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Abstract

Within the framework of classical field theory, the Lagrangian used in the “Higgs Simulator” (by Dr
C. G. Lester, 2013) is systematically motivated and developed. The propagation of wave packets and the
Manton instanton, which are visualised in “Higgs Simulator”, are discussed as solutions to the Euler-Lagrange
equations. Finally the numerical implementation, as well as remaining problems with the initialisation of
the wave packets, are outlined.

1 Introduction

The Higgs boson is formally most adequately studied in the realm of quantum field theory. However, classical
field theory has proven itself to show valuable insight in the physical phenomena involved. A classical field
theory distinguishes itself from quantum theory by the fact that the wave function described does not lend itself
to a probabilistic interpretation.

The “Higgs Simulator” was written with the intent to visualise the dynamics of multiple interacting fields
in a classical field theory.

In the following, we will be considering the Lagrangian density L(φi, ∂µφi) (abbreviated to “Lagrangian”)
for real scalar fields φi in (1+1)-dimensional space-time.1 We will be using natural units such that ~ = c = 1
and the Minkowski metric gµν = diag(1,−1) so that the gradient takes the form ∂µ ≡ ( ∂∂t ,−

∂
∂x ), leading to

identities such as (∂µφ)(∂µφ) ≡ (∂φ∂t )2 − (∂φ∂x )2 and ∂µ∂
µφ ≡ ∂2φ

∂t2 −
∂2φ
∂x2 .

By varying the action S =
∫
Ld2x, the Euler-Lagrange equations,

∂L
∂φi

= ∂µ
∂L

∂[∂µφi]
, (1)

for each field φi are obtained, where the index µ runs over 0 and 1 since we are in (1+1)-dimensional space-time.
The next section systematically motivates and develops the Lagrangian. In Section (3), the algorithms used

in the program are presented. Section (4) contains the conclusions. In Section (2.5), a summary of the main
physical consequences of the Lagrangian is given.

2 Developing the Lagrangian

In Sections (2.1)–(2.4) special cases to which the full Lagrangian reduces are considered. These are then
combined in Section (2.5). Section (2.6) treats the Manton instanton.

2.1 Massless particles

The Lagrangian of the field corresponding to a massless free particle is given by

L =
1

2
(∂µφ)(∂µφ), (2)

which has only a kinetic term.
Substituting into the Euler-Lagrange equation (1) yields

∂µ∂
µφ = 0, (3)

which, when written in non-covariant form, ∂2φ
∂t2 = ∂2φ

∂x2 , is the wave equation with phase velocity c = 1.
Therefore, any wave packet which is a solution to Equation (3) does not disperse and has group velocity c. This
wave packet corresponds to a particle which is a photon.

In the program “Higgs Simulator”, this field has the name Photon. In the Default, Intermediate and Odd

settings, the wave packet in this field has the fastest group velocity, compared with the wave packets in the
other fields.

1A real scalar field has one degree of freedom. We could also treat complex scalar fields, which have two degrees of freedom.
Furthermore it can be shown that complex scalar fields can carry charge (to be precise, a non-vanishing Noether charge), so by
restricting ourselves to real scalar fields, we only consider uncharged fields.

1



2.2 Massive particles

The previous Lagrangian can be extended to

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2, (4)

where m2 is, for now, an arbitrary scalar.
Substituting into the Euler-Lagrange equation, we obtain the Klein-Gordon equation,

∂µ∂
µφ+m2φ = 0, (5)

which can be solved by Fourier transforming to give

[k2 −m2]φ̃(k) = 0, (6)

so that, for a non-vanishing field φ̃(k),
k2 ≡ (k0)2 − (k)2 = m2, (7)

where we have defined k2 ≡ kµkµ, and k0 and k are the time- and space-like components of kµ, respectively.
Rearranging, this is the dispersion relation,

k0 =
√
k2 +m2, (8)

governing the propagation of wave packets. Therefore wave packets which satisfy the Klein-Gordon equation
disperse, in contrast to the photon field, and travel at a group velocity less than the speed of light.

Physically, φ is the (relativistic) wave function of a particle. Consequently, the energy E and momentum p
of the particle are related to the frequency k0 and wave vector k by

E = k0 and p = k, (9)

from which we see that Equation (8) is precisely the energy-momentum invariant, E =
√
p2 +m2. Indeed, this

justifies identifying the (at first arbitrary) parameter m with the mass.
In the program “Higgs Simulator”, this field has the name Massive. In the Default, Intermediate and

Odd settings, the wave packet in this field has a slower group velocity than the wave packet in the field Photon,
as expected, since massive particles travel more slowly than photons, see Figure (1).

Figure 1: Screenshot from “Higgs Simulator”. The two plots show the Photon and Massive fields. In each plot, the
black curve is the displacement plotted against the x-axis, while the blue curve shows the energy density. The simulation
time t is given in units of inverse energy (or equivalently in units of inverse mass) since natural units are used.
At t = 0, both fields are initialised to Gaussian wave packets, see Section (3.2). After some time has elapsed, the wave
packet in the field Massive can be seen to lag behind the field Photon, as the wave packet in Massive has a smaller group
velocity. It can also be seen that the wave packet in Massive disperses, while the one in Photon does not.
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2.3 The Higgs field

We introduce the Lagrangian of the Higgs field by including higher-order self-interaction terms2:

L =
1

2
(∂µφ)(∂µφ) + 2Bφ2 −Aφ4, (10)

where A and B are real constants, chosen such that the potential V (φ) = −2Bφ2+Aφ4 remains lower-bounded3,
which is required so that the energy E (defined in Equation (11) below) does not diverge.

(The reader might wonder why we distinguish between the “mass term” 1
2m

2φ2 of Equation (5) and the
“self-interaction term” of Equation (10). Indeed, the mass term is technically also a self-interaction term as it
involves powers of the field itself. However the physical interpretation differs: the mass term gives rise to a mass,
and we require it to be non-negative for the energy to be bounded from below, but the self-interaction term
allows the parameter B to take on arbitrary values, which causes spontaneous symmetry breaking discussed
below.)

We can Legendre-transform the Lagrangian to obtain the Hamiltonian H, which we identify with the energy
density. The energy of the entire wave is then given by the integral thereof:

E =

∫
d2x

[
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+ V (φ)

]
. (11)

We now want to work out the ground-state, φ(x) = φ̃(x), which minimises the energy E. Since both terms
in the kinetic term are positive semi-definite, the energy is minimised when the field is both time-independent,
∂φ
∂t = 0, and homogeneous in space, ∂φ

∂x = 0. Therefore, φ can be taken to be a constant φ(x) = φ̃. Minimising

E is then equivalent to minimising the potential V (φ̃).
For reasons apparent later, we will choose A > 0 and B > 0, so that the potential takes the W-shape shown

in Figure (2).4
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Figure 2: Potential V (φ) = −2Bφ2 +Aφ4.

We see that the global minimum of V (φ̃) is attained at

φ̃ = ±
√
B

A
. (12)

Hence, at minimum energy, the Higgs field takes on one of these values everywhere. As the ground state does
not display the symmetry of the governing Lagrangian anymore, φ(x) → φ(−x), the symmetry is said to be
spontaneously broken. The value φ̃ is also referred to as the vacuum expectation value (vev) of the field. Without
loss of generality, we will choose the field to be in the state φ̃ = +

√
B/A from this point onwards. This choice

is arbitrary, but once it has been made, the Higgs field will remain in that state as there is an energy associated
with switching from one minimum to the other.

2See [1], Chapter 2.7, for a discussion of why a polynomial in φ is sensible.
3V (φ) is lower-bounded if A > 0 (and B arbitrary) or, if A = 0 and B < 0.
4If φ were a complex scalar field, the potential Vcomp(φ) ≡ −2B|φ|2 +A|φ|4 would take the shape of the “mexican hat” potential

in the complex plane. Qualitatively, this would give the same behaviour as in the case for real scalar fields, i.e. making a particle
massive, however one might argue that having two isolated minima is different from the potential minimum being a circle in the
complex plane. In the case of the complex scalar field there is continuous U(1) symmetry (i.e. invariance under global rotations
and reflections in the complex plane), while the real scalar field exhibits discrete symmetry under a parity transformation.
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If energy is added to the Higgs field, there will be small perturbations around φ̃, which are the Higgs bosons5.
We can make this more precise by letting φ(x) = φ̃+ ε(x) and expanding:

L′(ε) ≡ L(φ̃+ ε) (13)

=
1

2
(∂µε)(∂

µε)− 4Bε2 − 4Aφ̃ε3 −Aε4 +B2/A, (14)

where the additive constant can be neglected, in principle.
If ε is small, terms of higher order than ε2 can be neglected, and we see that the Lagrangian has the form

as that for a massive particle (compare with Equation (5)). This is the mass of a Higgs boson travelling in the
potential valley6 of Figure (2).

In the program “Higgs Simulator”, this field has the name Higgs. In the Default, Intermediate and Odd

settings, there is a wave packet around the vacuum expectation value. In each of these settings, the values of
the constants A and B are chosen differently so that Default has the deepest and most narrow potential V (φ)
and Odd has the least deep and narrow potential V (φ), while Intermediate’s potential function is in between.
As a consequence, the wave packet of the Higgs field is smallest in the setting Default, and largest in Odd,
while it has an intermediate size in Intermediate, see Figure (3).

2.4 Interaction with the Higgs field

We now consider a massless field, φ0, which interacts with a Higgs field, φ2, through an interaction term7

λφ0
2φ2

2:

L =
1

2
(∂µφ0)(∂µφ0) +

1

2
(∂µφ2)(∂µφ2)︸ ︷︷ ︸

kinetic term

+ 2Bφ2
2 −Aφ2

4︸ ︷︷ ︸
self-interaction

− λφ0
2φ2

2︸ ︷︷ ︸
interaction

. (15)

Note that this is simply the sum of the massless and the Higgs Lagrangians, Equations (3) and (10), plus the
interaction term. If the interaction term were not there, substituting into the Euler-Lagrange equations (1) for
the two fields would give two decoupled equations, which amounts to no interaction. Including the interaction
term couples the two Euler-Lagrange equations, therefore giving rise to an interaction. This justifies calling it
the interaction term.

The effective potential, which appears in the Euler-Lagrange equations for both φ0 and φ2, is

V (φ0, φ2) = −2Bφ2
2 +Aφ2

4 + λφ0
2φ2

2. (16)

Substituting the Lagrangian into the Euler-Lagrange equations, we get

∂µ∂
µφ2 = − ∂

∂φ2

(
−2Bφ2

2 +Aφ2
4 + λφ0

2φ2
2
)

and (17)

∂µ∂
µφ0 = − ∂

∂φ0

(
λφ0

2φ2
2
)
. (18)

Looking first at Equation (17), we have previously seen that the Higgs field undergoes small perturbations
around a non-zero vacuum expectation value, φ̃2. If the field φ0 only performs small perturbations around its
minimum-energy state, φ̃0 ≈ 0, the potential simplifies to V ≈ −2Bφ2

2 + Aφ2
4. Hence, the self-interaction

term of the Higgs field is only perturbed slightly by the interaction term and the Higgs field will still be close
to its vacuum expectation value.

Looking at Equation (18), i.e. from the perspective of the massless field φ0, the interaction term now plays
the role of a mass term, since φ2 is effectively a constant:

λφ0
2φ2

2 ≈ λφ̃2
2︸ ︷︷ ︸

const.

φ0
2. (19)

Thus, for small perturbations around the minimum-energy state, the initially massless field φ0 has acquired a
mass purely from interaction with the Higgs field.

In the setting Silly 1 the Higgs field is initialised by setting its value everywhere to a constant much smaller
than 1. This causes the Higgs field to “roll down” the W-shaped potential and subsequently perform oscillatory
motion, which is however disturbed by the presence of the wave packet Test. If the Higgs field would not
interact with any other fields, the entire Higgs field would perform an oscillation about the vacuum expectation
value.

5After second quantisation, there will be zero-point fluctuations anyway, but in the realm of classical field theory, we for now
imagine adding in energy “manually”.

6In the case of a complex scalar field with a mexican hat potential, there will be two bosons, a massless one and a massive
one, corresponding to the two principal curvatures at the minimum of the potential. Here, for real scalar fields, we only have one
principal curvature at the bottom of the potential valley, therefore giving one massive boson.

7This interaction term is added in “manually”. However, such an interaction term appears naturally, e.g., in the case of the
electromagnetic field interacting with a complex scalar Higgs field. In that case, the covariant derivative, which is a necessary
modification of the derivative to make the Lagrangian invariant under local gauge transformations, gives rise to such a cross term.
For details, see [1], Chapter 6.
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(a) Setting Default

(b) Setting Intermediate

(c) Setting Odd

Figure 3: Screenshots from “Higgs Simulator”. In each Figure, the plot shows the Higgs field. The black curve is the
displacement of the field plotted against the x-axis, while the orange lines show the vacuum expectation values (vev)
of the field, given by Equation (12). The simulation time t is given in units of inverse energy (or equivalently in units
of inverse mass) since natural units are used. At the top left corner of the graphical user interface, one of the settings
Default, Intermediate and Odd can be selected.
The wave packet of the field Higgs in the settings Default, Intermediate and Odd (with the vertical axis scaled the same
in each setting) at time t = 0 is shown. The size of the wave packet in Default is the smallest (almost not visible) while
it is largest in the setting Odd due to the different depths of the potentials. The potential can be changed by changing
the parameters mSq and quarticTerm.
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Figure 4: Screenshot from “Higgs Simulator”. From top to bottom, the plots show the Test, Massive, Higgs and
Photon fields. The black curve is the displacement of the field plotted against the x-axis and the blue curve is the energy
density, while the orange lines show the vacuum expectation values (vev) of the fields. The simulation time t is given in
units of inverse energy (or equivalently in units of inverse mass) since natural units are used.
At time t = 0, the fields Test, Massive and Photon are initialised as a Gaussian wave packet, as described in Section
(3.2), and the field Higgs is initialised as described in Section (3.3). After some time has elapsed, the wave packets of
both fields Test (first panel from the top) and Massive (second panel) have the same position and width, since they
approximately have the same dispersion relation. However, Test has mass purely from interaction with the field Higgs

(third panel) while Massive explicitly has a mass term in the Lagrangian. Both wave packets are slower than the wave
packet of the field Photon (fourth panel), as expected.

2.5 The full Lagrangian

We are now in a position to piece together the full Lagrangian:

L = T − V, (20)

where the kinetic and potential terms are, respectively,

T =
1

2
(∂µφ0)(∂µφ0) +

1

2
(∂µφ1)(∂µφ1) +

1

2
(∂µφ2)(∂µφ2) +

1

2
(∂µφ3)(∂µφ3) and (21)

V =
1

2
m2φ1

2︸ ︷︷ ︸
masses

+λ0022 φ0φ0φ2φ2︸ ︷︷ ︸
interaction(s)

+Aφ2
4 − 2Bφ2

2︸ ︷︷ ︸
self-interactions

, (22)

where the subscripts on λ are used to uniquely identify the powers appearing in the interaction term.
We now consider each field in turn and summarise key results:

• φ2 is the Higgs field, discussed in Section (2.3). The self-interaction term encourages this field to be at

the minimum-energy state given by the vacuum expectation value φ̃2 = ±
√

B
A .

• φ1 is a massive field as in Section (2.2). In this Lagrangian, it is not interacting with any other fields. It’s

dispersion relation is given by the energy-momentum invariant, E =
√
p2 +m2.

• φ0 is the massless (“test”) field interacting with the Higgs field, φ2, as in Section (2.4). By choosing the
mass, m, to be equal to the vacuum expectation value of the Higgs field, we can make a wave packet travel
at the same group velocity as the field φ1. This is depicted in Figure (4).

• φ3 is a massless (photon) field as discussed in Section (2.1) which is not interacting with any other fields.
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The test field, φ0, thus acquires mass by interaction with the Higgs field. We can think of φ0 as a fermionic
(e.g. electron) field. Why can it not be given a mass by including a mass term for it, like for φ1? This would
imply that Fermions are governed by the Klein-Gordon equation, which can only describe spin-0 particles8. For
a description of spin-1/2 particles within classical field theory, we would have to turn to the Dirac equation.

The Hamiltonian corresponding to the Lagrangian, Equation (21), is

H =

3∑
i=0

1

2

[(
∂φi
∂t

)2

+

(
∂φi
∂x

)2
]

+ V. (23)

In the program “Higgs Simulator” we assign each wave an energy which is the kinetic term plus the self-
interactions (which includes mass terms) in the Hamiltonian H. Any other remaining cross-terms are referred
to as the “interaction energy”.

2.6 The Manton instanton

For the Higgs field Lagrangian,

L =
1

2
(∂µφ)(∂µφ)− V (φ), (24)

where V (φ) = −2Bφ2 +Aφ4 with A > 0 and B > 0 has the W-shape in Figure (2), we look for a static solution,
∂φ
∂t = 0, which switches from one vacuum expectation value, φ(x) = −φ̃ ≡ −

√
B
A , to the other, φ(x) = +φ̃.

The Euler-Lagrange equation gives the Klein-Gordon equation in a potential,

∂µ∂
µφ = −∂V

∂φ
, (25)

so that we have to solve the boundary value problem
∂2φ
∂x2 = ∂V

∂φ ,

φ(x)→ +φ̃ as x→ +∞,
φ(x)→ −φ̃ as x→ −∞,
∂φ
∂x → 0 as |x| → ∞.

(26)

The solution is found to be
φ(x) = φ̃ tanh

(√
2Aφ̃(x− x0)

)
, (27)

where x0 is a constant of integration corresponding to the centre of the instanton. The solution is depicted in
Figure (5), which can be imagined as a rope lying on a ridge.

The initial configuration of Silly 3 of the program shows two such instantons (Figure (6)). They are
initially far enough apart so that the boundary condition at x→∞ is satisfied.

Changing the reference frame under a Lorentz transformation must give another solution, as the Euler-
Lagrange equations are Lorentz-invariant. Intuitively, if we move at a constant low velocity along the x-axis, we
will see the stationary instanton moving in the opposite x-direction. Hence, an instanton moving at a constant
velocity must be a general solution. At relativistic velocities, we will observe the instanton to be ”squished”
along the x-axis due to length contraction. Hence, fast-moving instantons will have their centre squished. A
moving instanton is in fact constructed in the setting Silly 3 of the program by perturbing one stationary
instanton with a wave packet, setting the instanton into motion.

What does the instanton correspond to physically? To answer that, we inspect the energy density of a
stationary instanton:

H =
1

2

(
∂φ

∂x

)2

+ V (φ) (28)

=
B2

A

{
sech4

[√
2B(x− x0)

]
− 1
}
, (29)

where the constant offset can be neglected. We see that the energy density is highly concentrated around the
centre x0 and falls off rapidly to zero. Therefore, the instanton corresponds to a point-like particle.

In fact, the collision of two instantons shown in the Setting Silly 3 of the program can be interpreted as
two particles colliding, annihilating each other, and producing another pair of instantons travelling in different
directions. The initial configuration can be seen in Figure (6).

In the setting Silly 2, the Higgs field is initialised to a sinusoidal curve and subsequently evolves to show
a shape similar to that of a number of equally spaced Manton instantons next to each other while oscillating
about the vacuum expectation values and being disturbed by the interactions with the field Test. The initial
configuration is shown in Figure (7).

For a full discussion of this solution, including the stability under small perturbations, we refer to [1], Chapter
7.1.

8The Klein-Gordon equation describes spin-0 particles because it implies that φ is a Lorentz-invariant (scalar) function.
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Figure 5: Instanton solution (blue curve) in the potential valley (red surface). Intuitively, this can be imagined as a
rope (blue curve) lying on a ridge (red surface).

Figure 6: Initial configuration of the Higgs field in the Silly 3 setting, as shown in “Higgs Simulator”. (The setting
Silly 3 can be selected in the top left corner of the graphical user interface.) Two stationary instantons (black line)
are next to each other. The energy density (blue filled plot) is sharply peaked at the centre of the each instanton, giving
them particle character. The vacuum expectation values (vev) of the Higgs field are the orange lines.
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Figure 7: Initial sinusoidal configuration of the Higgs field in the Silly 2 setting, as shown in “Higgs Simulator”. (The
setting Silly 2 can be selected in the top left corner of the graphical user interface.) The black curve is the displacement
of the Higgs field, the blue curve is the energy density and the orange lines are the vacuum expectation values (vev) of
the Higgs field. When the simulation is started, parts of the sine wave “roll down” the potential minimum towards the
vacuum expectation values so that the peaks of the sine wave flatten out.

3 Numerical simulation

For the numerical simulation, we will consider the most general Lagrangian and derive the differential equation
to be integrated numerically. We switch notation to explicitly denote space, time, momentum and the Fourier
transform of a wave Φ by x, t, p and Φ̃, respectively.

The “Higgs Simulator” can simulate any Lagrangian of the form described in Section (3.1). In the graphical
user interface, the Lagrangian simulated can be modified by modifying the values of the parameters λ and check-
ing/unchecking the checkboxes in the right-hand column of the graphical user interface and/or by modifying
the values of mSq and quarticTerm next to each plot.

3.1 The general Lagrangian

We now move on to the general case of n interacting waves with m arbitrary interactions of polynomial type.
The Lagrangian is given by

L =

n−1∑
i=0

[
1

2
(∂µφi)(∂

µφi)

]
︸ ︷︷ ︸

n kinetic terms

−


n−1∑
i=0

[
1

2
m2
iφ

2
i +

1

4
qiφ

4
i

]
︸ ︷︷ ︸
n self-interaction terms

+

m−1∑
i=0

[
λi0i1i2...in−1

φi00 φ
i1
1 ...φ

in−1

n−1

]
︸ ︷︷ ︸

m interaction terms

 , (30)

which is the Lagrangian implemented in “Higgs Simulator”.
Substituting into the Euler-Lagrange equation for the field φk(x, t) and switching to non-covariant notation,

we obtain

∂2φk
∂t2

=
∂2φk
∂x2

−


n−1∑
i=0

[
m2
iφi + qiφ

3
i

]
+

m−1∑
i=0

λi0i1i2...in−1
ik

n−1∏
j=0
j 6=k

φ
ij
j

φik−1
k


 . (31)

This is a second-order differential equation which is numerically integrated in the program using a Leapfrog
integrator. The boundary conditions are chosen to be periodic, so that we are simulating waves on a circle. In
the program, the self-interaction parameters m2 and q are labelled as mSq and quarticTerm, respectively.

What remains is picking initial values φi(x, t = 0) and ∂φi
∂t

∣∣∣
t=0

for all values of x.
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3.2 Initialisation of wave packets

Any non-Higgs field Φ(x, t) is initialised as a Gaussian wave packet, which is constructed as a Fourier transform,

Φ(x, t = 0) =

∫ ∞
−∞

Φ̃(p)e−ipxdp, (32)

of the Gaussian envelope

Φ̃(p) =
1√

2πp2
spread

exp

[
−1

2

(
p− pcentral

pspread

)2
]
. (33)

For any time t > 0, each harmonic wave evolves individually, i.e.

Φ(x, t) =

∫ ∞
−∞

Φ̃(p)ei(ω(p)t−px)dp, (34)

where ω(p) is the dispersion relation, given by

En = ωn =

√(
sin

(
πkn
N

)
2

∆x

)2

+m2. (35)

Therefore, at t = 0, the velocity of the wave packet is initialised as

∂Φ

∂t
(x, t = 0) =

∫ ∞
−∞

iω(p) Φ̃(p)e−ipxdp. (36)

We now discuss the practical implementation of this as a computer program. Because the code can only
work with a discrete x-axis of N points with lattice spacing ∆x and a discrete p-axis with spacing ∆p = 2π

N∆x ,
the Fourier transform has to be approximated by a (Riemann) sum.

Substituting dp ≈ ∆p and p ≈ n∆p with n ∈ Z, we obtain

Φ(x, t = 0) ≈
∞∑

n=−∞
Φ̃(n∆p)e−in∆px∆p. (37)

Furthermore, the function Φ̃(p) is localised around p = pcentral, so to a good approximation, the sum can

run over a window of width N such that n ∈ [nlower, nupper], where nlower =
⌊
pcentral

∆p

⌋
−
⌊
N
2

⌋
and nupper =⌊

pcentral

∆p

⌋
+
⌊
N
2

⌋
:

Φ(x, t = 0) ≈
nupper∑
n=nlower

Φ̃(n∆p)e−in∆px∆p, (38)

=

N−1∑
n=0

Φ̃ ((n+ nlower)∆p) e
−i(n+nlower)∆px∆p. (39)

(The window was chosen to be of length N as this then becomes a discrete Fourier transform between two
complex vectors of length N , for which the FFT algorithm can be used.)

This produces a wave packet centred at x = 0. For a wave packet at x = xcentral, the function has to be
shifted so that

Φ(x, t = 0) =

N−1∑
n=0

Φ̃ ((n+ nlower)∆p) e
−i(n+nlower)∆p(x−xcentral)∆p. (40)

Finally, this can be cast into a form which can be used by a FFT by relabelling ∆p = 2π
N∆x and x = m∆x,

where m ∈ [0, N − 1], and expanding the exponential:

Φ(m∆x, t = 0) = e−i
2π
N nlower(m−

xcentral
∆x )

N−1∑
n=0

Φ̃ ((n+ nlower)∆p) ∆pei
2π
N n

xcentral
∆x︸ ︷︷ ︸

≡Φ̃modified[n]

e−i
2pi
N nm. (41)

Defining the FFT as a mapping between the N -dimensional complex vectors a[n] and its transform A[m] by

A[m] = FFT(a[n]) =

N−1∑
n=0

a[n] exp
(
−2πi

mn

N

)
with m ∈ {0, ..., N − 1}, (42)

it is seen that one can take the FFT of Φ̃modified[n] and evaluate it at x
∆x :

Φ(x, t = 0) = e−i
2π
N nlower(

x
∆x−

xcentral
∆x )(FFT(Φ̃modified[n]))[

x

∆x
]. (43)

(Note: This has been implemented in Python using numpy’s FFT and gives the correct wave packet within
an absolute error of 10−4 of the Java version, which implements a summation of plane waves.)
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3.3 Initialisation of the Higgs field

The problem of initialising the Higgs wave, which interacts with other waves, is that the additional term in the
potential changes the vacuum expectation value. The vacuum expectation value now varies as a function of x
and may in fact not even exist if there is no global minimum of the effective potential.

If we naively initialise the Higgs wave at the vacuum expectation value, discarding any interactions from the
potential, we would see backward and forward radiation in form of “recoil waves” travelling in the backward
and forward direction. The recoil waves are undesirable. They can be eliminated, to first order, by minimising
the effective potential which includes the interaction terms. However this does not eliminate the recoil waves
fully because the new minimum influences the wave which the Higgs field is interacting with, therefore changing
the vacuum expectation value again. The problem is that we have to find wave packets for all interacting waves
simultaneously.

An iterative solution might be the following (by Dr C. G. Lester, private conversation):

1: Set the Higgs field to the vacuum expectation value (calculated from the self-interaction only).
2: Set the fields (which the Higgs field is interacting with) to the initial conditions of Section (3.2).
3: Let the simulation run for a time ti.
4: Set all fields to zero outside the range of the desired wave packets, therefore setting the recoil waves to zero.
5: Let the simulation run for a time −ti, i.e. backwards to return to t = 0. The wave packets in all fields will

now produce no radiation at time ti and are therefore better candidates for the initial conditions.
6: Go back to Step (2) and repeat, i.e. only reset the non-Higgs fields, but using a larger time interval, ti+1 > ti.

A problem with the implementation of this algorithm is that the times ti are not known but must be cleverly
chosen. Furthermore, the windows outside of which the fields should be set to zero are not known a priori either.

Due to these problems, the initialisation procedure chosen in the program is to find the global minimum of
the effective Higgs field potential.

3.3.1 Interaction terms of type λw2h2

Suppose the Lagrangian L = T − V has the potential term V (h) = αh4 − βh2 + λh2w2, where w(x) is the
non-Higgs field which has been initialised according to Section (3.2) and is thus a fixed function of x, and h(x)
is the Higgs field.

Note that we are including the interaction term in the potential.

We seek to minimise V (h) with respect to h, i.e. ∂V
∂h

∣∣∣
h=h̃

= 0, giving

h̃ =

√
β − λw2

2α
, (44)

where we have chosen the positive solution. If the expression inside the square root turns negative at a particular
value of x, we set the wave h(x) to zero at that value of x.

Differentiating with respect to time, we obtain the initial velocity of the Higgs wave,

∂h̃

∂t

∣∣∣
t=0

= − λw

2αh̃

∂w

∂t
. (45)

3.3.2 General interaction terms

Suppose we have a general Lagrangian in which the Higgs field, h(x), is interacting with n other waves, φk(x),
through m interaction terms, so that the potential term takes the form

V (h) = αh4 − βh2 +

m−1∑
i=0

[
λi

(
n−1∏
k=0

φkik

)
hni

]
(46)

where all ni ≥ 1 and ki ≥ 1 and α, β and λi are constants. Note that the ni do not have to be distinct, which
makes it necessary to regroup the terms to represent V (h) as a polynomial with, say, ascending powers in h.

We seek solutions to
∂V

∂h

∣∣∣
h=h̃

= 0. (47)

As it is not possible to solve the resulting polynomial in h in general analytically, we seek the solutions
numerically using the following algorithm, which returns the position of the global minimum of a polynomial,
p(x) =

∑
i aix

i, in the domain Dx = [xmin, xmax]9:

9The expression “A← B” denotes assignment of B to the variable A.
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Algorithm 1 Find global minimum of polynomial

1: function argmin-poly(p(x), [xmin, xmax])
2: Take the derivative d(x)← dp

dx
3: Calculate the list of roots r[i]← roots(d(x))
4: Append the domain boundaries [xmin, xmax] to r[i]
5: Apply p(x) to each value of r[i] and store the results in the list pr[i]
6: Find the minimum value m← mini(pr[i])
7: Return the values (multiple if degenerate) in r[i] at which p(x) attains this minimum: r[pr[i] == m]
8: end function

To stay consistent, we take the largest returned value if there are multiple return values. This value will be
the value h̃ which minimises V (h) at a particular value of x. The initialisation procedure has to minimise V (h)
for every value of x.

By taking the time derivative of Equation (47) and rearranging, we obtain the initial velocity of the Higgs
field,

∂h̃

∂t

∣∣∣
t=0

= −

∑m−1
i=0 niλi

[
∂
∂t

∏n−1
k=0 φ

ki
k

]
h̃ni−1

12αh̃2 − 2β +
∑m−1
i=0

{
0, if ni = 1

ni(ni − 1)λi

[∏n−1
k=0 φ

ki
k

]
h̃ni−2, if ni > 1

, (48)

where h̃(x) is the solution to Equation (47). Note that the time derivative of the product, ∂
∂t

∏n−1
k=0 φ

ki
k , has to

be written out explicitly by using the product rule before being able to do calculations.

3.4 Summary

The following algorithm is used for the simulation:

Algorithm 2 Simulation

1: Declare the waves φi and, for each wave, set the self-interaction parameters m2 and q.
2: Declare the interaction terms λi.
3: Label the waves which are to be initialised as Higgs waves as hi.

4: Initialise the non-Higgs waves with initial displacement φi(x, t = 0) and velocity ∂tφi(x, t = 0) given by
Equation (32) and (36), respectively.

5: Initialise the position of the Higgs waves by solving Equation (47) for each x.
6: Initialise the velocity of the Higgs waves, given by Equation (48).

7: Run the simulation by numerically integrating Equation (31).

4 Conclusions

The governing Lagrangian used in the program “Higgs Simulator” was motivated and the Euler-Lagrange equa-
tions were derived. Two types of solutions, wave packets and Manton instantons, were discussed analytically.

For wave packets in a massive field, the dispersion relation was derived. The effect of the Higgs mechanism
on a massless field was discussed and compared to the case of the massive field. By comparing the group
velocities of wave packets in both fields, the numerical simulation confirmed that a massless field can acquire a
mass purely by interaction with the Higgs field.

Stationary and moving Manton instantons were constructed in the numerical simulation, showing the ex-
pected behaviour.

First-order corrections to the initialisation of the Higgs field were successfully implemented, although an
initialisation algorithm which completely eliminates backward and forward radiation remains to be found.
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