

Edges and things, and what experimenters do in HEP.

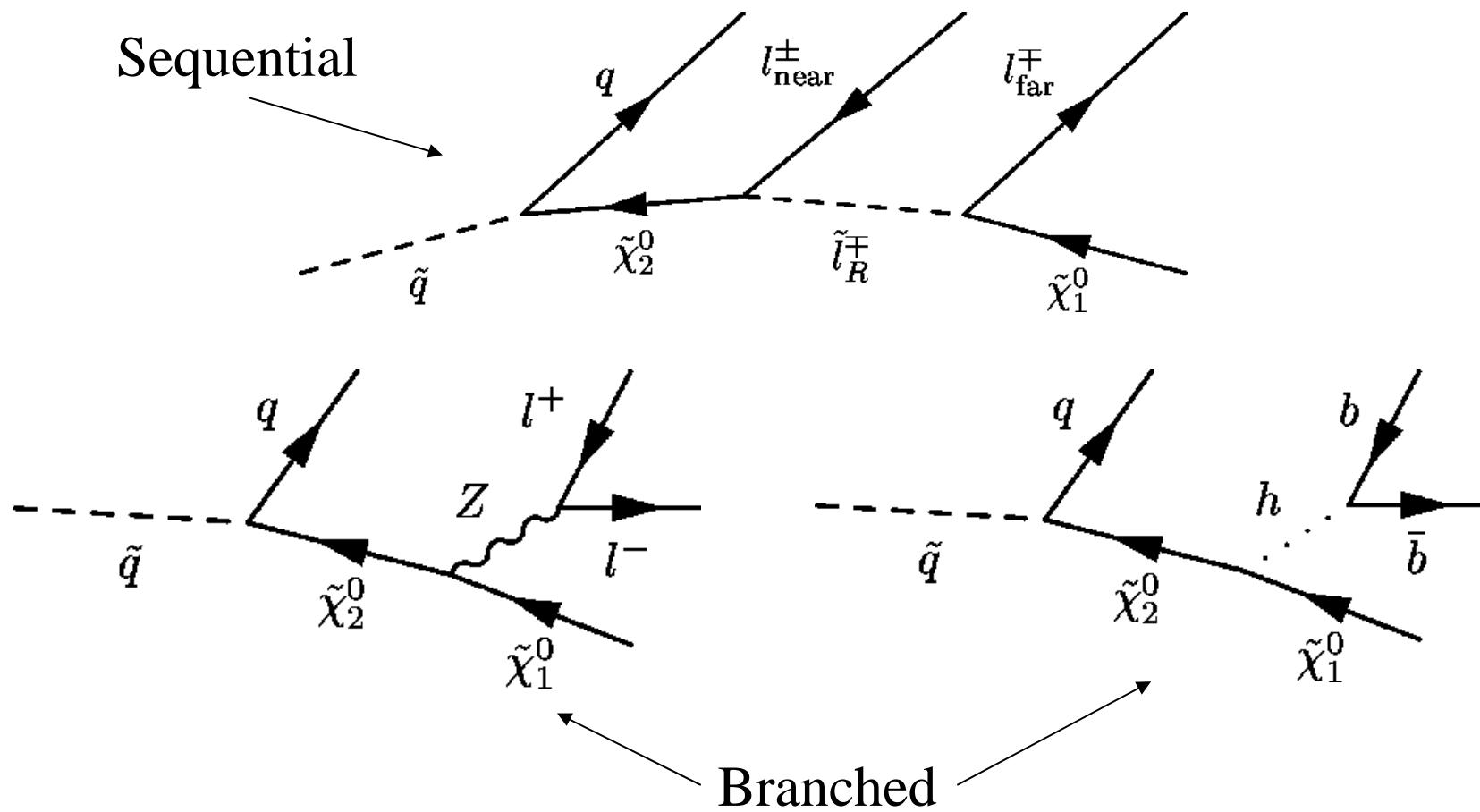
Christopher Lester

What's this all about?

Christopher Lester, November 2004

Damtp Pheno

Decay chains used

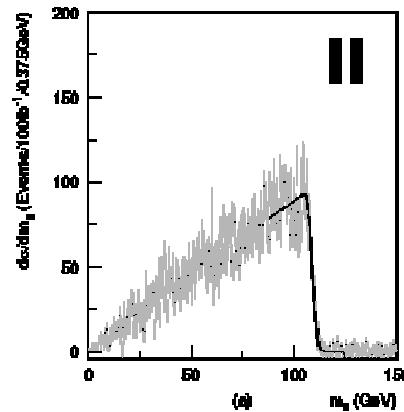
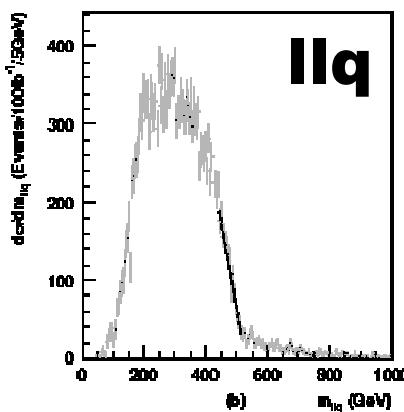
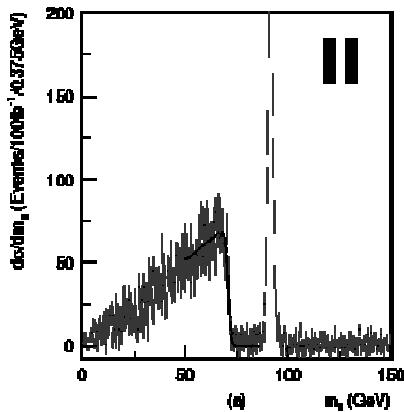
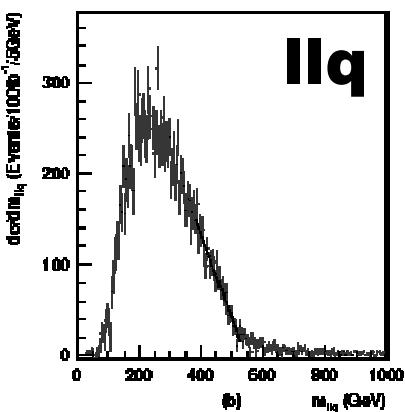
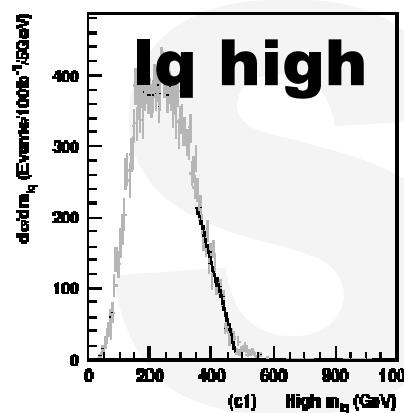
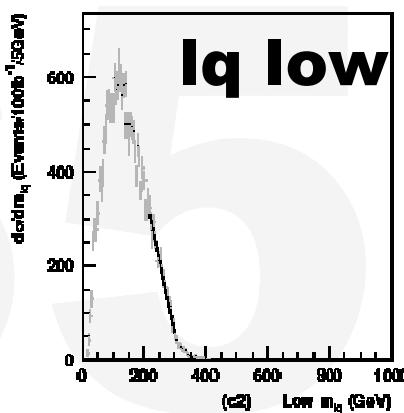
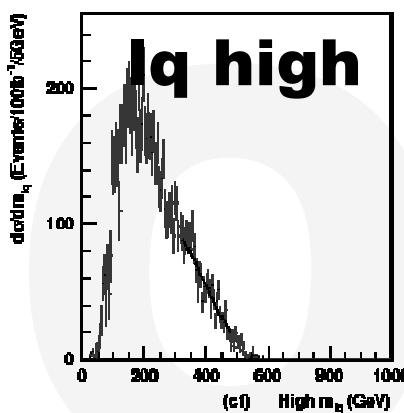
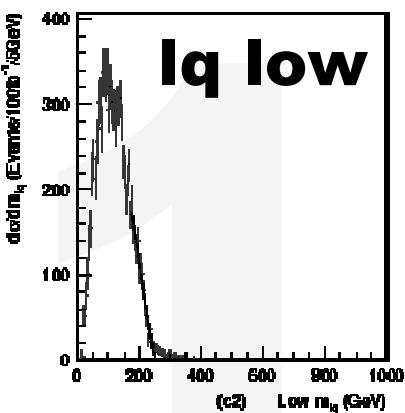
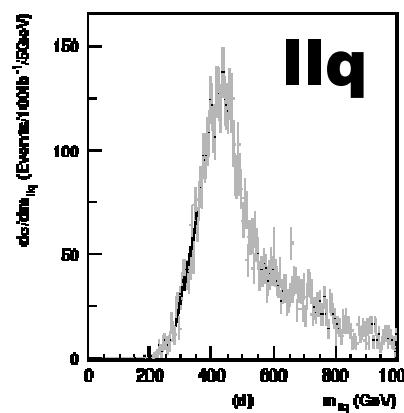
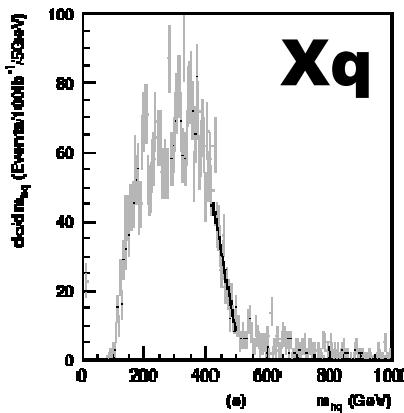
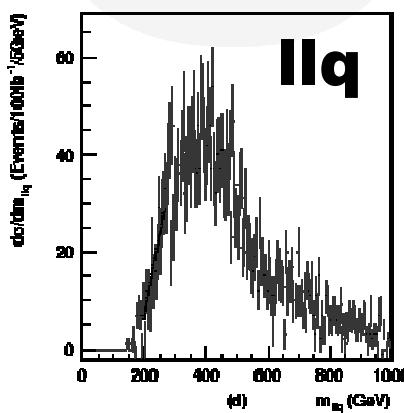
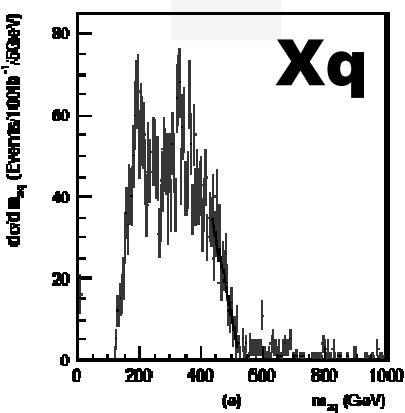


Edge positions

Related edge	Kinematic endpoint
l^+l^- edge	$(m_{ll}^{\max})^2 = (\tilde{q} - \tilde{l})(\tilde{l} - \tilde{\chi})/\tilde{l}$
l^+l^-q edge	$(m_{llq}^{\max})^2 = \begin{cases} \max \left[\frac{(\tilde{q} - \tilde{\xi})(\tilde{\xi} - \tilde{\chi})}{\tilde{\xi}}, \frac{(\tilde{q} - \tilde{l})(\tilde{l} - \tilde{\chi})}{\tilde{l}}, \frac{(\tilde{q}\tilde{l} - \tilde{q}\tilde{\chi})(\tilde{\xi} - \tilde{l})}{\tilde{\xi}\tilde{l}} \right] \\ \text{except for the special case in which } \tilde{l}^2 < \tilde{q}\tilde{\chi} < \tilde{\xi}^2 \text{ and} \\ \tilde{\xi}^2\tilde{\chi} < \tilde{q}\tilde{l}^2 \text{ where one must use } (m_{\tilde{q}} - m_{\tilde{\chi}_1^0})^2. \end{cases}$
Xq edge	$(m_{Xq}^{\max})^2 = X + (\tilde{q} - \tilde{\xi}) \left[\tilde{\xi} + X - \tilde{\chi} + \sqrt{(\tilde{\xi} - X - \tilde{\chi})^2 - 4X\tilde{\chi}} \right] / (2\tilde{\xi})$
l^+l^-q threshold	$(m_{llq}^{\min})^2 = \begin{cases} [-2\tilde{l}(\tilde{q} - \tilde{\xi})(\tilde{\xi} - \tilde{\chi}) + (\tilde{q} + \tilde{\xi})(\tilde{\xi} - \tilde{l})(\tilde{l} - \tilde{\chi}) \\ - (\tilde{q} - \tilde{\xi})\sqrt{(\tilde{\xi} + \tilde{l})^2(\tilde{l} + \tilde{\chi})^2 - 16\tilde{\xi}\tilde{l}^2\tilde{\chi}}] / (4\tilde{\xi}) \end{cases}$
$l_{\text{near } q}^\pm$ edge	$(m_{l_{\text{near } q}}^{\max})^2 = (\tilde{q} - \tilde{\xi})(\tilde{\xi} - \tilde{l})/\tilde{\xi}$
$l_{\text{far } q}^\pm$ edge	$(m_{l_{\text{far } q}}^{\max})^2 = (\tilde{q} - \tilde{\xi})(\tilde{l} - \tilde{\chi})/\tilde{l}$
$l^\pm q$ high-edge	$(m_{lq(\text{high})}^{\max})^2 = \max \left[(m_{l_{\text{near } q}}^{\max})^2, (m_{l_{\text{far } q}}^{\max})^2 \right]$
$l^\pm q$ low-edge	$(m_{lq(\text{low})}^{\max})^2 = \min \left[(m_{l_{\text{near } q}}^{\max})^2, (\tilde{q} - \tilde{\xi})(\tilde{l} - \tilde{\chi}) / (2\tilde{l} - \tilde{\chi}) \right]$
M_{T2} edge	$\Delta M = m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$

Table 4: The absolute kinematic endpoints of invariant mass quantities formed from decay chains of the types mentioned in the text for known particle masses. The following shorthand notation has been used: $\tilde{\chi} = m_{\tilde{\chi}_1^0}^2$, $\tilde{l} = m_{\tilde{l}}^2$, $\tilde{\xi} = m_{\tilde{\chi}_2^0}^2$, $\tilde{q} = m_{\tilde{q}}^2$ and X is m_h^2 or m_Z^2 depending on which particle participates in the “branched” decay.

Fitted distributions



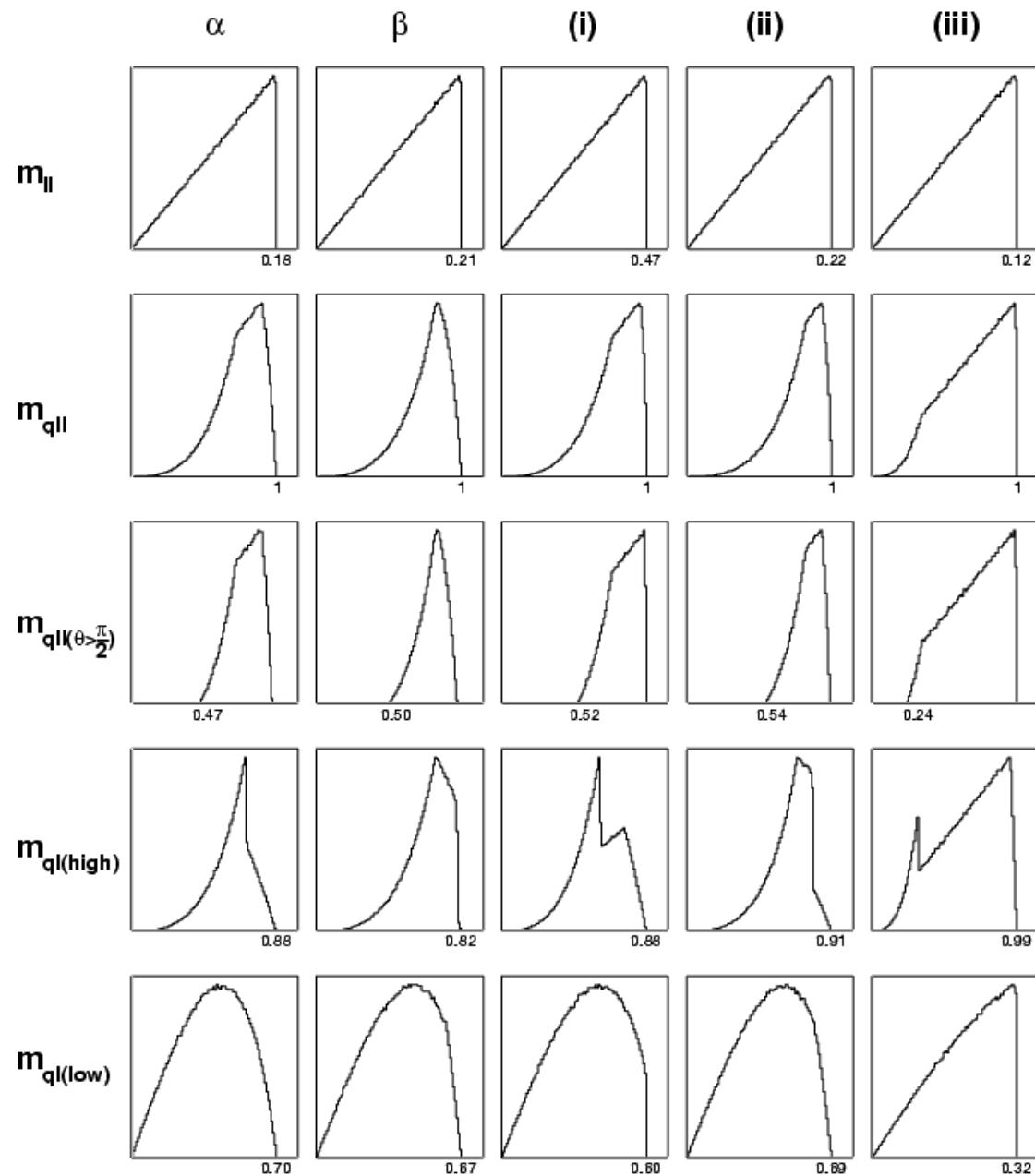


Figure 10: Theoretical mass distributions for SPS 1a (α) and (β), as well as for three other mass scenarios, denoted (i), (ii) and (iii). Kinematic endpoints are given in units of the squark mass. (More details will be given in [43].)

What the different invariant mass distributions look like for a selection of plausible supersymmetric models.

From Miller et. al.
[hep-ph/0410303](https://arxiv.org/abs/hep-ph/0410303)

$$\Delta M = M_{T2}(x) - x$$



Given:

- } the lepton momenta
- } the missing transverse momentum
- } an estimate "X" of the neutralino mass

Deduce:

- } lower bound $M_{T2}(X)$ on slepton mass
- } slepton-neutralino mass difference ΔM

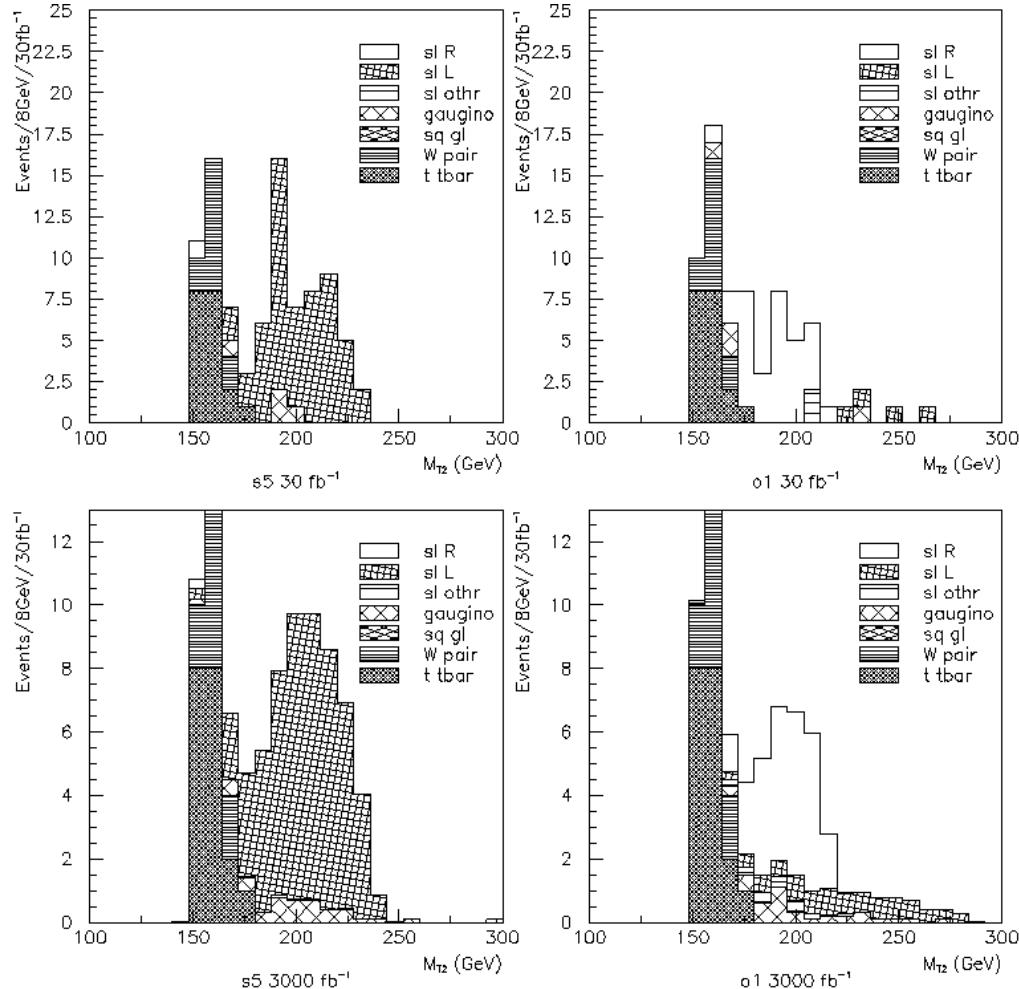
How does this m_{T2} work?

- } For each event you want a lower bound for m_{slepton}
- } You get this by trying ALL POSSIBLE neutralino momenta, k , consistent with
 - { observed missing momentum,
 - { identical (unknown) slepton masses,
 - { Hypothesised neutralino mass.
- } For each of these momenta, k , “that might have been” there is an “ $m_{\text{slepton}}(k)$ that might have been”.
- } There is a least such $m_{\text{slepton}}(k)$ (call it m_{T2}) which cannot be bigger than the true value of m_{slepton} , because one of the k ’s is actually right!
- } Hence m_{T2} is a lower bound for m_{slepton} .

So summarising:

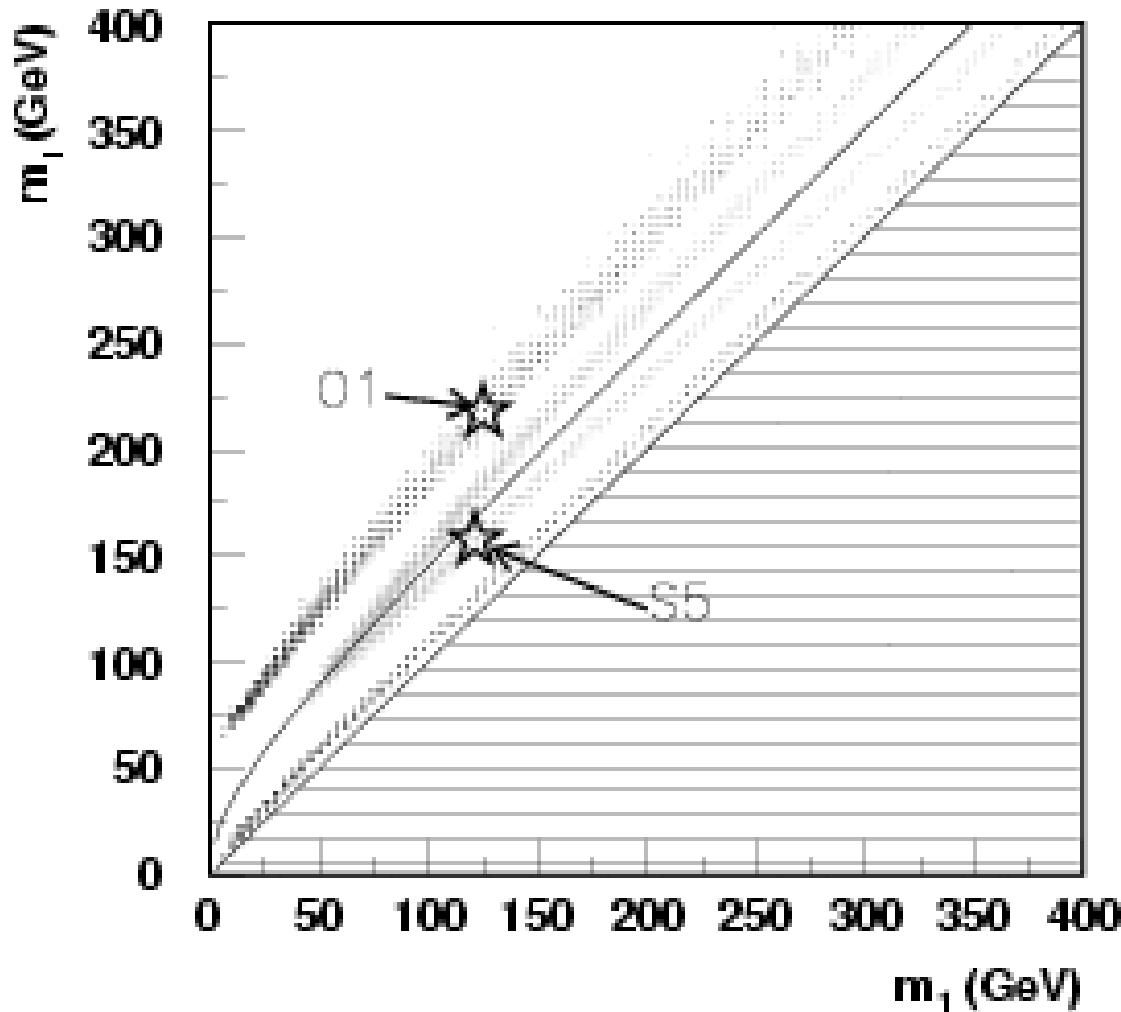
- } In each event:
 - | $m_{T2} \leq m_{slepton}$.
- } Can show that:
 - | there exist events for which $m_{T2} = m_{slepton}$.
- } So:
 - } the endpoint of the m_{T2} distribution is $m_{slepton}$!

Example m_{τ_2} distributions

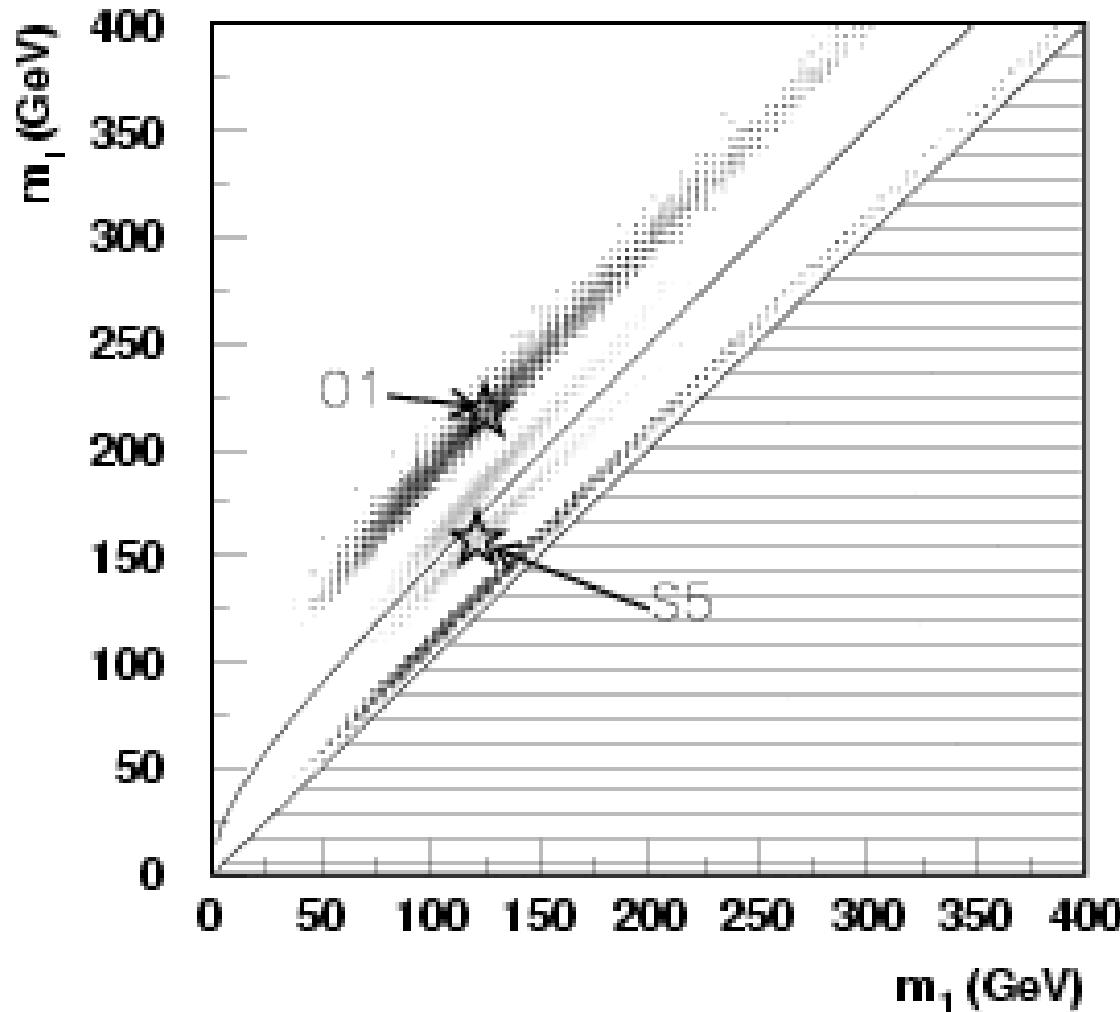


(This old plot
underestimates SM
backgrounds)

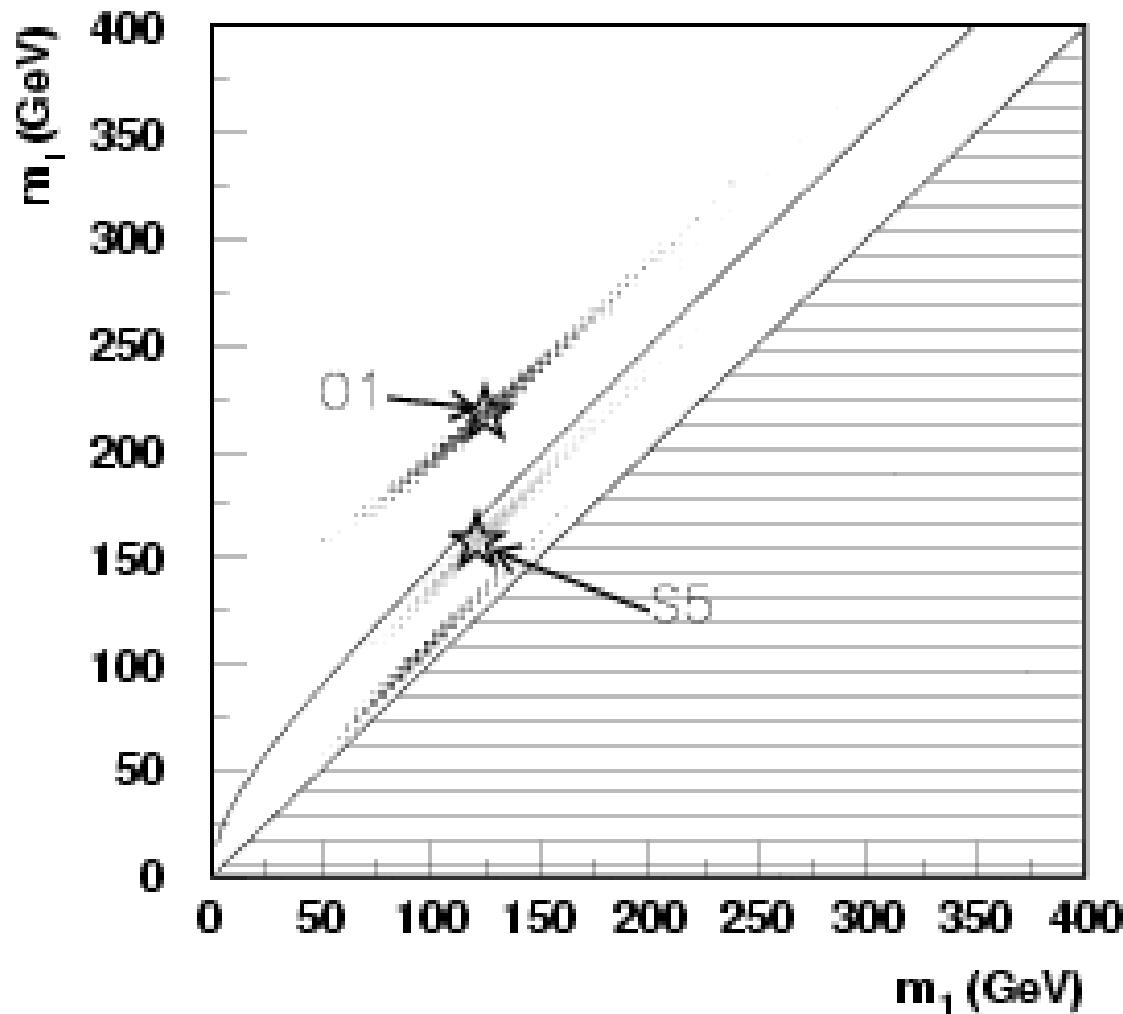
No $m_{q_{II}}$ -thresh, no m_{lq} -low, no $m_{\tau 2}$



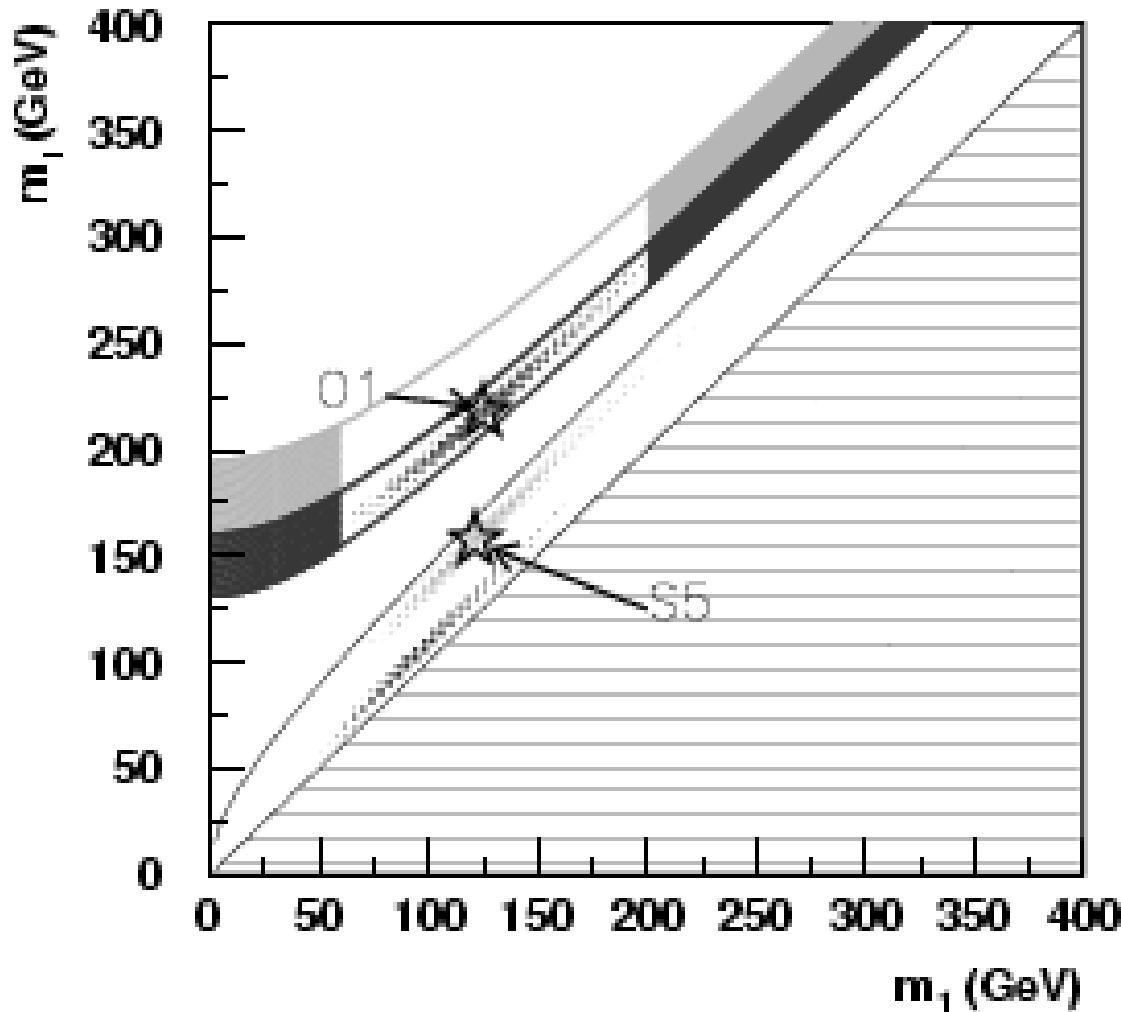
No m_{lq} -low, no m_{T2}



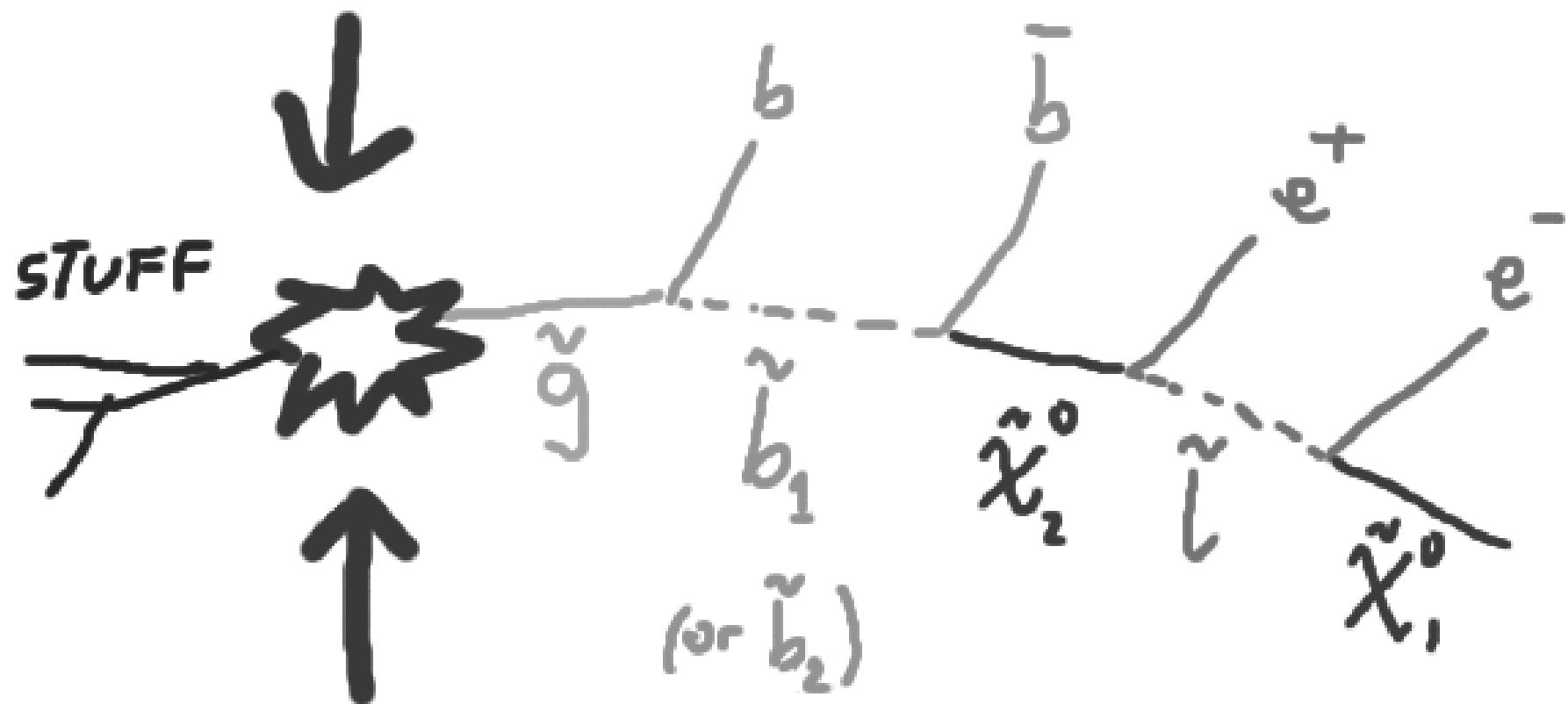
No m_{T2}



Everything!



A long cascade decay from pp



Mass Relation Method Results

