass with the leptons than the other. The high
endpoint is the maximum of the high invariant masses and the low endpoint is the
maximum of all the low invariant masses. ‘

It is clear to see that

max max

maxy _
anll ’mqfﬂ =M ‘

max

My higny = THRAX{M

as it is not possible for a higher invariant mass to ever be produced. The subscript >
has been introduced to denote the quark that produces the higher endpoint. Similarly
< is used for the quark which has the lower endpoint.

max
As ™, i can originate from an event in which it is the smaller Mgy , it is the low

endpoint. It is not possible to get a higher endpoint than this, as it would have to be

max
a; ;i , which can never simultaneously be higher than M, i1 and be in the low 0K, olid
position. ' (D above S
oIk
max  __ _..: max . maxy __ .. max
mqu(IOW) - mln {mq"” [ mqf” } - mq<ll ' \/
The ql endpoints chﬂ L nour ot o

The configuration that maximises mq[(high) for eithe;)\auark, has the relevant lepton
and quark back to back in the squark rest frame (near quark), or the %, rest frame (far

quark), whilst the other lepton is at rest. The configuration that maximises M itow) is
similar, except both the leptons are back to back with the quark and have equal
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momentum. In the case of the near quark, the direction of the far quark also affects the
invariant mass and is found to be back to back with the leptons in the 7, rest frame

max
too. Therefore, 7 ¢surihigny 18 produced from the decay that maximises M, _i(high) - ?}
, .

<«

The same is true for the low endpoints. - 71/\ P
bW ) 1773
This greatly simplifies matters when thinking about. how these endpomts will be
observed in ATLAS. The four observable distributions are defined as huge, large, .
little and tiny. On an event by event basis the four ql masses decrease J—:_/_:
from Mgy HucEy to Mgy vy . The maximum possible values that each of these can
take are the four endpoints.
A simple re-ordering of the four unobservable m,, endpoints can be used to find the
max

huge, large and tiny m_, endpoints. However M 1 LiTTLE) is never quite as big as the ?’F{

max ‘
third highest unobservable 7%,; . This is because it is not kinematically possible for ﬂ[mn

max tha

the " 3 LiTTLE) to approach the corresponding M, whilst simultaneously having e
the third highest invariant mass. (See appendix for a more detailed discussion). Due to P"‘“”""
this added complexity, as yet no satisfactory expression has been found Avern'é ‘ff

max . T smmy Tvr
for M gy 1rrrEy - The maximum 7 sy Will ocour when the smaller ynignyis o Laee ?

equal to the larger 2,;¢;00) . The lcptons in these masses could either be the same

lepton or could be different leptons depending on the orientations of all four particles.
Therefore deriving this configuration is not a simple task unless assumptions are

made. m,, was calculated for the configuration in which the leptons are parallel to

one another and back to back with both the quarks as for the low configuration, but
now the leptons have unequal momenta. However this was often found to
underestimate the endpoint. When this was the case the configuration was
investigated by studying the particles’ four momenta produced by the simulation.
However this showed no obvious pattern so further work is needed to ascertain the

optimum configuration. ey
Wiy T T

The high and low qql endpoints % 7

The configuration for these endpoints was assumed to be the same as for the gl

endpoints, but with the two quarks combining as an effective particle. This was found
to be valid for the high endpoint, leading to four endpoint expressions depending on

the value of qq

Four similar expressions were found for the low endpoint. However, the simulation
showed that other configurations are able to produce larger invariant masses,

particularly when % is relatively light compared to the other SUSY masses. The

conﬁguration has to be one in which __ is equal for both leptons as this is when the

gqi
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lower invariant mass is greatest. This suggests a symmetrical configuration for
maximisation, for example when % is produced at rest and the leptons are back to

back with each other and perpendicular to m~inthe ¥, frame. The quarks are back

to back in the squark Yest frame and so the line of the two quarks is paraliel to the
leptons in the 7, rest frame, The resulting endpoint is only greater than the four other

endpoints when the leptons have sufficient momentum in this configuration to ‘
compensate for no longer being back to back with the qq particle. Although the [z/ fo
addition of the fifth endpoint expression greatly improves the correlation between the

theoretical and simulation endpoints, (see analysis), there are still configurations with

higher endpoints showing that the real optimum configuration may be close to that

described above, but with the 7/ not at rest and therefore the leptons not exactly back

to back. r
Can Yoo cofy be
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Table 3; Summary of all the endpoint expressions

Kinematic Endpoint

Mass conditions

2 2yy02 2 2
M gqi 2max _ (m§ — iy )(m?f M mﬂ‘i < mi; mg
aql! m?- 1
q
2.2 2 2
mims —ms m; 2 2
Jmax g2 2 gz 727 sMy 2 M M
Mo = (my —my X ) MMy, =Mz
7
m2max — (m - )2 Otherwise
qqll g ¥4l
M otinigh)
max _ max
Mot highy = =max{m_ il 7 qqt J
max _ max
M gitgiow) mqll(low) mln {mq,,n gyl }
q ol gl - mﬁ % G
2 edge 2 .2 2 2 2 :
(mf]fll) - (ma miz )(mfz m% )/m:fz Otherwise
mgmlf

) 2 2
(250 = (i -+’ = =)

d; 2 2
(mqnu)e = (m3 —m~)(m —~m )/ 7)’1‘?:2 Otherwise
m.fh) ( —mz)( 2-—m1 % > _
e (m ql(h:gh)) =( Zmz % A7) mZ 2 mgmzl
¥ 2

(mqqi(hxgh)) =( 2 )
q .
2.2 2.2 9
max mym. —m.m-: mm. 2 m.m-:
(mqqi(high))2 = (m; - méz W ;:3 7 A 4 42,
5 a Otherwise
(m ql(h:gh)) = (mg - mf,)
- Incomplete éf” 2
fow) ‘..————L_
m. 2m-.X
(mqq,(,w)) =max{ 4, B} X2 g
. 2
%(, (mpoyy)” = max{4,C} - m; < mgX
(mqql(low)) max{ A:D} max =m m_,
Otherwise

(mqql(!ow)) = max{ 4, E}
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Pt

1

A= + 2 _.( +m )(m)
= miz m-fl m§ mz 7 Zm;mfz
o i), =),
- 2 2 2
my .o /mfz +m}
(m2 —m2Ym? - %) 2
C =( g q - q )
My
mim2 2.2
~Me —M=X
.D (m~ m )( 8 Zz - q )
mq mz,
E=(m; - x)?
M i (huge) m;g{uas) = max{m M(hrgh)!m:; ,,(hrgh)}
M oriage) m::?(MRGEJ =max{m:?:m), q,(hrgh)}
M 1 tite) *
M 4i(tiny) My —mm{m UW),mw(,ow)}
2 2
My itiigh) _ (m; —m mg, —mz).
(mqﬁ,,.l(hfgh)) =( 2 ) ¢
%
2 2 2
m‘l_rarl(fﬂ“’) (m ) - ((m; _mfz )(mfz B mfl )) -
9 @l (low) - 2m;z
I e Chigh max 3 (m; _m; )(mizgz - m%)
~ (g, angn)” = ( 2 )
'\ F2)
' 2
g i (low) (m; —m; )( - )
(mqm,,m,.l(IGW)) ( £ 9 Zz f )
ffz
m,, 2 ymax __ 2 2 2 2 2
(mg )™ = (mg —mg)(mz —m3)/m;
my, (mZ)max - (m~ — . )2 ‘/
i X2 4l

The subscripts > and < stand for the quark with the higher and lower endpoint

respectively.
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Analysis

Mass distributions and ratio plots

For the endpoint method to be useful, the edge of the mass distribution must have a
clearly defined endpoint. If the edge becomes concave at the higher vales then the
endpoint will be underestimated by the simulation and experiment. The more phase
space in the vicinity of the endpoint, the more likely it is for a decay to take place
with an invariant mass close to the endpoint value.

In reality the distributions will differ from those produced in this study, as only decay
phase space has been used without the associated matrix elements. This ignores
possible spin correlations between leptons and/or quarks in addition to other detector
effects and background. However for the purposes of this study, simply to test the
derived endpoint positions, use of the basic shapes is adequate.

One should also keep in mind that quark resohition at ATLAS will be much poorer
than lepton resolution due to all the QCD background and jets from the proton
collisions. ATLAS is unable to distingnish between types of quark as they all produce
Jets, other than the b quark which has a much shorter lifetime than the others.
Therefore, in general, endpoints with fewer or no quarks will be more useful than
quark endpoints. ‘

The invariant mass distributions were generated for each mass region that produces a
different endpoint, to investigate how the distributions vary with the SUSY masses.
Histograms were also produced to show the ratio of simulation to theoretical endpoint
value for 1000 randomly generated mass sets. For the histograms reproduced here,
one million events were generated for each mass region. Mass distributions with an
almost vertical edge are expected to have ratios very near one and sloping edges
resulting in a slightly poorer correlation. If any ratios are above one then the

" theoretical value is incorrect, at least for a certain mass region.

As expected, them  and m, distributions are zero at the origin increasing linearly up

to the maximum, giving a clean cut-off as the edge, (figure 7(a)). This is because they
are constructed from two nearest neighbours in the decay chain and so the uniformly
distributed cos# is the only variable to enter the invariant mass squared expression,

where @ is the angle between the two particles. Asm, and m;q have uniform
distributions, the m , and m, distributions are linear, resulting in very accurate
endpoint identification (figure 7(b)). '
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In all mass regions, the m 4 distribution also drops off quite sharply but the edge of

the m, , distribution slopes gently towards zero, (figure 8 (a), {b)). The high and low

qll distributions, in the vicinity of the endpoint, are found to have similar shapes to the
appropriate near or far edge. The ratio histograms reflect these shapes as the
correlation between the simulation and theoretical endpoints is slightly better for the

m, , thanthe m, endpoint. The far quark histogram peaks nearer one and has
slightly higher mean ratio than the near quark, (figure 8(c) and (d)). The correlation is
also better for the qlilow) endpoints than for the gli(high) endpoints, suggesting that
the m, , endpoint is the lower endpoint more often, (figure 8(e) and ().
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The m_, invariant mass distribution varies between mass regions in a more obvious

way than the other distributions, (figures 9(a) (b) and (c)). All three regions show
quite a sharp edge but each have a little *foot” which could lead to misidentification of
the endpoint without high enough statistics. The resulting ratio plot (figure 9(d))
peaks very near one, showing good correlation between the theoretical and simulation

endpoint values.
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to theoretical endpoint values.

In contrast, none of the mq,‘distributions have sharp edges, with particularly sloping

edges associated with the near quark, (figure 10 (a) and (b)). These are mirrored by
the observable distributions. As a result the ratio plots have a more Gaussian
distribution, peaking near the mean rather than towards the higher values.
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max
When the theoretical value of qu( LITTLE) Was set to be the third largest of the near

and far m » endpoints, no ratios above one were found, but it was clear that the

correlation could be improved upon. The mass distribution shape for qu( LITTLE)»

(figure 10(c)) gives no indication that the ratios should be much lower than for huge,
large and tiny, but some reach as low as 0.8 (figure 10 (f)). When comparing the

simulation near and far m , endpoints in descending order, with the simulation huge,

large, little and tiny m,, endpoints, the ratio was found to be exactly one for huge,

max
large and tiny but not for little. This showed that 7 Lyr7r.£) is not always directly M

' 9
related to the far and near quark unobservable m , endpoints, unlike the other three e ?mﬁm ’
observables. '
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Figure 10; Ratio histograms between simulation and theoretical endpoint values for

max max max max
@ ™y mucE) (&) Myrarcey & Myrrey and (g) M vy

The distributions for both m,,,.,, and m,,,,,, have a sharp edge although once again
there is a small foot at the endpoint, (figure 11 (a) and (b)). Figure 11 (c) shows good
correlation form .., . However the ratio plot generated using just the initial four
endpoints derived for m,,,,, shows that the theoretical positions were too low in

many mass regions, (figure 11 (d)). This was improved upon with the addition of the
fifth endpoint. Unfortunately, with high enough statistics, there are still some ratios
Jjust above one, (figure 11 (e)).
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Other than for my -, - and my,., . all the ratio plots showed that the simulated

endpoints agree very well with the theoretical values and most importantly that the
agreement improves with increasing statistics. The mass distributions do not vary
greatly between mass regions so a general shape can be assumed for each edge.

Mass reconstruction

Extending the chain in [2] to include a gliino at the head has increased the number of
observable kinematic endpoints from four to eleven and therefore the constraints on
the SUSY masses are much improved. However some of the endpoints still have very

similar expressions; m,_,, has three possible endpoints, all of which are at the same

position as m g, in particular mass regions. myg,.,, coincides with m;™* for each

quark m some mass regions, with myg., differing by a factor of 2 only. Despite

this, there are still enough independent expressions in each mass region to evaluate
the SUSY masses.

It should be noted that the m; will be a mixture of all the squark masses that the

gluino can decay into, and so will represent the squark mass scale rather than a
particular mass. However, for models such as NUHM which has a relatively light
gluino only stop and sbottom squarks will be involved.

Conclusions

If events at the LHC are to extend usefully the Standard Model, then it is vital to
establish methods now to interpret the resulting data. Our capability to measure the
sparticle masses will play an essential part in validating or disproving supersymmetry
and will be a key component to gaining a deeper understanding of it.

In this study, the endpoint method of calculating sparticle masses has been applied to
the decay chain in figure 5 consisting of two two-body decays followed by a three-
body decay. This is an extension of the decay considered in [2] by the addition of a
gluino at the head of the chain, resulting in eleven endpoints. Throughout the
derivations of these endpoints, the mass hierarchy condition

mg >mg >m; >m; was assumed. A montecarlo event generator was used to

generate invariant mass distributions and to test the derived endpoint expressions for a
large range of sparticle mass combinations. The generated endpoints, which are the
highest invariant masses produced in the simulation, were compared with the
theoretical predictions and were found to correlate extremely well for all but two of

the endpoints in each mass region. Further work must be done to establish the correct 7
i X max Heay
expressions for My ;rrrpyand mi, . / .

Although some of the endpoints are found to have coincident expressions in certain
mass regions, it is always possible to calculate the sparticle masses of this decay
chain, assuming the chain is identified correctly and that ATLAS can locate the
endpoints despite all the background and detector effects. Therefore this endpoint
method can be applied to any supersymmetry model in which this event occurs, no
matter how the sparticle masses relate to one another, other than the general

hierarchy. U ,,[e/p \/e/gﬁ .

leads /o 3%'1 1
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Appendix A

The qll endpoints
Near and Far

Derivation of the ggl endpoint can be found in [2]. The gnearll edge is derived in a
similar manner. The two leptons are treated as an effective particle, with a mass equal
to their invariant mass. This enables the decay to be simplified to a two-body decay.

In [2] it was found that 79, = (73 — M., ), so the effective particle can have a

mass varying from zero, when the leptons are collinear, to m}? . , when they are back
to back in the 7, rest frame . Therefore we define

my = Amy —m, ) A€[0,]] Al

In order to maximise mqw i , the near quark is set back to back with the 1l effective
particle in the squark rest frame. Tthe angle ¢, between the far quark and the 11
effective particle in the 7, rest frame must also be taken into account.

Hence, by applying [h]

my 0 =my +205, (Ef + L)

qnear

where the superscript refers to the rest frame, in this case the squark, Q is the quark

momentum and E, =./m; + L' refers to the energy of the effective particle with
momentum L. '

Using [d]} and [e]
2 2 2
Q'q"' =mﬁ_mfz A2 F =m§'—m§ A3
far 2mﬁ near zma

The energy and momentum of the lepton pair must first be calculated in the rest frame
of 7, and then lorentz boosted to the squark rest frame,

4 4 4 2.2 2.2 2 2
7 .Jm,, +my, +my = 20mm; +mym; +m;m; )
I = A4
2Zm;
2,0 2
" = my +m; —m;
Ep =\m} +(I%) = 2 L~ AS
m-.

E] =.\m} +(Q%,) A6

2 _ 2
m =My +2

qﬂeﬂ’

g N . N .
n;"’“" (Ef + L= )(E%2 - Q}m cos @)

X2
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)

This is maximised when ¢is 180 degrees, meaning the far quark is back to back with
the 1l effective particle in the 7, rest frame. This could also produce the My

maximum, depending on the value of 72 , that is the value of A in A1, which is now
evaluated to find the true maximum of A7.

2 2
m. —m;

T S S I e T B 7 2 aN2 a2 2
m, ;=my+—— [mu+mz2 rrz’n+‘}(mh+m)_,l my) 4mzzmxl] A7

near

X2

There are three cases to consider; when A is zero, one, or when it has a value in-
between.

0<i<1
2 . .
Differentiating A7 with respect to ) (equivalent to differentiating with respect to A),

setting the result equal to zero and solving for My gives

2
2 mll

X 2
my

5 (mgw + Zm;2 -m?) A8

2
m,:; =mzz+m 3 F
+m,. —m.
Xz q

This maximises A7 for this range of A. Substituting A8 back into A7 gives

max(A) _

2 2 2
My ll —(ng tm,, —mg —-m;?]) A9

The A > 0 (M > 0) bound implies the following condition

2 2 2 2
m. 2m. .|m- +m° —m: A
B = ;n\/ 7 F ] 10

When this is not satisfied, the A = 0 expression must be found. Setting My to zero in
A7 yields;
2 2 2 2
— (mg B m"i )(m.?,’z B le )
2

mZz

max(0) )2

(mg "

It is found that ) is always less than one so only these two expressions are required.
In those mass regions where the invariant mass is maximised by having L = 0, both

My i and m o are maximised. However, the equivalent of A8 for the far quark is
2
m
2.2 2 X1 2 2
my=m, +m, — 2 (mxz +mii)
my
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so m, , is not necessarily at its absolute maximum when m, , is.

Summary
Taen | (mg )" = (my —my ) my, 2 myms
2 d, 2 2 2 2 2
(mquz)e *=(m; - my Ymsz —m3 )/m;fz Otherwise
mq,.u,ﬂ ( )edge_( + 2 —m )2 m% >m. Jm% -{—mz _mg‘
,,H mN m mq"v' E’l A2 X X2 i g
edge __ . 2 9 .
(mq,,u) = (m§ n'zq-)(mz2 mzl)/ n, Otherwise
The qqll edge Q |

This derivation uses g1l as an effective particle, so the derivation can be done Y y A
modelling the decay as a single two-body decay as shown in figure 6. Using A5 N

m’ +207

qqll q ardl near (

E? g
qfar” +P )

The effective particle momentum is,
4 4
Jm§+mqf”” +m 2(m m

4’"&

2
Pi- 7 ,,+mxlm§+m mqm”)

with energy
z 2 2

m: . +m —ms
§ _ q.ﬁlr” q Fil
E; —\/ ll +(Pq)
Zmi

Substituting in these values together with A3 gives,

m2 —m’

g (Il 22 2 2 _

m‘ifr”+ I [mq;a,”+m€i mz1+\/(m§+mrl My, Ji) 4mq xl] All
g

2
mqqll

This is the maximum for a given value of m i » but to find the true maximum mq "

must be varied between zero and its maximum value. <
q u /l(mq,r, II) Ae[0,1] thotn C}\‘W’ JA\,,D \’W‘ -
S NN
To find the value of A11 when X is between extreme values, Al1 is differentiated
with respect to . and set to zero. Solving this for m; , gives

2

mQ’far”

m

_ .2 2 _m 2 2

=mg +m, ——=(my+m;) Al12
mg
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Substituting A12 back into Al1 gives
Mygn = (Mg — 1M ) 0

\M#u
The A > 0 (m,, > 0) bound holds lfm 2 M3 My . When this is invalid, an
alternative endpoint position is needed. This is found by setting mqu,, to zero in All
to give

_ (m? —m;)(m; —m?2)

2 4l

qqil —

2
m;

Turning to the other extreme, A = 1, sets mjfﬂ,, to its maximum value. However it was
found in [2] that

‘ran.fn-‘("r (m lff m;: Zm&"mﬁ A13

d, 2 2
(m fll)e *=(m m; —ms )(m —my )/m otherwise  Al4
Each of these must be considered separately.

It can be ascertained that under no conditions will qufw,, have the value of A13 as the

A<1 boundary always holds for this case. This is not true for A14, in which case the
A<1 boundary is
m
my o =mg+m —.—’%‘—(m'; +mz) <(m; —m2 Ym3 ~m3 )/ ml
E
e 2 2
yielding ~ mzmy < mz my
When this is not valid, =1 and a third solution is found by substituting A14 into Al1

producing;

mim 2.2
—-mLm;
(mqll) _(m“ m )( e Iz )
myms,
Summary
2 2 2 2 2
m; —m:)m; —ms L m. m.
(m:;;c 2=( £ q)(z q zl) mq ""mx;mg
i
e 2 o
(Mg ) = (m} —m2 }(—= ’“2 L) | mmy 2 my my
2
maxy\2 _ .
(mqq”) = (mg "_mfc'}) Otherwise
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The ql edges
Them, ,endpoints were derived in [2] where it was found that the configuration for

m;f;(;,igh) is when the far quark is back to back with the lepton in question in the 7

rest frame. The other lepton is produced at rest and so ¥ is back to back with the
moving lepton and therefore parallel to the far quark.

The configuration that maximises the low edge is the same as that for the high edge,
apart from that both leptons have identical momentum and both are back to back with
the quark.

The same must be true when calculating the m .1 €ndpoints but now the position of |
the far quark must also be considered.

Implementing [h] gives-

Y 7 R _
: 2 2019 § _ I
(mqnearl(high) ) - 2 rear m-. (Efg Qfar COS ¢) Als

A2

With one lepton at rest, the other has momentum L and has been boosted to the squark
frame. This is maximised when ¢ =180 degrees, that is when the far quark is back to

back with the lepton in the 7, rest frame,

2 2
IB = (m3, —m3)
2my,

Substituting A2, A3, A6 and the lepton momentum into A15 yields,

(mz —m2)(m2 —m?
2
(m;n":l(hfgh)) =( £ qmg & 2 )

2

In order to calculate the low edge, the lepton momentum is just halved so the final
result can immediately be found as

2 2 2
(mg —my Y(m3;, - m;: )

2m?

Fi

2
(m maxt(low)) =(

q"m r

)

This means that in order for m,_, to be maximised, m, ., must also be maximised.
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Reordering the unobservable endpoints gives, in descending order;

1.

2.

3.

4,

max
My i highy

max {mq,I(low) ’ qJ(h!gh) }

A0, 11415 Py 1 gy

max

M, 1(iow)

(Note the subscripts are > and < are used to denote the quark with the higher and
lower endpoints, not which is higher or lower for a particular event.) The following
discussion shows how this relates to the observable endpoints, high, large, little and

tiny.

All the possible decay configurations are divided into four groups as follows.

1.

4.

Both quarks are back to back with one lepton, the near quark in the squark rest
frame and the far quark in the 7 rest frame — the other lepton is produced at

max
rest. My auce)and MyiLarcE) equal My i(highy and

max .
M, 1(highy respectively.

As above but leptons have the same momentum and are back to back with the

quarks in the respective rest frames. Hence, in this group, both "y yucr)

max

and My 14rGE) equal My 1ow) , and T y1 ey and My vy equal

max
My 1giow) - |
Two configurations, one as groups one and the other group two, but with only
the far quark back to back with one or two leptons. The gz, l(high) or qgl(low)
invariant masses respectively are at the endpoint positions,
All other configurations, not in the above groups.

Note the superscript max is only used to denote an endpoint.

Huge endpoint

max — gy MAX . . .
It is clear that g yuey = ™My i(highy , which will occur when the event is from

group one. If the far quark has the larger momentum then an event in group three,

with one lepton at rest, will produce the same mql( HUGE) as found in group one. No

other events can produce a higher qu( HUGE) , 80 it is simply the highest of the

unobservable endpoints.
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Large endpoint
max . . max max K
M 1 14rGE) is the highest of 2, j(nigh) and "2, j(10,) which are the

M 41 (L4RGE) values from group one and two events respectively. Events in group
three may place these same endpoints in the large position, if they belong to the far

quark. No other event can produce a higher ™1 .4rGE) . By definition, no 72, ; is

max X
higher than mq<1(hggh) S0 qu( LARGE) would have to be a mq>1 , but this will never
. max max .
be in the large position and be higher than mq J(high) and m I(low) simultaneously.
- max . . -
To be higher than ™ j(pigp) it must be a7y ;(1ow) , but this is smaller than

max LR + max 3 + ’
M, 1(1ow) by definition. To be higher than ™ j(1ow) it must be a "4 j(nigh) . This
cannot be in the large position as it has just been stipulated that it is higher
max . . max .
than qu(high) , S0 it can not have the second highest mq, . Therefore mq]( LARGE) is
just the second highest of the unobservable endpoints.

Little endpoint

max
The most complicated of the four masses is ... . This is because it is unlikely

that one of the unobservable endpoints previously evaluated is in the little position.

Group one events have a negligible 7 J1(urney @S the lepton is at rest. Group two will

max
always have /7 Jiurmey = Mg d(low) , Which is the smallest of the unobservable

max
endpoints. Group three can also put 7 1(jow) in the little position, if the far quark
has the smaller momentum.,

Group four contains an infinite set of configurations, many of which will have a

- max - - -
higher 7 sy than M, i(low) . Consider an event in group four that is very
similar to that of group two, but one lepton a little more momentum than the other.

qu(high) in group four will be in the little position and will be larger than

max

M, 1(iow) - By varying the angle between the leptons with each other and with the

quafks further configurations can be found with bigger values of 7, (urre) than

4 max - .
M, i(iowy . However M . will never be as big as

min{ 7.7 ,.,ys Mg gy § Which is the third highest of the unobservable endpoints.
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Tiny endpoint

max  __ . Max ) . )
mql(tiny) - ng(:ow) and so will originate from events in group two. If the far

quark has the lower momentum, group three will produce the same endpoint as group

two, but never a higher one. No event can result in a higher mq}(my) , as in order to
be the smallest /7 it must be due to the smaller /77 JlLow TOT that event, which

max
cannot be bigger than m; l(]ow) by definition. Therefore M gl(tiny) is equal to the
smallest unobservable endpoint.

Summary
max max

— max
o Mycaucey = MAX{M 0 G,

0o r,(hr'gh)} = mq,l(hr‘gh)

max

o Myi14rGE) —max{mq (low)> ™ ,(h:gh)}

max ___ max
o Myurmyy = mm{m ,(law)sm v ,(tow)} m, <z(tow)

The qql endpoints
This is approached in the same way as the gl edges with the two quarks together as an
effective particle.

High endpoint

The event that maximises m,,., has one lepton at rest and the other back to back
with both the quark effective particle and 7 inthe 7, rest frame.

The mass of the effective particle is
2 2 NI 2 2
Mgq = Almg —my Yy —m )/ my Ael0]]

Frofn [h]
2 _ 2 y? X y?
(mqql(high)) - mqq +2L 2(qur2 +qu2)

which equals
22

ms —ms
2 _ 2 % Pofpn2 22 2 2 22 2.2
(mqq,(h,.gh)) =m +——-~—2 = (m§ m; —m,, + .‘/(mg +my —mg,) - 4m§m5{-2 )

99 X2

A2
Al6
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This must be differentiated with respect to A and set to zero to find the value of

qu that maximises A16.
M-
2,2 2 ME o2 2
my, = (mg +mz, o (my, +mz) a1z
4l

Substituting this back into A16 yields,

max 2

2
(M yrihigny)” = (mz —m

The edges produced when the qq invariant mass is at its extreme values must also be

found.
A=0 gives;

(m2 —m, Ym3, —m3,)
(m:;;e;)(cmgh))Z — ( £ X2 : Xz X1 )

%

Substituting m,, = m" into Al6, yields

2 2 2 2 2 2
(mz —mz )(m; —m3 ) . Mz —

2 2
My o szz

2
(mqql(high)) =

mx
X1 2 2
(ma Zm%

2 2
ms 1
g X 4 2.2 82
- Tt — \/(mq mgmh) )
g Mg

. . . . . 4 2_2
which results in two solutions, depending on the sign of M, —mzm;

2 |
ma (mg —mg)(m; —m3,)

2
(mqql(hl'gh) ) =(

2
my

2_.2 2.2
mmfz

2 2 2 £
(mmhigh)) = (mar —mz X £

‘—fmﬂ.’z

2
< m-m-
) where m; < mzm;,

q fl 2
s> m.om.
22 ) where my; Z Mz,

By finding the A<1 and >0 boundaries, that is when A17 <m>™ or A17>0, the three
endpoints corresponding to the extreme A values can be assigned mass regions.

2 2 2 2
(mrnax _ )2 = ((m§ _mfz )(mfﬁ _mfl )) )
qql(high) -mj:zu2 miz 2 mgm:ﬂ
(mf - m.%)(m.z. -m?
max 2 _ & q q & 2
(mqql(high)) _( m; - ) ma’ g mgm:f]
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2.2 2_.2 2 2
mem; —mzms; m-m-. > m-m-:
2 2 X X q X g X
(mqql(hrgh)) = (ma' - mfz )( £ 2 2 . ) ) : 2
E p
_ 2 .
(mqqf(hxgh)) = (mz —my) Otherwise
Low endpoint

The low edge was approached in exactly the same way as the high edge, but with the
lepton energy halved to give the low configuration, which has identical leptons back
to back with the quark.

Following the algebra as above yields

m,.
qu = mé + mi - (3m +m ) replacing A17.
2mz +m2 )
Four endpoints which are very snnilar to the high expressions are derived. The only
ntm

difference is that the mass of ¥, is replaced by

Further investigation showed that if 7 is produced at rest and the leptons are back to

back in the 7, frame, 7 can be maximised when m}.~ is perpendicular to the

9! (low)
leptons.

From [h]j .
(mqql(high)) = (m,, *)? +2L% (E;; ) A1

Fa vl a > m~ - m_
As 7] is at rest both the leptons have momentum I# = le—-{i) andso Al8 is
calculated to be
M Y =m m, +m—(m, + )(——--——m;“méz +m;
gql(low) My Ty —\My Ty 2 )
2ma.mf2

For this to be bigger than the four previous endpoints, the lepton energy must be big
enough to compensate for the fact that it is no longer back to back with the quark
effective particle.

The simulation shows that these five endpoints are not the final expressions, as they
still occasionally underestimate the endpoint.

Summary
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mqﬂ(law) (mqql(low)) = In_aX{A’B} m; 2 mgx
2
(mqql(law)) =maX{A,C} m2 < m x
(mqql(law)) =max{ 4, D} zq - g2
m;x =zm.m:
(Mgrtiomy)” = max{ 4, E} g% = Mg,
Otherwise
2.2
sm. +m
- 2 ER
A= My My +n; -—(mf[ +mg )(W)
5o (Mg ~m3, )mz, ~x*)
_( -
A2
2 2 2 2 3 3
C=((m§ —m;,-)z(zm.qu -x )) ™ ;-mf
i, My
2 2 2.2
m. —msix
D= (m_*m)(xb 2q )
"%
2
E= (mE - X)
Appendix B

A copy of the montecarlo event generator is included on a CD.
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